001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.rng.sampling.distribution; 018 019import org.apache.commons.rng.UniformRandomProvider; 020 021/** 022 * Sampler for the <a href="http://mathworld.wolfram.com/PoissonDistribution.html">Poisson distribution</a>. 023 * 024 * <ul> 025 * <li> 026 * For small means, a Poisson process is simulated using uniform deviates, as described in 027 * <blockquote> 028 * Knuth (1969). <i>Seminumerical Algorithms</i>. The Art of Computer Programming, 029 * Volume 2. Chapter 3.4.1.F.3 Important integer-valued distributions: The Poisson distribution. 030 * Addison Wesley. 031 * </blockquote> 032 * The Poisson process (and hence, the returned value) is bounded by {@code 1000 * mean}. 033 * </li> 034 * </ul> 035 * 036 * <p>This sampler is suitable for {@code mean < 40}. 037 * For large means, {@link LargeMeanPoissonSampler} should be used instead.</p> 038 * 039 * <p>Sampling uses {@link UniformRandomProvider#nextDouble()} and requires on average 040 * {@code mean + 1} deviates per sample.</p> 041 * 042 * @since 1.1 043 */ 044public class SmallMeanPoissonSampler 045 implements SharedStateDiscreteSampler { 046 /** 047 * Pre-compute {@code Math.exp(-mean)}. 048 * Note: This is the probability of the Poisson sample {@code P(n=0)}. 049 */ 050 private final double p0; 051 /** Pre-compute {@code 1000 * mean} as the upper limit of the sample. */ 052 private final int limit; 053 /** Underlying source of randomness. */ 054 private final UniformRandomProvider rng; 055 056 /** 057 * @param rng Generator of uniformly distributed random numbers. 058 * @param mean Mean. 059 * @throws IllegalArgumentException if {@code mean <= 0} or {@code Math.exp(-mean) == 0} 060 */ 061 public SmallMeanPoissonSampler(UniformRandomProvider rng, 062 double mean) { 063 this.rng = rng; 064 if (mean <= 0) { 065 throw new IllegalArgumentException("mean is not strictly positive: " + mean); 066 } 067 p0 = Math.exp(-mean); 068 if (p0 > 0) { 069 // The returned sample is bounded by 1000 * mean 070 limit = (int) Math.ceil(1000 * mean); 071 } else { 072 // This excludes NaN values for the mean 073 throw new IllegalArgumentException("No p(x=0) probability for mean: " + mean); 074 } 075 } 076 077 /** 078 * @param rng Generator of uniformly distributed random numbers. 079 * @param source Source to copy. 080 */ 081 private SmallMeanPoissonSampler(UniformRandomProvider rng, 082 SmallMeanPoissonSampler source) { 083 this.rng = rng; 084 p0 = source.p0; 085 limit = source.limit; 086 } 087 088 /** {@inheritDoc} */ 089 @Override 090 public int sample() { 091 int n = 0; 092 double r = 1; 093 094 while (n < limit) { 095 r *= rng.nextDouble(); 096 if (r >= p0) { 097 n++; 098 } else { 099 break; 100 } 101 } 102 return n; 103 } 104 105 /** {@inheritDoc} */ 106 @Override 107 public String toString() { 108 return "Small Mean Poisson deviate [" + rng.toString() + "]"; 109 } 110 111 /** 112 * {@inheritDoc} 113 * 114 * @since 1.3 115 */ 116 @Override 117 public SharedStateDiscreteSampler withUniformRandomProvider(UniformRandomProvider rng) { 118 return new SmallMeanPoissonSampler(rng, this); 119 } 120 121 /** 122 * Creates a new sampler for the Poisson distribution. 123 * 124 * @param rng Generator of uniformly distributed random numbers. 125 * @param mean Mean of the distribution. 126 * @return the sampler 127 * @throws IllegalArgumentException if {@code mean <= 0} or {@code Math.exp(-mean) == 0}. 128 * @since 1.3 129 */ 130 public static SharedStateDiscreteSampler of(UniformRandomProvider rng, 131 double mean) { 132 return new SmallMeanPoissonSampler(rng, mean); 133 } 134}