001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.rng.sampling.distribution; 018 019import org.apache.commons.rng.UniformRandomProvider; 020 021/** 022 * Sampler for the <a href="http://mathworld.wolfram.com/PoissonDistribution.html">Poisson 023 * distribution</a>. 024 * 025 * <ul> 026 * <li> 027 * Kemp, A, W, (1981) Efficient Generation of Logarithmically Distributed 028 * Pseudo-Random Variables. Journal of the Royal Statistical Society. Vol. 30, No. 3, pp. 029 * 249-253. 030 * </li> 031 * </ul> 032 * 033 * <p>This sampler is suitable for {@code mean < 40}. For large means, 034 * {@link LargeMeanPoissonSampler} should be used instead.</p> 035 * 036 * <p>Note: The algorithm uses a recurrence relation to compute the Poisson probability 037 * and a rolling summation for the cumulative probability. When the mean is large the 038 * initial probability (Math.exp(-mean)) is zero and an exception is raised by the 039 * constructor.</p> 040 * 041 * <p>Sampling uses 1 call to {@link UniformRandomProvider#nextDouble()}. This method provides 042 * an alternative to the {@link SmallMeanPoissonSampler} for slow generators of {@code double}.</p> 043 * 044 * @see <a href="https://www.jstor.org/stable/2346348">Kemp, A.W. (1981) JRSS Vol. 30, pp. 045 * 249-253</a> 046 * @since 1.3 047 */ 048public final class KempSmallMeanPoissonSampler 049 implements SharedStateDiscreteSampler { 050 /** Underlying source of randomness. */ 051 private final UniformRandomProvider rng; 052 /** 053 * Pre-compute {@code Math.exp(-mean)}. 054 * Note: This is the probability of the Poisson sample {@code p(x=0)}. 055 */ 056 private final double p0; 057 /** 058 * The mean of the Poisson sample. 059 */ 060 private final double mean; 061 062 /** 063 * @param rng Generator of uniformly distributed random numbers. 064 * @param p0 Probability of the Poisson sample {@code p(x=0)}. 065 * @param mean Mean. 066 */ 067 private KempSmallMeanPoissonSampler(UniformRandomProvider rng, 068 double p0, 069 double mean) { 070 this.rng = rng; 071 this.p0 = p0; 072 this.mean = mean; 073 } 074 075 /** {@inheritDoc} */ 076 @Override 077 public int sample() { 078 // Note on the algorithm: 079 // - X is the unknown sample deviate (the output of the algorithm) 080 // - x is the current value from the distribution 081 // - p is the probability of the current value x, p(X=x) 082 // - u is effectively the cumulative probability that the sample X 083 // is equal or above the current value x, p(X>=x) 084 // So if p(X>=x) > p(X=x) the sample must be above x, otherwise it is x 085 double u = rng.nextDouble(); 086 int x = 0; 087 double p = p0; 088 while (u > p) { 089 u -= p; 090 // Compute the next probability using a recurrence relation. 091 // p(x+1) = p(x) * mean / (x+1) 092 p *= mean / ++x; 093 // The algorithm listed in Kemp (1981) does not check that the rolling probability 094 // is positive. This check is added to ensure no errors when the limit of the summation 095 // 1 - sum(p(x)) is above 0 due to cumulative error in floating point arithmetic. 096 if (p == 0) { 097 return x; 098 } 099 } 100 return x; 101 } 102 103 /** {@inheritDoc} */ 104 @Override 105 public String toString() { 106 return "Kemp Small Mean Poisson deviate [" + rng.toString() + "]"; 107 } 108 109 /** {@inheritDoc} */ 110 @Override 111 public SharedStateDiscreteSampler withUniformRandomProvider(UniformRandomProvider rng) { 112 return new KempSmallMeanPoissonSampler(rng, p0, mean); 113 } 114 115 /** 116 * Creates a new sampler for the Poisson distribution. 117 * 118 * @param rng Generator of uniformly distributed random numbers. 119 * @param mean Mean of the distribution. 120 * @return the sampler 121 * @throws IllegalArgumentException if {@code mean <= 0} or 122 * {@code Math.exp(-mean) == 0}. 123 */ 124 public static SharedStateDiscreteSampler of(UniformRandomProvider rng, 125 double mean) { 126 if (mean <= 0) { 127 throw new IllegalArgumentException("Mean is not strictly positive: " + mean); 128 } 129 130 final double p0 = Math.exp(-mean); 131 132 // Probability must be positive. As mean increases then p(0) decreases. 133 if (p0 > 0) { 134 return new KempSmallMeanPoissonSampler(rng, p0, mean); 135 } 136 137 // This catches the edge case of a NaN mean 138 throw new IllegalArgumentException("No probability for mean: " + mean); 139 } 140}