IntVariance.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.descriptive;
- import java.math.BigInteger;
- /**
- * Computes the variance of the available values. The default implementation uses the
- * following definition of the <em>sample variance</em>:
- *
- * <p>\[ \tfrac{1}{n-1} \sum_{i=1}^n (x_i-\overline{x})^2 \]
- *
- * <p>where \( \overline{x} \) is the sample mean, and \( n \) is the number of samples.
- *
- * <ul>
- * <li>The result is {@code NaN} if no values are added.
- * <li>The result is zero if there is one value in the data set.
- * </ul>
- *
- * <p>The use of the term \( n − 1 \) is called Bessel's correction. This is an unbiased
- * estimator of the variance of a hypothetical infinite population. If the
- * {@link #setBiased(boolean) biased} option is enabled the normalisation factor is
- * changed to \( \frac{1}{n} \) for a biased estimator of the <em>sample variance</em>.
- *
- * <p>The implementation uses an exact integer sum to compute the scaled (by \( n \))
- * sum of squared deviations from the mean; this is normalised by the scaled correction factor.
- *
- * <p>\[ \frac {n \times \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}{n \times (n - 1)} \]
- *
- * <p>Supports up to 2<sup>63</sup> (exclusive) observations.
- * This implementation does not check for overflow of the count.
- *
- * <p>This class is designed to work with (though does not require)
- * {@linkplain java.util.stream streams}.
- *
- * <p><strong>This implementation is not thread safe.</strong>
- * If multiple threads access an instance of this class concurrently,
- * and at least one of the threads invokes the {@link java.util.function.IntConsumer#accept(int) accept} or
- * {@link StatisticAccumulator#combine(StatisticResult) combine} method, it must be synchronized externally.
- *
- * <p>However, it is safe to use {@link java.util.function.IntConsumer#accept(int) accept}
- * and {@link StatisticAccumulator#combine(StatisticResult) combine}
- * as {@code accumulator} and {@code combiner} functions of
- * {@link java.util.stream.Collector Collector} on a parallel stream,
- * because the parallel implementation of {@link java.util.stream.Stream#collect Stream.collect()}
- * provides the necessary partitioning, isolation, and merging of results for
- * safe and efficient parallel execution.
- *
- * @see <a href="https://en.wikipedia.org/wiki/variance">variance (Wikipedia)</a>
- * @see <a href="https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance">
- * Algorithms for computing the variance (Wikipedia)</a>
- * @see <a href="https://en.wikipedia.org/wiki/Bessel%27s_correction">Bessel's correction</a>
- * @since 1.1
- */
- public final class IntVariance implements IntStatistic, StatisticAccumulator<IntVariance> {
- /** Small array sample size.
- * Used to avoid computing with UInt96 then converting to UInt128. */
- static final int SMALL_SAMPLE = 10;
- /** Sum of the squared values. */
- private final UInt128 sumSq;
- /** Sum of the values. */
- private final Int128 sum;
- /** Count of values that have been added. */
- private long n;
- /** Flag to control if the statistic is biased, or should use a bias correction. */
- private boolean biased;
- /**
- * Create an instance.
- */
- private IntVariance() {
- this(UInt128.create(), Int128.create(), 0);
- }
- /**
- * Create an instance.
- *
- * @param sumSq Sum of the squared values.
- * @param sum Sum of the values.
- * @param n Count of values that have been added.
- */
- private IntVariance(UInt128 sumSq, Int128 sum, int n) {
- this.sumSq = sumSq;
- this.sum = sum;
- this.n = n;
- }
- /**
- * Creates an instance.
- *
- * <p>The initial result is {@code NaN}.
- *
- * @return {@code IntVariance} instance.
- */
- public static IntVariance create() {
- return new IntVariance();
- }
- /**
- * Returns an instance populated using the input {@code values}.
- *
- * @param values Values.
- * @return {@code IntVariance} instance.
- */
- public static IntVariance of(int... values) {
- // Small arrays can be processed using the object
- if (values.length < SMALL_SAMPLE) {
- final IntVariance stat = new IntVariance();
- for (final int x : values) {
- stat.accept(x);
- }
- return stat;
- }
- // Arrays can be processed using specialised counts knowing the maximum limit
- // for an array is 2^31 values.
- long s = 0;
- final UInt96 ss = UInt96.create();
- // Process pairs as we know two maximum value int^2 will not overflow
- // an unsigned long.
- final int end = values.length & ~0x1;
- for (int i = 0; i < end; i += 2) {
- final long x = values[i];
- final long y = values[i + 1];
- s += x + y;
- ss.addPositive(x * x + y * y);
- }
- if (end < values.length) {
- final long x = values[end];
- s += x;
- ss.addPositive(x * x);
- }
- // Convert
- return new IntVariance(UInt128.of(ss), Int128.of(s), values.length);
- }
- /**
- * Updates the state of the statistic to reflect the addition of {@code value}.
- *
- * @param value Value.
- */
- @Override
- public void accept(int value) {
- sumSq.addPositive((long) value * value);
- sum.add(value);
- n++;
- }
- /**
- * Gets the variance of all input values.
- *
- * <p>When no values have been added, the result is {@code NaN}.
- *
- * @return variance of all values.
- */
- @Override
- public double getAsDouble() {
- return computeVarianceOrStd(sumSq, sum, n, biased, false);
- }
- /**
- * Compute the variance (or standard deviation).
- *
- * <p>The {@code std} flag controls if the result is returned as the standard deviation
- * using the {@link Math#sqrt(double) square root} function.
- *
- * @param sumSq Sum of the squared values.
- * @param sum Sum of the values.
- * @param n Count of values that have been added.
- * @param biased Flag to control if the statistic is biased, or should use a bias correction.
- * @param std Flag to control if the statistic is the standard deviation.
- * @return the variance (or standard deviation)
- */
- static double computeVarianceOrStd(UInt128 sumSq, Int128 sum, long n, boolean biased, boolean std) {
- if (n == 0) {
- return Double.NaN;
- }
- // Avoid a divide by zero
- if (n == 1) {
- return 0;
- }
- // Sum-of-squared deviations: sum(x^2) - sum(x)^2 / n
- // Sum-of-squared deviations precursor: n * sum(x^2) - sum(x)^2
- // The precursor is computed in integer precision.
- // The divide uses double precision.
- // This ensures we avoid cancellation in the difference and use a fast divide.
- // The result is limited to by the rounding in the double computation.
- final double diff = computeSSDevN(sumSq, sum, n);
- final long n0 = biased ? n : n - 1;
- final double v = diff / IntMath.unsignedMultiplyToDouble(n, n0);
- if (std) {
- return Math.sqrt(v);
- }
- return v;
- }
- /**
- * Compute the sum-of-squared deviations multiplied by the count of values:
- * {@code n * sum(x^2) - sum(x)^2}.
- *
- * @param sumSq Sum of the squared values.
- * @param sum Sum of the values.
- * @param n Count of values that have been added.
- * @return the sum-of-squared deviations precursor
- */
- private static double computeSSDevN(UInt128 sumSq, Int128 sum, long n) {
- // Compute the term if possible using fast integer arithmetic.
- // 128-bit sum(x^2) * n will be OK when the upper 32-bits are zero.
- // 128-bit sum(x)^2 will be OK when the upper 64-bits are zero.
- // Both are safe when n < 2^32.
- if ((n >>> Integer.SIZE) == 0) {
- return sumSq.unsignedMultiply((int) n).subtract(sum.squareLow()).toDouble();
- } else {
- return sumSq.toBigInteger().multiply(BigInteger.valueOf(n))
- .subtract(square(sum.toBigInteger())).doubleValue();
- }
- }
- /**
- * Compute the sum of the squared deviations from the mean.
- *
- * <p>This is a helper method used in higher order moments.
- *
- * @return the sum of the squared deviations
- */
- double computeSumOfSquaredDeviations() {
- return computeSSDevN(sumSq, sum, n) / n;
- }
- /**
- * Compute the mean.
- *
- * <p>This is a helper method used in higher order moments.
- *
- * @return the mean
- */
- double computeMean() {
- return IntMean.computeMean(sum, n);
- }
- /**
- * Convenience method to square a BigInteger.
- *
- * @param x Value
- * @return x^2
- */
- private static BigInteger square(BigInteger x) {
- return x.multiply(x);
- }
- @Override
- public IntVariance combine(IntVariance other) {
- sumSq.add(other.sumSq);
- sum.add(other.sum);
- n += other.n;
- return this;
- }
- /**
- * Sets the value of the biased flag. The default value is {@code false}.
- *
- * <p>If {@code false} the sum of squared deviations from the sample mean is normalised by
- * {@code n - 1} where {@code n} is the number of samples. This is Bessel's correction
- * for an unbiased estimator of the variance of a hypothetical infinite population.
- *
- * <p>If {@code true} the sum of squared deviations is normalised by the number of samples
- * {@code n}.
- *
- * <p>Note: This option only applies when {@code n > 1}. The variance of {@code n = 1} is
- * always 0.
- *
- * <p>This flag only controls the final computation of the statistic. The value of this flag
- * will not affect compatibility between instances during a {@link #combine(IntVariance) combine}
- * operation.
- *
- * @param v Value.
- * @return {@code this} instance
- */
- public IntVariance setBiased(boolean v) {
- biased = v;
- return this;
- }
- }