Kurtosis.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.descriptive;
- /**
- * Computes the kurtosis of the available values. The kurtosis is defined as:
- *
- * <p>\[ \operatorname{Kurt} = \operatorname{E}\left[ \left(\frac{X-\mu}{\sigma}\right)^4 \right] = \frac{\mu_4}{\sigma^4} \]
- *
- * <p>where \( \mu \) is the mean of \( X \), \( \sigma \) is the standard deviation of \( X \),
- * \( \operatorname{E} \) represents the expectation operator, and \( \mu_4 \) is the fourth
- * central moment.
- *
- * <p>The default implementation uses the following definition of the <em>sample kurtosis</em>:
- *
- * <p>\[ G_2 = \frac{k_4}{k_2^2} = \;
- * \frac{n-1}{(n-2)\,(n-3)} \left[(n+1)\,\frac{m_4}{m_{2}^2} - 3\,(n-1) \right] \]
- *
- * <p>where \( k_4 \) is the unique symmetric unbiased estimator of the fourth cumulant,
- * \( k_2 \) is the symmetric unbiased estimator of the second cumulant (i.e. the <em>sample variance</em>),
- * \( m_4 \) is the fourth sample moment about the mean,
- * \( m_2 \) is the second sample moment about the mean,
- * \( \overline{x} \) is the sample mean,
- * and \( n \) is the number of samples.
- *
- * <ul>
- * <li>The result is {@code NaN} if less than 4 values are added.
- * <li>The result is {@code NaN} if any of the values is {@code NaN} or infinite.
- * <li>The result is {@code NaN} if the sum of the fourth deviations from the mean is infinite.
- * </ul>
- *
- * <p>The default computation is for the adjusted Fisher–Pearson standardized moment coefficient
- * \( G_2 \). If the {@link #setBiased(boolean) biased} option is enabled the following equation
- * applies:
- *
- * <p>\[ g_2 = \frac{m_4}{m_2^2} - 3 = \frac{\tfrac{1}{n} \sum_{i=1}^n (x_i-\overline{x})^4}
- * {\left[\tfrac{1}{n} \sum_{i=1}^n (x_i-\overline{x})^2 \right]^2} - 3 \]
- *
- * <p>In this case the computation only requires 2 values are added (i.e. the result is
- * {@code NaN} if less than 2 values are added).
- *
- * <p>Note that the computation requires division by the second central moment \( m_2 \).
- * If this is effectively zero then the result is {@code NaN}. This occurs when the value
- * \( m_2 \) approaches the machine precision of the mean: \( m_2 \le (m_1 \times 10^{-15})^2 \).
- *
- * <p>The {@link #accept(double)} method uses a recursive updating algorithm.
- *
- * <p>The {@link #of(double...)} method uses a two-pass algorithm, starting with computation
- * of the mean, and then computing the sum of deviations in a second pass.
- *
- * <p>Note that adding values using {@link #accept(double) accept} and then executing
- * {@link #getAsDouble() getAsDouble} will
- * sometimes give a different result than executing
- * {@link #of(double...) of} with the full array of values. The former approach
- * should only be used when the full array of values is not available.
- *
- * <p>Supports up to 2<sup>63</sup> (exclusive) observations.
- * This implementation does not check for overflow of the count.
- *
- * <p>This class is designed to work with (though does not require)
- * {@linkplain java.util.stream streams}.
- *
- * <p><strong>Note that this instance is not synchronized.</strong> If
- * multiple threads access an instance of this class concurrently, and at least
- * one of the threads invokes the {@link java.util.function.DoubleConsumer#accept(double) accept} or
- * {@link StatisticAccumulator#combine(StatisticResult) combine} method, it must be synchronized externally.
- *
- * <p>However, it is safe to use {@link java.util.function.DoubleConsumer#accept(double) accept}
- * and {@link StatisticAccumulator#combine(StatisticResult) combine}
- * as {@code accumulator} and {@code combiner} functions of
- * {@link java.util.stream.Collector Collector} on a parallel stream,
- * because the parallel instance of {@link java.util.stream.Stream#collect Stream.collect()}
- * provides the necessary partitioning, isolation, and merging of results for
- * safe and efficient parallel execution.
- *
- * @see <a href="https://en.wikipedia.org/wiki/Kurtosis">Kurtosis (Wikipedia)</a>
- * @since 1.1
- */
- public final class Kurtosis implements DoubleStatistic, StatisticAccumulator<Kurtosis> {
- /** 2, the length limit where the biased skewness is undefined.
- * This limit effectively imposes the result m4 / m2^2 = 0 / 0 = NaN when 1 value
- * has been added. Note that when more samples are added and the variance
- * approaches zero the result is also returned as NaN. */
- private static final int LENGTH_TWO = 2;
- /** 4, the length limit where the kurtosis is undefined. */
- private static final int LENGTH_FOUR = 4;
- /**
- * An instance of {@link SumOfFourthDeviations}, which is used to
- * compute the kurtosis.
- */
- private final SumOfFourthDeviations sq;
- /** Flag to control if the statistic is biased, or should use a bias correction. */
- private boolean biased;
- /**
- * Create an instance.
- */
- private Kurtosis() {
- this(new SumOfFourthDeviations());
- }
- /**
- * Creates an instance with the sum of fourth deviations from the mean.
- *
- * @param sq Sum of fourth deviations.
- */
- Kurtosis(SumOfFourthDeviations sq) {
- this.sq = sq;
- }
- /**
- * Creates an instance.
- *
- * <p>The initial result is {@code NaN}.
- *
- * @return {@code Kurtosis} instance.
- */
- public static Kurtosis create() {
- return new Kurtosis();
- }
- /**
- * Returns an instance populated using the input {@code values}.
- *
- * <p>Note: {@code Kurtosis} computed using {@link #accept(double) accept} may be
- * different from this instance.
- *
- * @param values Values.
- * @return {@code Kurtosis} instance.
- */
- public static Kurtosis of(double... values) {
- return new Kurtosis(SumOfFourthDeviations.of(values));
- }
- /**
- * Returns an instance populated using the input {@code values}.
- *
- * <p>Note: {@code Kurtosis} computed using {@link #accept(double) accept} may be
- * different from this instance.
- *
- * @param values Values.
- * @return {@code Kurtosis} instance.
- */
- public static Kurtosis of(int... values) {
- return new Kurtosis(SumOfFourthDeviations.of(values));
- }
- /**
- * Returns an instance populated using the input {@code values}.
- *
- * <p>Note: {@code Kurtosis} computed using {@link #accept(double) accept} may be
- * different from this instance.
- *
- * @param values Values.
- * @return {@code Kurtosis} instance.
- */
- public static Kurtosis of(long... values) {
- return new Kurtosis(SumOfFourthDeviations.of(values));
- }
- /**
- * Updates the state of the statistic to reflect the addition of {@code value}.
- *
- * @param value Value.
- */
- @Override
- public void accept(double value) {
- sq.accept(value);
- }
- /**
- * Gets the kurtosis of all input values.
- *
- * <p>When fewer than 4 values have been added, the result is {@code NaN}.
- *
- * @return kurtosis of all values.
- */
- @Override
- public double getAsDouble() {
- // This method checks the sum of squared or fourth deviations is finite
- // to provide a consistent NaN when the computation is not possible.
- if (sq.n < (biased ? LENGTH_TWO : LENGTH_FOUR)) {
- return Double.NaN;
- }
- final double x2 = sq.getSumOfSquaredDeviations();
- if (!Double.isFinite(x2)) {
- return Double.NaN;
- }
- final double x4 = sq.getSumOfFourthDeviations();
- if (!Double.isFinite(x4)) {
- return Double.NaN;
- }
- // Avoid a divide by zero; for a negligible variance return NaN.
- // Note: Commons Math returns zero if variance is < 1e-19.
- final double m2 = x2 / sq.n;
- if (Statistics.zeroVariance(sq.getFirstMoment(), m2)) {
- return Double.NaN;
- }
- final double m4 = x4 / sq.n;
- if (biased) {
- return m4 / (m2 * m2) - 3;
- }
- final double n = sq.n;
- return ((n * n - 1) * m4 / (m2 * m2) - 3 * (n - 1) * (n - 1)) / ((n - 2) * (n - 3));
- }
- @Override
- public Kurtosis combine(Kurtosis other) {
- sq.combine(other.sq);
- return this;
- }
- /**
- * Sets the value of the biased flag. The default value is {@code false}.
- * See {@link Kurtosis} for details on the computing algorithm.
- *
- * <p>This flag only controls the final computation of the statistic. The value of this flag
- * will not affect compatibility between instances during a {@link #combine(Kurtosis) combine}
- * operation.
- *
- * @param v Value.
- * @return {@code this} instance
- */
- public Kurtosis setBiased(boolean v) {
- biased = v;
- return this;
- }
- }