LongStandardDeviation.java

  1. /*
  2.  * Licensed to the Apache Software Foundation (ASF) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * The ASF licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *      http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.apache.commons.statistics.descriptive;

  18. /**
  19.  * Computes the standard deviation of the available values. The default implementation uses the
  20.  * following definition of the <em>sample standard deviation</em>:
  21.  *
  22.  * <p>\[ \sqrt{ \tfrac{1}{n-1} \sum_{i=1}^n (x_i-\overline{x})^2 } \]
  23.  *
  24.  * <p>where \( \overline{x} \) is the sample mean, and \( n \) is the number of samples.
  25.  *
  26.  * <ul>
  27.  *   <li>The result is {@code NaN} if no values are added.
  28.  *   <li>The result is zero if there is one value in the data set.
  29.  * </ul>
  30.  *
  31.  * <p>The use of the term \( n − 1 \) is called Bessel's correction. Omitting the square root,
  32.  * this provides an unbiased estimator of the variance of a hypothetical infinite population. If the
  33.  * {@link #setBiased(boolean) biased} option is enabled the normalisation factor is
  34.  * changed to \( \frac{1}{n} \) for a biased estimator of the <em>sample variance</em>.
  35.  * Note however that square root is a concave function and thus introduces negative bias
  36.  * (by Jensen's inequality), which depends on the distribution, and thus the corrected sample
  37.  * standard deviation (using Bessel's correction) is less biased, but still biased.
  38.  *
  39.  * <p>The implementation uses an exact integer sum to compute the scaled (by \( n \))
  40.  * sum of squared deviations from the mean; this is normalised by the scaled correction factor.
  41.  *
  42.  * <p>\[ \frac {n \times \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}{n \times (n - 1)} \]
  43.  *
  44.  * <p>Supports up to 2<sup>63</sup> (exclusive) observations.
  45.  * This implementation does not check for overflow of the count.
  46.  *
  47.  * <p>This class is designed to work with (though does not require)
  48.  * {@linkplain java.util.stream streams}.
  49.  *
  50.  * <p><strong>This implementation is not thread safe.</strong>
  51.  * If multiple threads access an instance of this class concurrently,
  52.  * and at least one of the threads invokes the {@link java.util.function.LongConsumer#accept(long) accept} or
  53.  * {@link StatisticAccumulator#combine(StatisticResult) combine} method, it must be synchronized externally.
  54.  *
  55.  * <p>However, it is safe to use {@link java.util.function.LongConsumer#accept(long) accept}
  56.  * and {@link StatisticAccumulator#combine(StatisticResult) combine}
  57.  * as {@code accumulator} and {@code combiner} functions of
  58.  * {@link java.util.stream.Collector Collector} on a parallel stream,
  59.  * because the parallel implementation of {@link java.util.stream.Stream#collect Stream.collect()}
  60.  * provides the necessary partitioning, isolation, and merging of results for
  61.  * safe and efficient parallel execution.
  62.  *
  63.  * @see <a href="https://en.wikipedia.org/wiki/Standard_deviation">Standard deviation (Wikipedia)</a>
  64.  * @see <a href="https://en.wikipedia.org/wiki/Bessel%27s_correction">Bessel&#39;s correction</a>
  65.  * @see <a href="https://en.wikipedia.org/wiki/Jensen%27s_inequality">Jensen&#39;s inequality</a>
  66.  * @see LongVariance
  67.  * @since 1.1
  68.  */
  69. public final class LongStandardDeviation implements LongStatistic, StatisticAccumulator<LongStandardDeviation> {

  70.     /** Sum of the squared values. */
  71.     private final UInt192 sumSq;
  72.     /** Sum of the values. */
  73.     private final Int128 sum;
  74.     /** Count of values that have been added. */
  75.     private long n;

  76.     /** Flag to control if the statistic is biased, or should use a bias correction. */
  77.     private boolean biased;

  78.     /**
  79.      * Create an instance.
  80.      */
  81.     private LongStandardDeviation() {
  82.         this(UInt192.create(), Int128.create(), 0);
  83.     }

  84.     /**
  85.      * Create an instance.
  86.      *
  87.      * @param sumSq Sum of the squared values.
  88.      * @param sum Sum of the values.
  89.      * @param n Count of values that have been added.
  90.      */
  91.     private LongStandardDeviation(UInt192 sumSq, Int128 sum, int n) {
  92.         this.sumSq = sumSq;
  93.         this.sum = sum;
  94.         this.n = n;
  95.     }

  96.     /**
  97.      * Creates an instance.
  98.      *
  99.      * <p>The initial result is {@code NaN}.
  100.      *
  101.      * @return {@code LongStandardDeviation} instance.
  102.      */
  103.     public static LongStandardDeviation create() {
  104.         return new LongStandardDeviation();
  105.     }

  106.     /**
  107.      * Returns an instance populated using the input {@code values}.
  108.      *
  109.      * @param values Values.
  110.      * @return {@code LongStandardDeviation} instance.
  111.      */
  112.     public static LongStandardDeviation of(long... values) {
  113.         // Note: Arrays could be processed using specialised counts knowing the maximum limit
  114.         // for an array is 2^31 values. Requires a UInt160.

  115.         final Int128 s = Int128.create();
  116.         final UInt192 ss = UInt192.create();
  117.         for (final long x : values) {
  118.             s.add(x);
  119.             ss.addSquare(x);
  120.         }
  121.         return new LongStandardDeviation(ss, s, values.length);
  122.     }

  123.     /**
  124.      * Updates the state of the statistic to reflect the addition of {@code value}.
  125.      *
  126.      * @param value Value.
  127.      */
  128.     @Override
  129.     public void accept(long value) {
  130.         sumSq.addSquare(value);
  131.         sum.add(value);
  132.         n++;
  133.     }

  134.     /**
  135.      * Gets the standard deviation of all input values.
  136.      *
  137.      * <p>When no values have been added, the result is {@code NaN}.
  138.      *
  139.      * @return standard deviation of all values.
  140.      */
  141.     @Override
  142.     public double getAsDouble() {
  143.         return LongVariance.computeVarianceOrStd(sumSq, sum, n, biased, true);
  144.     }

  145.     @Override
  146.     public LongStandardDeviation combine(LongStandardDeviation other) {
  147.         sumSq.add(other.sumSq);
  148.         sum.add(other.sum);
  149.         n += other.n;
  150.         return this;
  151.     }

  152.     /**
  153.      * Sets the value of the biased flag. The default value is {@code false}. The bias
  154.      * term refers to the computation of the variance; the standard deviation is returned
  155.      * as the square root of the biased or unbiased <em>sample variance</em>. For further
  156.      * details see {@link LongVariance#setBiased(boolean) LongStandardDeviationVariance.setBiased}.
  157.      *
  158.      * <p>This flag only controls the final computation of the statistic. The value of
  159.      * this flag will not affect compatibility between instances during a
  160.      * {@link #combine(LongStandardDeviation) combine} operation.
  161.      *
  162.      * @param v Value.
  163.      * @return {@code this} instance
  164.      * @see LongStandardDeviation#setBiased(boolean)
  165.      */

  166.     public LongStandardDeviation setBiased(boolean v) {
  167.         biased = v;
  168.         return this;
  169.     }
  170. }