Mean.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.descriptive;
- /**
- * Computes the arithmetic mean of the available values. Uses the following definition
- * of the <em>sample mean</em>:
- *
- * <p>\[ \frac{1}{n} \sum_{i=1}^n x_i \]
- *
- * <p>where \( n \) is the number of samples.
- *
- * <ul>
- * <li>The result is {@code NaN} if no values are added.
- * <li>The result is {@code NaN} if any of the values is {@code NaN}, or the values include
- * infinite values of opposite sign.
- * <li>The result is {@code +/-infinity} if values include infinite values of same sign.
- * <li>The result is finite if all input values are finite.
- * </ul>
- *
- * <p>The {@link #accept(double)} method uses the following recursive updating algorithm
- * that protects the mean from overflow:
- * <ol>
- * <li>Initialize \( m_1 \) using the first value</li>
- * <li>For each additional value, update using <br>
- * \( m_{i+1} = m_i + (x - m_i) / (i + 1) \)</li>
- * </ol>
- *
- * <p>The {@link #of(double...)} method uses an extended precision sum if the sum is finite.
- * Otherwise uses a corrected two-pass algorithm, starting with
- * the recursive updating algorithm mentioned above, and then correcting this by adding the
- * mean deviation of the data values from the one-pass mean (see Ling (1974)).
- *
- * <p>Supports up to 2<sup>63</sup> (exclusive) observations.
- * This implementation does not check for overflow of the count.
- *
- * <p>This class is designed to work with (though does not require)
- * {@linkplain java.util.stream streams}.
- *
- * <p><strong>Note that this implementation is not synchronized.</strong> If
- * multiple threads access an instance of this class concurrently, and at least
- * one of the threads invokes the {@link java.util.function.DoubleConsumer#accept(double) accept} or
- * {@link StatisticAccumulator#combine(StatisticResult) combine} method, it must be synchronized externally.
- *
- * <p>However, it is safe to use {@link java.util.function.DoubleConsumer#accept(double) accept}
- * and {@link StatisticAccumulator#combine(StatisticResult) combine}
- * as {@code accumulator} and {@code combiner} functions of
- * {@link java.util.stream.Collector Collector} on a parallel stream,
- * because the parallel implementation of {@link java.util.stream.Stream#collect Stream.collect()}
- * provides the necessary partitioning, isolation, and merging of results for
- * safe and efficient parallel execution.
- *
- * <p>References:
- * <ul>
- * <li>Ling, R.F. (1974)
- * Comparison of Several Algorithms for Computing Sample Means and Variances.
- * Journal of the American Statistical Association, 69, 859-866.
- * <a href="https://doi.org/10.2307/2286154">doi: 10.2307/2286154</a>
- * </ul>
- *
- * @see <a href="https://en.wikipedia.org/wiki/Mean">Mean (Wikipedia)</a>
- * @since 1.1
- */
- public final class Mean implements DoubleStatistic, StatisticAccumulator<Mean> {
- /**
- * First moment used to compute the mean.
- */
- private final FirstMoment firstMoment;
- /**
- * Create an instance.
- */
- private Mean() {
- this(new FirstMoment());
- }
- /**
- * Creates an instance with a moment.
- *
- * @param m1 First moment.
- */
- Mean(FirstMoment m1) {
- firstMoment = m1;
- }
- /**
- * Creates an instance.
- *
- * <p>The initial result is {@code NaN}.
- *
- * @return {@code Mean} instance.
- */
- public static Mean create() {
- return new Mean();
- }
- /**
- * Returns an instance populated using the input {@code values}.
- *
- * <p>Note: {@code Mean} computed using {@link #accept(double) accept} may be
- * different from this mean.
- *
- * <p>See {@link Mean} for details on the computing algorithm.
- *
- * @param values Values.
- * @return {@code Mean} instance.
- */
- public static Mean of(double... values) {
- return new Mean(FirstMoment.of(values));
- }
- /**
- * Updates the state of the statistic to reflect the addition of {@code value}.
- *
- * @param value Value.
- */
- @Override
- public void accept(double value) {
- firstMoment.accept(value);
- }
- /**
- * Gets the mean of all input values.
- *
- * <p>When no values have been added, the result is {@code NaN}.
- *
- * @return mean of all values.
- */
- @Override
- public double getAsDouble() {
- return firstMoment.getFirstMoment();
- }
- @Override
- public Mean combine(Mean other) {
- firstMoment.combine(other.firstMoment);
- return this;
- }
- }