Skewness.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.descriptive;
- /**
- * Computes the skewness of the available values. The skewness is defined as:
- *
- * <p>\[ \gamma_1 = \operatorname{E}\left[ \left(\frac{X-\mu}{\sigma}\right)^3 \right] = \frac{\mu_3}{\sigma^3} \]
- *
- * <p>where \( \mu \) is the mean of \( X \), \( \sigma \) is the standard deviation of \( X \),
- * \( \operatorname{E} \) represents the expectation operator, and \( \mu_3 \) is the third
- * central moment.
- *
- * <p>The default implementation uses the following definition of the <em>sample skewness</em>:
- *
- * <p>\[ G_1 = \frac{k_3}{k_2^{3/2}} = \frac{\sqrt{n(n-1)}}{n-2}\; g_1 = \frac{n^2}{(n-1)(n-2)}\;
- * \frac{\tfrac{1}{n} \sum_{i=1}^n (x_i-\overline{x})^3}
- * {\left[\tfrac{1}{n-1} \sum_{i=1}^n (x_i-\overline{x})^2 \right]^{3/2}} \]
- *
- * <p>where \( k_3 \) is the unique symmetric unbiased estimator of the third cumulant,
- * \( k_2 \) is the symmetric unbiased estimator of the second cumulant (i.e. the <em>sample variance</em>),
- * \( g_1 \) is a method of moments estimator (see below), \( \overline{x} \) is the sample mean,
- * and \( n \) is the number of samples.
- *
- * <ul>
- * <li>The result is {@code NaN} if less than 3 values are added.
- * <li>The result is {@code NaN} if any of the values is {@code NaN} or infinite.
- * <li>The result is {@code NaN} if the sum of the cubed deviations from the mean is infinite.
- * </ul>
- *
- * <p>The default computation is for the adjusted Fisher–Pearson standardized moment coefficient
- * \( G_1 \). If the {@link #setBiased(boolean) biased} option is enabled the following equation
- * applies:
- *
- * <p>\[ g_1 = \frac{m_3}{m_2^{3/2}} = \frac{\tfrac{1}{n} \sum_{i=1}^n (x_i-\overline{x})^3}
- * {\left[\tfrac{1}{n} \sum_{i=1}^n (x_i-\overline{x})^2 \right]^{3/2}} \]
- *
- * <p>where \( g_2 \) is a method of moments estimator,
- * \( m_3 \) is the (biased) sample third central moment and \( m_2^{3/2} \) is the
- * (biased) sample second central moment.
- * <p>In this case the computation only requires 2 values are added (i.e. the result is
- * {@code NaN} if less than 2 values are added).
- *
- * <p>Note that the computation requires division by the second central moment \( m_2 \).
- * If this is effectively zero then the result is {@code NaN}. This occurs when the value
- * \( m_2 \) approaches the machine precision of the mean: \( m_2 \le (m_1 \times 10^{-15})^2 \).
- *
- * <p>The {@link #accept(double)} method uses a recursive updating algorithm.
- *
- * <p>The {@link #of(double...)} method uses a two-pass algorithm, starting with computation
- * of the mean, and then computing the sum of deviations in a second pass.
- *
- * <p>Note that adding values using {@link #accept(double) accept} and then executing
- * {@link #getAsDouble() getAsDouble} will
- * sometimes give a different result than executing
- * {@link #of(double...) of} with the full array of values. The former approach
- * should only be used when the full array of values is not available.
- *
- * <p>Supports up to 2<sup>63</sup> (exclusive) observations.
- * This implementation does not check for overflow of the count.
- *
- * <p>This class is designed to work with (though does not require)
- * {@linkplain java.util.stream streams}.
- *
- * <p><strong>Note that this instance is not synchronized.</strong> If
- * multiple threads access an instance of this class concurrently, and at least
- * one of the threads invokes the {@link java.util.function.DoubleConsumer#accept(double) accept} or
- * {@link StatisticAccumulator#combine(StatisticResult) combine} method, it must be synchronized externally.
- *
- * <p>However, it is safe to use {@link java.util.function.DoubleConsumer#accept(double) accept}
- * and {@link StatisticAccumulator#combine(StatisticResult) combine}
- * as {@code accumulator} and {@code combiner} functions of
- * {@link java.util.stream.Collector Collector} on a parallel stream,
- * because the parallel instance of {@link java.util.stream.Stream#collect Stream.collect()}
- * provides the necessary partitioning, isolation, and merging of results for
- * safe and efficient parallel execution.
- *
- * @see <a href="https://en.wikipedia.org/wiki/Skewness">Skewness (Wikipedia)</a>
- * @since 1.1
- */
- public final class Skewness implements DoubleStatistic, StatisticAccumulator<Skewness> {
- /** 2, the length limit where the biased skewness is undefined.
- * This limit effectively imposes the result m3 / m2^1.5 = 0 / 0 = NaN when 1 value
- * has been added. Note that when more samples are added and the variance
- * approaches zero the result is also returned as NaN. */
- private static final int LENGTH_TWO = 2;
- /** 3, the length limit where the unbiased skewness is undefined. */
- private static final int LENGTH_THREE = 3;
- /**
- * An instance of {@link SumOfCubedDeviations}, which is used to
- * compute the skewness.
- */
- private final SumOfCubedDeviations sc;
- /** Flag to control if the statistic is biased, or should use a bias correction. */
- private boolean biased;
- /**
- * Create an instance.
- */
- private Skewness() {
- this(new SumOfCubedDeviations());
- }
- /**
- * Creates an instance with the sum of cubed deviations from the mean.
- *
- * @param sc Sum of cubed deviations.
- */
- Skewness(SumOfCubedDeviations sc) {
- this.sc = sc;
- }
- /**
- * Creates an instance.
- *
- * <p>The initial result is {@code NaN}.
- *
- * @return {@code Skewness} instance.
- */
- public static Skewness create() {
- return new Skewness();
- }
- /**
- * Returns an instance populated using the input {@code values}.
- *
- * <p>Note: {@code Skewness} computed using {@link #accept(double) accept} may be
- * different from this instance.
- *
- * @param values Values.
- * @return {@code Skewness} instance.
- */
- public static Skewness of(double... values) {
- return new Skewness(SumOfCubedDeviations.of(values));
- }
- /**
- * Returns an instance populated using the input {@code values}.
- *
- * <p>Note: {@code Skewness} computed using {@link #accept(double) accept} may be
- * different from this instance.
- *
- * @param values Values.
- * @return {@code Skewness} instance.
- */
- public static Skewness of(int... values) {
- return new Skewness(SumOfCubedDeviations.of(values));
- }
- /**
- * Returns an instance populated using the input {@code values}.
- *
- * <p>Note: {@code Skewness} computed using {@link #accept(double) accept} may be
- * different from this instance.
- *
- * @param values Values.
- * @return {@code Skewness} instance.
- */
- public static Skewness of(long... values) {
- return new Skewness(SumOfCubedDeviations.of(values));
- }
- /**
- * Updates the state of the statistic to reflect the addition of {@code value}.
- *
- * @param value Value.
- */
- @Override
- public void accept(double value) {
- sc.accept(value);
- }
- /**
- * Gets the skewness of all input values.
- *
- * <p>When fewer than 3 values have been added, the result is {@code NaN}.
- *
- * @return skewness of all values.
- */
- @Override
- public double getAsDouble() {
- // This method checks the sum of squared or cubed deviations is finite
- // and the value of the biased variance
- // to provide a consistent result when the computation is not possible.
- if (sc.n < (biased ? LENGTH_TWO : LENGTH_THREE)) {
- return Double.NaN;
- }
- final double x2 = sc.getSumOfSquaredDeviations();
- if (!Double.isFinite(x2)) {
- return Double.NaN;
- }
- final double x3 = sc.getSumOfCubedDeviations();
- if (!Double.isFinite(x3)) {
- return Double.NaN;
- }
- // Avoid a divide by zero; for a negligible variance return NaN.
- // Note: Commons Math returns zero if variance is < 1e-19.
- final double m2 = x2 / sc.n;
- if (Statistics.zeroVariance(sc.getFirstMoment(), m2)) {
- return Double.NaN;
- }
- // denom = pow(m2, 1.5)
- final double denom = Math.sqrt(m2) * m2;
- final double m3 = x3 / sc.n;
- double g1 = m3 / denom;
- if (!biased) {
- final double n = sc.n;
- g1 *= Math.sqrt(n * (n - 1)) / (n - 2);
- }
- return g1;
- }
- @Override
- public Skewness combine(Skewness other) {
- sc.combine(other.sc);
- return this;
- }
- /**
- * Sets the value of the biased flag. The default value is {@code false}.
- * See {@link Skewness} for details on the computing algorithm.
- *
- * <p>This flag only controls the final computation of the statistic. The value of this flag
- * will not affect compatibility between instances during a {@link #combine(Skewness) combine}
- * operation.
- *
- * @param v Value.
- * @return {@code this} instance
- */
- public Skewness setBiased(boolean v) {
- biased = v;
- return this;
- }
- }