SumOfSquaredDeviations.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.descriptive;
- /**
- * Computes the sum of squared deviations from the sample mean. This
- * statistic is related to the second moment.
- *
- * <p>The following recursive updating formula is used:
- * <p>Let
- * <ul>
- * <li> dev = (current obs - previous mean) </li>
- * <li> n = number of observations (including current obs) </li>
- * </ul>
- * <p>Then
- * <p>new value = old value + dev^2 * (n - 1) / n
- * <p>returns the sum of squared deviations of all values seen so far.
- *
- * <p>Supports up to 2<sup>63</sup> (exclusive) observations.
- * This implementation does not check for overflow of the count.
- *
- * <p><strong>Note that this implementation is not synchronized.</strong> If
- * multiple threads access an instance of this class concurrently, and at least
- * one of the threads invokes the {@link java.util.function.DoubleConsumer#accept(double) accept} or
- * {@link StatisticAccumulator#combine(StatisticResult) combine} method, it must be synchronized externally.
- *
- * <p>However, it is safe to use {@link java.util.function.DoubleConsumer#accept(double) accept}
- * and {@link StatisticAccumulator#combine(StatisticResult) combine}
- * as {@code accumulator} and {@code combiner} functions of
- * {@link java.util.stream.Collector Collector} on a parallel stream,
- * because the parallel implementation of {@link java.util.stream.Stream#collect Stream.collect()}
- * provides the necessary partitioning, isolation, and merging of results for
- * safe and efficient parallel execution.
- *
- * <p>References:
- * <ul>
- * <li>Chan, Golub and Levesque (1983)
- * Algorithms for Computing the Sample Variance: Analysis and Recommendations.
- * American Statistician, 37, 242-247.
- * <a href="https://doi.org/10.2307/2683386">doi: 10.2307/2683386</a>
- * </ul>
- *
- * @since 1.1
- */
- class SumOfSquaredDeviations extends FirstMoment {
- /** Sum of squared deviations of the values that have been added. */
- protected double sumSquaredDev;
- /**
- * Create an instance.
- */
- SumOfSquaredDeviations() {
- // No-op
- }
- /**
- * Copy constructor.
- *
- * @param source Source to copy.
- */
- SumOfSquaredDeviations(SumOfSquaredDeviations source) {
- super(source);
- sumSquaredDev = source.sumSquaredDev;
- }
- /**
- * Create an instance with the given sum of squared deviations and first moment.
- *
- * @param sumSquaredDev Sum of squared deviations.
- * @param m1 First moment.
- */
- private SumOfSquaredDeviations(double sumSquaredDev, FirstMoment m1) {
- super(m1);
- this.sumSquaredDev = sumSquaredDev;
- }
- /**
- * Create an instance with the given sum of squared deviations and first moment.
- *
- * <p>This constructor is used when creating the moment from integer values.
- *
- * @param sumSquaredDev Sum of squared deviations.
- * @param m1 First moment.
- * @param n Count of values.
- */
- SumOfSquaredDeviations(double sumSquaredDev, double m1, long n) {
- super(m1, n);
- this.sumSquaredDev = sumSquaredDev;
- }
- /**
- * Returns an instance populated using the input {@code values}.
- *
- * <p>Note: {@code SumOfSquaredDeviations} computed using {@link #accept accept} may be
- * different from this instance.
- *
- * @param values Values.
- * @return {@code SumOfSquaredDeviations} instance.
- */
- static SumOfSquaredDeviations of(double... values) {
- if (values.length == 0) {
- return new SumOfSquaredDeviations();
- }
- return create(FirstMoment.of(values), values);
- }
- /**
- * Creates the sum of squared deviations.
- *
- * <p>Uses the provided {@code sum} to create the first moment.
- * This method is used by {@link DoubleStatistics} using a sum that can be reused
- * for the {@link Sum} statistic.
- *
- * @param sum Sum of the values.
- * @param values Values.
- * @return {@code SumOfSquaredDeviations} instance.
- */
- static SumOfSquaredDeviations create(org.apache.commons.numbers.core.Sum sum, double[] values) {
- if (values.length == 0) {
- return new SumOfSquaredDeviations();
- }
- return create(FirstMoment.create(sum, values), values);
- }
- /**
- * Creates the sum of squared deviations.
- *
- * @param m1 First moment.
- * @param values Values.
- * @return {@code SumOfSquaredDeviations} instance.
- */
- private static SumOfSquaredDeviations create(FirstMoment m1, double[] values) {
- // "Corrected two-pass algorithm"
- // See: Chan et al (1983) Equation 1.7
- final double xbar = m1.getFirstMoment();
- if (!Double.isFinite(xbar)) {
- return new SumOfSquaredDeviations(Double.NaN, m1);
- }
- double s = 0;
- double ss = 0;
- for (final double x : values) {
- final double dx = x - xbar;
- s += dx;
- ss += dx * dx;
- }
- // The sum of squared deviations is ss - (s * s / n).
- // The second term ideally should be zero; in practice it is a good approximation
- // of the error in the first term.
- // To prevent sumSquaredDev from spuriously attaining a NaN value
- // when ss is infinite, assign it an infinite value which is its intended value.
- final double sumSquaredDev = ss == Double.POSITIVE_INFINITY ?
- Double.POSITIVE_INFINITY :
- ss - (s * s / values.length);
- return new SumOfSquaredDeviations(sumSquaredDev, m1);
- }
- /**
- * Updates the state of the statistic to reflect the addition of {@code value}.
- *
- * @param value Value.
- */
- @Override
- public void accept(double value) {
- // "Updating one-pass algorithm"
- // See: Chan et al (1983) Equation 1.3b
- super.accept(value);
- // Note: account for the half-deviation representation by scaling by 4=2^2
- sumSquaredDev += (n - 1) * dev * nDev * 4;
- }
- /**
- * Gets the sum of squared deviations of all input values.
- *
- * @return sum of squared deviations of all values.
- */
- double getSumOfSquaredDeviations() {
- return Double.isFinite(getFirstMoment()) ? sumSquaredDev : Double.NaN;
- }
- /**
- * Combines the state of another {@code SumOfSquaredDeviations} into this one.
- *
- * @param other Another {@code SumOfSquaredDeviations} to be combined.
- * @return {@code this} instance after combining {@code other}.
- */
- SumOfSquaredDeviations combine(SumOfSquaredDeviations other) {
- final long m = other.n;
- if (n == 0) {
- sumSquaredDev = other.sumSquaredDev;
- } else if (m != 0) {
- // "Updating one-pass algorithm"
- // See: Chan et al (1983) Equation 1.5b (modified for the mean)
- final double diffOfMean = getFirstMomentDifference(other);
- final double sqDiffOfMean = diffOfMean * diffOfMean;
- // Enforce symmetry
- sumSquaredDev = (sumSquaredDev + other.sumSquaredDev) +
- sqDiffOfMean * (((double) n * m) / ((double) n + m));
- }
- super.combine(other);
- return this;
- }
- }