001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.statistics.descriptive;
018
019/**
020 * Computes the geometric mean of the available values. Uses the following definition
021 * of the geometric mean:
022 *
023 * <p>\[ \left(\prod_{i=1}^n x_i\right)^\frac{1}{n} \]
024 *
025 * <p>where \( n \) is the number of samples. This implementation uses the log scale:
026 *
027 * <p>\[ \exp{\left( {\frac{1}{n}\sum_{i=1}^n \ln x_i} \right)} \]
028 *
029 * <ul>
030 *   <li>The result is {@code NaN} if no values are added.
031 *   <li>The result is {@code NaN} if any of the values is {@code NaN}.
032 *   <li>The result is {@code NaN} if any of the values is negative.
033 *   <li>The result is {@code +infinity} if all values are in the range {@code (0, +infinity]}
034 *       and at least one value is {@code +infinity}.
035 *   <li>The result is {@code 0} if all values are in the range {@code [0, +infinity)}
036 *       and at least one value is zero.
037 *   <li>The result is {@code NaN} if all values are in the range {@code [0, +infinity]}
038 *       and at least one value is zero, and one value is {@code +infinity}.
039 * </ul>
040 *
041 * <p>Supports up to 2<sup>63</sup> (exclusive) observations.
042 * This implementation does not check for overflow of the count.
043 *
044 * <p>This class is designed to work with (though does not require)
045 * {@linkplain java.util.stream streams}.
046 *
047 * <p><strong>This instance is not thread safe.</strong>
048 * If multiple threads access an instance of this class concurrently,
049 * and at least one of the threads invokes the {@link java.util.function.DoubleConsumer#accept(double) accept} or
050 * {@link StatisticAccumulator#combine(StatisticResult) combine} method, it must be synchronized externally.
051 *
052 * <p>However, it is safe to use {@link java.util.function.DoubleConsumer#accept(double) accept}
053 * and {@link StatisticAccumulator#combine(StatisticResult) combine}
054 * as {@code accumulator} and {@code combiner} functions of
055 * {@link java.util.stream.Collector Collector} on a parallel stream,
056 * because the parallel instance of {@link java.util.stream.Stream#collect Stream.collect()}
057 * provides the necessary partitioning, isolation, and merging of results for
058 * safe and efficient parallel execution.
059 *
060 * @see <a href="https://en.wikipedia.org/wiki/Geometric_mean">Geometric mean (Wikipedia)</a>
061 * @see SumOfLogs
062 * @since 1.1
063 */
064public final class GeometricMean implements DoubleStatistic, StatisticAccumulator<GeometricMean> {
065    /** Count of values that have been added. */
066    private long n;
067
068    /**
069     * Sum of logs used to compute the geometric mean.
070     */
071    private final SumOfLogs sumOfLogs;
072
073    /**
074     * Create an instance.
075     */
076    private GeometricMean() {
077        this(SumOfLogs.create(), 0);
078    }
079
080    /**
081     * Create an instance.
082     *
083     * @param sumOfLogs Sum of logs.
084     * @param n Count of values.
085     */
086    private GeometricMean(SumOfLogs sumOfLogs, long n) {
087        this.sumOfLogs = sumOfLogs;
088        this.n = n;
089    }
090
091    /**
092     * Creates an instance.
093     *
094     * <p>The initial result is {@code NaN}.
095     *
096     * @return {@code GeometricMean} instance.
097     */
098    public static GeometricMean create() {
099        return new GeometricMean();
100    }
101
102    /**
103     * Returns an instance populated using the input {@code values}.
104     *
105     * <p>When the input is an empty array, the result is {@code NaN}.
106     *
107     * @param values Values.
108     * @return {@code GeometricMean} instance.
109     */
110    public static GeometricMean of(double... values) {
111        return new GeometricMean(SumOfLogs.of(values), values.length);
112    }
113
114    /**
115     * Returns an instance populated using the specified range of {@code values}.
116     *
117     * <p>When the range is empty, the result is {@code NaN}.
118     *
119     * @param values Values.
120     * @param from Inclusive start of the range.
121     * @param to Exclusive end of the range.
122     * @return {@code GeometricMean} instance.
123     * @throws IndexOutOfBoundsException if the sub-range is out of bounds
124     * @since 1.2
125     */
126    public static GeometricMean ofRange(double[] values, int from, int to) {
127        // Range checks performed by the sum-of-logs
128        return new GeometricMean(SumOfLogs.ofRange(values, from, to), to - from);
129    }
130
131    /**
132     * Returns an instance populated using the input {@code values}.
133     *
134     * <p>When the input is an empty array, the result is {@code NaN}.
135     *
136     * @param values Values.
137     * @return {@code GeometricMean} instance.
138     */
139    public static GeometricMean of(int... values) {
140        return new GeometricMean(SumOfLogs.of(values), values.length);
141    }
142
143    /**
144     * Returns an instance populated using the specified range of {@code values}.
145     *
146     * <p>When the range is empty, the result is {@code NaN}.
147     *
148     * @param values Values.
149     * @param from Inclusive start of the range.
150     * @param to Exclusive end of the range.
151     * @return {@code GeometricMean} instance.
152     * @throws IndexOutOfBoundsException if the sub-range is out of bounds
153     * @since 1.2
154     */
155    public static GeometricMean ofRange(int[] values, int from, int to) {
156        // Range checks performed by the sum-of-logs
157        return new GeometricMean(SumOfLogs.ofRange(values, from, to), to - from);
158    }
159
160    /**
161     * Returns an instance populated using the input {@code values}.
162     *
163     * <p>When the input is an empty array, the result is {@code NaN}.
164     *
165     * @param values Values.
166     * @return {@code GeometricMean} instance.
167     */
168    public static GeometricMean of(long... values) {
169        return new GeometricMean(SumOfLogs.of(values), values.length);
170    }
171
172    /**
173     * Returns an instance populated using the specified range of {@code values}.
174     *
175     * <p>When the range is empty, the result is {@code NaN}.
176     *
177     * @param values Values.
178     * @param from Inclusive start of the range.
179     * @param to Exclusive end of the range.
180     * @return {@code GeometricMean} instance.
181     * @throws IndexOutOfBoundsException if the sub-range is out of bounds
182     * @since 1.2
183     */
184    public static GeometricMean ofRange(long[] values, int from, int to) {
185        // Range checks performed by the sum-of-logs
186        return new GeometricMean(SumOfLogs.ofRange(values, from, to), to - from);
187    }
188
189    /**
190     * Updates the state of the statistic to reflect the addition of {@code value}.
191     *
192     * @param value Value.
193     */
194    @Override
195    public void accept(double value) {
196        n++;
197        sumOfLogs.accept(value);
198    }
199
200    /**
201     * Gets the geometric mean of all input values.
202     *
203     * <p>When no values have been added, the result is {@code NaN}.
204     *
205     * @return geometric mean of all values.
206     */
207    @Override
208    public double getAsDouble() {
209        return computeGeometricMean(n, sumOfLogs);
210    }
211
212    @Override
213    public GeometricMean combine(GeometricMean other) {
214        n += other.n;
215        sumOfLogs.combine(other.sumOfLogs);
216        return this;
217    }
218
219    /**
220     * Compute the geometric mean.
221     *
222     * @param n Count of values.
223     * @param sumOfLogs Sum of logs.
224     * @return the geometric mean
225     */
226    static double computeGeometricMean(long n, SumOfLogs sumOfLogs) {
227        return n == 0 ?
228            Double.NaN :
229            Math.exp(sumOfLogs.getAsDouble() / n);
230    }
231}