001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.statistics.descriptive;
018
019import java.math.BigInteger;
020
021/**
022 * Computes the variance of the available values. The default implementation uses the
023 * following definition of the <em>sample variance</em>:
024 *
025 * <p>\[ \tfrac{1}{n-1} \sum_{i=1}^n (x_i-\overline{x})^2 \]
026 *
027 * <p>where \( \overline{x} \) is the sample mean, and \( n \) is the number of samples.
028 *
029 * <ul>
030 *   <li>The result is {@code NaN} if no values are added.
031 *   <li>The result is zero if there is one value in the data set.
032 * </ul>
033 *
034 * <p>The use of the term \( n − 1 \) is called Bessel's correction. This is an unbiased
035 * estimator of the variance of a hypothetical infinite population. If the
036 * {@link #setBiased(boolean) biased} option is enabled the normalisation factor is
037 * changed to \( \frac{1}{n} \) for a biased estimator of the <em>sample variance</em>.
038 *
039 * <p>The implementation uses an exact integer sum to compute the scaled (by \( n \))
040 * sum of squared deviations from the mean; this is normalised by the scaled correction factor.
041 *
042 * <p>\[ \frac {n \times \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}{n \times (n - 1)} \]
043 *
044 * <p>Supports up to 2<sup>63</sup> (exclusive) observations.
045 * This implementation does not check for overflow of the count.
046 *
047 * <p>This class is designed to work with (though does not require)
048 * {@linkplain java.util.stream streams}.
049 *
050 * <p><strong>This implementation is not thread safe.</strong>
051 * If multiple threads access an instance of this class concurrently,
052 * and at least one of the threads invokes the {@link java.util.function.IntConsumer#accept(int) accept} or
053 * {@link StatisticAccumulator#combine(StatisticResult) combine} method, it must be synchronized externally.
054 *
055 * <p>However, it is safe to use {@link java.util.function.IntConsumer#accept(int) accept}
056 * and {@link StatisticAccumulator#combine(StatisticResult) combine}
057 * as {@code accumulator} and {@code combiner} functions of
058 * {@link java.util.stream.Collector Collector} on a parallel stream,
059 * because the parallel implementation of {@link java.util.stream.Stream#collect Stream.collect()}
060 * provides the necessary partitioning, isolation, and merging of results for
061 * safe and efficient parallel execution.
062 *
063 * @see <a href="https://en.wikipedia.org/wiki/variance">variance (Wikipedia)</a>
064 * @see <a href="https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance">
065 *   Algorithms for computing the variance (Wikipedia)</a>
066 * @see <a href="https://en.wikipedia.org/wiki/Bessel%27s_correction">Bessel&#39;s correction</a>
067 * @since 1.1
068 */
069public final class IntVariance implements IntStatistic, StatisticAccumulator<IntVariance> {
070    /** Small array sample size.
071     * Used to avoid computing with UInt96 then converting to UInt128. */
072    static final int SMALL_SAMPLE = 10;
073
074    /** Sum of the squared values. */
075    private final UInt128 sumSq;
076    /** Sum of the values. */
077    private final Int128 sum;
078    /** Count of values that have been added. */
079    private long n;
080
081    /** Flag to control if the statistic is biased, or should use a bias correction. */
082    private boolean biased;
083
084    /**
085     * Create an instance.
086     */
087    private IntVariance() {
088        this(UInt128.create(), Int128.create(), 0);
089    }
090
091    /**
092     * Create an instance.
093     *
094     * @param sumSq Sum of the squared values.
095     * @param sum Sum of the values.
096     * @param n Count of values that have been added.
097     */
098    private IntVariance(UInt128 sumSq, Int128 sum, int n) {
099        this.sumSq = sumSq;
100        this.sum = sum;
101        this.n = n;
102    }
103
104    /**
105     * Creates an instance.
106     *
107     * <p>The initial result is {@code NaN}.
108     *
109     * @return {@code IntVariance} instance.
110     */
111    public static IntVariance create() {
112        return new IntVariance();
113    }
114
115    /**
116     * Returns an instance populated using the input {@code values}.
117     *
118     * @param values Values.
119     * @return {@code IntVariance} instance.
120     */
121    public static IntVariance of(int... values) {
122        return createFromRange(values, 0, values.length);
123    }
124
125    /**
126     * Returns an instance populated using the specified range of {@code values}.
127     *
128     * @param values Values.
129     * @param from Inclusive start of the range.
130     * @param to Exclusive end of the range.
131     * @return {@code IntVariance} instance.
132     * @throws IndexOutOfBoundsException if the sub-range is out of bounds
133     * @since 1.2
134     */
135    public static IntVariance ofRange(int[] values, int from, int to) {
136        Statistics.checkFromToIndex(from, to, values.length);
137        return createFromRange(values, from, to);
138    }
139
140    /**
141     * Create an instance using the specified range of {@code values}.
142     *
143     * <p>Warning: No range checks are performed.
144     *
145     * @param values Values.
146     * @param from Inclusive start of the range.
147     * @param to Exclusive end of the range.
148     * @return {@code IntVariance} instance.
149     */
150    static IntVariance createFromRange(int[] values, int from, int to) {
151        // Small arrays can be processed using the object
152        final int length = to - from;
153        if (length < SMALL_SAMPLE) {
154            final IntVariance stat = new IntVariance();
155            for (int i = from; i < to; i++) {
156                stat.accept(values[i]);
157            }
158            return stat;
159        }
160
161        // Arrays can be processed using specialised counts knowing the maximum limit
162        // for an array is 2^31 values.
163        long s = 0;
164        final UInt96 ss = UInt96.create();
165        // Process pairs as we know two maximum value int^2 will not overflow
166        // an unsigned long.
167        final int end = from + (length & ~0x1);
168        for (int i = from; i < end; i += 2) {
169            final long x = values[i];
170            final long y = values[i + 1];
171            s += x + y;
172            ss.addPositive(x * x + y * y);
173        }
174        if (end < to) {
175            final long x = values[end];
176            s += x;
177            ss.addPositive(x * x);
178        }
179
180        // Convert
181        return new IntVariance(UInt128.of(ss), Int128.of(s), length);
182    }
183
184    /**
185     * Updates the state of the statistic to reflect the addition of {@code value}.
186     *
187     * @param value Value.
188     */
189    @Override
190    public void accept(int value) {
191        sumSq.addPositive((long) value * value);
192        sum.add(value);
193        n++;
194    }
195
196    /**
197     * Gets the variance of all input values.
198     *
199     * <p>When no values have been added, the result is {@code NaN}.
200     *
201     * @return variance of all values.
202     */
203    @Override
204    public double getAsDouble() {
205        return computeVarianceOrStd(sumSq, sum, n, biased, false);
206    }
207
208    /**
209     * Compute the variance (or standard deviation).
210     *
211     * <p>The {@code std} flag controls if the result is returned as the standard deviation
212     * using the {@link Math#sqrt(double) square root} function.
213     *
214     * @param sumSq Sum of the squared values.
215     * @param sum Sum of the values.
216     * @param n Count of values that have been added.
217     * @param biased Flag to control if the statistic is biased, or should use a bias correction.
218     * @param std Flag to control if the statistic is the standard deviation.
219     * @return the variance (or standard deviation)
220     */
221    static double computeVarianceOrStd(UInt128 sumSq, Int128 sum, long n, boolean biased, boolean std) {
222        if (n == 0) {
223            return Double.NaN;
224        }
225        // Avoid a divide by zero
226        if (n == 1) {
227            return 0;
228        }
229        // Sum-of-squared deviations: sum(x^2) - sum(x)^2 / n
230        // Sum-of-squared deviations precursor: n * sum(x^2) - sum(x)^2
231        // The precursor is computed in integer precision.
232        // The divide uses double precision.
233        // This ensures we avoid cancellation in the difference and use a fast divide.
234        // The result is limited to by the rounding in the double computation.
235        final double diff = computeSSDevN(sumSq, sum, n);
236        final long n0 = biased ? n : n - 1;
237        final double v = diff / IntMath.unsignedMultiplyToDouble(n, n0);
238        if (std) {
239            return Math.sqrt(v);
240        }
241        return v;
242    }
243
244    /**
245     * Compute the sum-of-squared deviations multiplied by the count of values:
246     * {@code n * sum(x^2) - sum(x)^2}.
247     *
248     * @param sumSq Sum of the squared values.
249     * @param sum Sum of the values.
250     * @param n Count of values that have been added.
251     * @return the sum-of-squared deviations precursor
252     */
253    private static double computeSSDevN(UInt128 sumSq, Int128 sum, long n) {
254        // Compute the term if possible using fast integer arithmetic.
255        // 128-bit sum(x^2) * n will be OK when the upper 32-bits are zero.
256        // 128-bit sum(x)^2 will be OK when the upper 64-bits are zero.
257        // Both are safe when n < 2^32.
258        if ((n >>> Integer.SIZE) == 0) {
259            return sumSq.unsignedMultiply((int) n).subtract(sum.squareLow()).toDouble();
260        } else {
261            return sumSq.toBigInteger().multiply(BigInteger.valueOf(n))
262                .subtract(square(sum.toBigInteger())).doubleValue();
263        }
264    }
265
266    /**
267     * Compute the sum of the squared deviations from the mean.
268     *
269     * <p>This is a helper method used in higher order moments.
270     *
271     * @return the sum of the squared deviations
272     */
273    double computeSumOfSquaredDeviations() {
274        return computeSSDevN(sumSq, sum, n) / n;
275    }
276
277    /**
278     * Compute the mean.
279     *
280     * <p>This is a helper method used in higher order moments.
281     *
282     * @return the mean
283     */
284    double computeMean() {
285        return IntMean.computeMean(sum, n);
286    }
287
288    /**
289     * Convenience method to square a BigInteger.
290     *
291     * @param x Value
292     * @return x^2
293     */
294    private static BigInteger square(BigInteger x) {
295        return x.multiply(x);
296    }
297
298    @Override
299    public IntVariance combine(IntVariance other) {
300        sumSq.add(other.sumSq);
301        sum.add(other.sum);
302        n += other.n;
303        return this;
304    }
305
306    /**
307     * Sets the value of the biased flag. The default value is {@code false}.
308     *
309     * <p>If {@code false} the sum of squared deviations from the sample mean is normalised by
310     * {@code n - 1} where {@code n} is the number of samples. This is Bessel's correction
311     * for an unbiased estimator of the variance of a hypothetical infinite population.
312     *
313     * <p>If {@code true} the sum of squared deviations is normalised by the number of samples
314     * {@code n}.
315     *
316     * <p>Note: This option only applies when {@code n > 1}. The variance of {@code n = 1} is
317     * always 0.
318     *
319     * <p>This flag only controls the final computation of the statistic. The value of this flag
320     * will not affect compatibility between instances during a {@link #combine(IntVariance) combine}
321     * operation.
322     *
323     * @param v Value.
324     * @return {@code this} instance
325     */
326    public IntVariance setBiased(boolean v) {
327        biased = v;
328        return this;
329    }
330}