001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017
018package org.apache.commons.statistics.distribution;
019
020import java.util.function.DoubleSupplier;
021import org.apache.commons.numbers.gamma.Erf;
022import org.apache.commons.numbers.gamma.ErfDifference;
023import org.apache.commons.numbers.gamma.Erfcx;
024import org.apache.commons.rng.UniformRandomProvider;
025import org.apache.commons.rng.sampling.distribution.ZigguratSampler;
026
027/**
028 * Implementation of the truncated normal distribution.
029 *
030 * <p>The probability density function of \( X \) is:
031 *
032 * <p>\[ f(x;\mu,\sigma,a,b) = \frac{1}{\sigma}\,\frac{\phi(\frac{x - \mu}{\sigma})}{\Phi(\frac{b - \mu}{\sigma}) - \Phi(\frac{a - \mu}{\sigma}) } \]
033 *
034 * <p>for \( \mu \) mean of the parent normal distribution,
035 * \( \sigma \) standard deviation of the parent normal distribution,
036 * \( -\infty \le a \lt b \le \infty \) the truncation interval, and
037 * \( x \in [a, b] \), where \( \phi \) is the probability
038 * density function of the standard normal distribution and \( \Phi \)
039 * is its cumulative distribution function.
040 *
041 * @see <a href="https://en.wikipedia.org/wiki/Truncated_normal_distribution">
042 * Truncated normal distribution (Wikipedia)</a>
043 */
044public final class TruncatedNormalDistribution extends AbstractContinuousDistribution {
045
046    /** The max allowed value for x where (x*x) will not overflow.
047     * This is a limit on computation of the moments of the truncated normal
048     * as some calculations assume x*x is finite. Value is sqrt(MAX_VALUE). */
049    private static final double MAX_X = 0x1.fffffffffffffp511;
050
051    /** The min allowed probability range of the parent normal distribution.
052     * Set to 0.0. This may be too low for accurate usage. It is a signal that
053     * the truncation is invalid. */
054    private static final double MIN_P = 0.0;
055
056    /** sqrt(2). */
057    private static final double ROOT2 = 1.414213562373095048801688724209698078;
058    /** Normalisation constant 2 / sqrt(2 pi) = sqrt(2 / pi). */
059    private static final double ROOT_2_PI = 0.797884560802865405726436165423365309;
060    /** Normalisation constant sqrt(2 pi) / 2 = sqrt(pi / 2). */
061    private static final double ROOT_PI_2 = 1.253314137315500251207882642405522626;
062
063    /**
064     * The threshold to switch to a rejection sampler. When the truncated
065     * distribution covers more than this fraction of the CDF then rejection
066     * sampling will be more efficient than inverse CDF sampling. Performance
067     * benchmarks indicate that a normalized Gaussian sampler is up to 10 times
068     * faster than inverse transform sampling using a fast random generator. See
069     * STATISTICS-55.
070     */
071    private static final double REJECTION_THRESHOLD = 0.2;
072
073    /** Parent normal distribution. */
074    private final NormalDistribution parentNormal;
075    /** Lower bound of this distribution. */
076    private final double lower;
077    /** Upper bound of this distribution. */
078    private final double upper;
079
080    /** Stored value of {@code parentNormal.probability(lower, upper)}. This is used to
081     * normalise the probability computations. */
082    private final double cdfDelta;
083    /** log(cdfDelta). */
084    private final double logCdfDelta;
085    /** Stored value of {@code parentNormal.cumulativeProbability(lower)}. Used to map
086     * a probability into the range of the parent normal distribution. */
087    private final double cdfAlpha;
088    /** Stored value of {@code parentNormal.survivalProbability(upper)}. Used to map
089     * a probability into the range of the parent normal distribution. */
090    private final double sfBeta;
091
092    /**
093     * @param parent Parent distribution.
094     * @param z Probability of the parent distribution for {@code [lower, upper]}.
095     * @param lower Lower bound (inclusive) of the distribution, can be {@link Double#NEGATIVE_INFINITY}.
096     * @param upper Upper bound (inclusive) of the distribution, can be {@link Double#POSITIVE_INFINITY}.
097     */
098    private TruncatedNormalDistribution(NormalDistribution parent, double z, double lower, double upper) {
099        this.parentNormal = parent;
100        this.lower = lower;
101        this.upper = upper;
102
103        cdfDelta = z;
104        logCdfDelta = Math.log(cdfDelta);
105        // Used to map the inverse probability.
106        cdfAlpha = parentNormal.cumulativeProbability(lower);
107        sfBeta = parentNormal.survivalProbability(upper);
108    }
109
110    /**
111     * Creates a truncated normal distribution.
112     *
113     * <p>Note that the {@code mean} and {@code sd} is of the parent normal distribution,
114     * and not the true mean and standard deviation of the truncated normal distribution.
115     * The {@code lower} and {@code upper} bounds define the truncation of the parent
116     * normal distribution.
117     *
118     * @param mean Mean for the parent distribution.
119     * @param sd Standard deviation for the parent distribution.
120     * @param lower Lower bound (inclusive) of the distribution, can be {@link Double#NEGATIVE_INFINITY}.
121     * @param upper Upper bound (inclusive) of the distribution, can be {@link Double#POSITIVE_INFINITY}.
122     * @return the distribution
123     * @throws IllegalArgumentException if {@code sd <= 0}; if {@code lower >= upper}; or if
124     * the truncation covers no probability range in the parent distribution.
125     */
126    public static TruncatedNormalDistribution of(double mean, double sd, double lower, double upper) {
127        if (sd <= 0) {
128            throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, sd);
129        }
130        if (lower >= upper) {
131            throw new DistributionException(DistributionException.INVALID_RANGE_LOW_GTE_HIGH, lower, upper);
132        }
133
134        // Use an instance for the parent normal distribution to maximise accuracy
135        // in range computations using the error function
136        final NormalDistribution parent = NormalDistribution.of(mean, sd);
137
138        // If there is no computable range then raise an exception.
139        final double z = parent.probability(lower, upper);
140        if (z <= MIN_P) {
141            // Map the bounds to a standard normal distribution for the message
142            final double a = (lower - mean) / sd;
143            final double b = (upper - mean) / sd;
144            throw new DistributionException(
145               "Excess truncation of standard normal : CDF(%s, %s) = %s", a, b, z);
146        }
147
148        // Here we have a meaningful truncation. Note that excess truncation may not be optimal.
149        // For example truncation close to zero where the PDF is constant can be approximated
150        // using a uniform distribution.
151
152        return new TruncatedNormalDistribution(parent, z, lower, upper);
153    }
154
155    /** {@inheritDoc} */
156    @Override
157    public double density(double x) {
158        if (x < lower || x > upper) {
159            return 0;
160        }
161        return parentNormal.density(x) / cdfDelta;
162    }
163
164    /** {@inheritDoc} */
165    @Override
166    public double probability(double x0, double x1) {
167        if (x0 > x1) {
168            throw new DistributionException(DistributionException.INVALID_RANGE_LOW_GT_HIGH,
169                                            x0, x1);
170        }
171        return parentNormal.probability(clipToRange(x0), clipToRange(x1)) / cdfDelta;
172    }
173
174    /** {@inheritDoc} */
175    @Override
176    public double logDensity(double x) {
177        if (x < lower || x > upper) {
178            return Double.NEGATIVE_INFINITY;
179        }
180        return parentNormal.logDensity(x) - logCdfDelta;
181    }
182
183    /** {@inheritDoc} */
184    @Override
185    public double cumulativeProbability(double x) {
186        if (x <= lower) {
187            return 0;
188        } else if (x >= upper) {
189            return 1;
190        }
191        return parentNormal.probability(lower, x) / cdfDelta;
192    }
193
194    /** {@inheritDoc} */
195    @Override
196    public double survivalProbability(double x) {
197        if (x <= lower) {
198            return 1;
199        } else if (x >= upper) {
200            return 0;
201        }
202        return parentNormal.probability(x, upper) / cdfDelta;
203    }
204
205    /** {@inheritDoc} */
206    @Override
207    public double inverseCumulativeProbability(double p) {
208        ArgumentUtils.checkProbability(p);
209        // Exact bound
210        if (p == 0) {
211            return lower;
212        } else if (p == 1) {
213            return upper;
214        }
215        // Linearly map p to the range [lower, upper]
216        final double x = parentNormal.inverseCumulativeProbability(cdfAlpha + p * cdfDelta);
217        return clipToRange(x);
218    }
219
220    /** {@inheritDoc} */
221    @Override
222    public double inverseSurvivalProbability(double p) {
223        ArgumentUtils.checkProbability(p);
224        // Exact bound
225        if (p == 1) {
226            return lower;
227        } else if (p == 0) {
228            return upper;
229        }
230        // Linearly map p to the range [lower, upper]
231        final double x = parentNormal.inverseSurvivalProbability(sfBeta + p * cdfDelta);
232        return clipToRange(x);
233    }
234
235    /** {@inheritDoc} */
236    @Override
237    public Sampler createSampler(UniformRandomProvider rng) {
238        // If the truncation covers a reasonable amount of the normal distribution
239        // then a rejection sampler can be used.
240        double threshold = REJECTION_THRESHOLD;
241        // If the truncation is entirely in the upper or lower half then adjust the
242        // threshold as twice the samples can be used
243        if (lower >= 0 || upper <= 0) {
244            threshold *= 0.5;
245        }
246
247        if (cdfDelta > threshold) {
248            // Create the rejection sampler
249            final ZigguratSampler.NormalizedGaussian sampler = ZigguratSampler.NormalizedGaussian.of(rng);
250            DoubleSupplier gen;
251            // Use mirroring if possible
252            if (lower >= 0) {
253                // Return the upper-half of the Gaussian
254                gen = () -> Math.abs(sampler.sample());
255            } else if (upper <= 0) {
256                // Return the lower-half of the Gaussian
257                gen = () -> -Math.abs(sampler.sample());
258            } else {
259                // Return the full range of the Gaussian
260                gen = sampler::sample;
261            }
262            // Map the bounds to a standard normal distribution
263            final double u = parentNormal.getMean();
264            final double s = parentNormal.getStandardDeviation();
265            final double a = (lower - u) / s;
266            final double b = (upper - u) / s;
267            // Sample in [a, b] using rejection
268            return () -> {
269                double x = gen.getAsDouble();
270                while (x < a || x > b) {
271                    x = gen.getAsDouble();
272                }
273                // Avoid floating-point error when mapping back
274                return clipToRange(u + x * s);
275            };
276        }
277
278        // Default to an inverse CDF sampler
279        return super.createSampler(rng);
280    }
281
282    /**
283     * {@inheritDoc}
284     *
285     * <p>Represents the true mean of the truncated normal distribution rather
286     * than the parent normal distribution mean.
287     *
288     * <p>For \( \mu \) mean of the parent normal distribution,
289     * \( \sigma \) standard deviation of the parent normal distribution, and
290     * \( a \lt b \) the truncation interval of the parent normal distribution, the mean is:
291     *
292     * <p>\[ \mu + \frac{\phi(a)-\phi(b)}{\Phi(b) - \Phi(a)}\sigma \]
293     *
294     * <p>where \( \phi \) is the probability density function of the standard normal distribution
295     * and \( \Phi \) is its cumulative distribution function.
296     */
297    @Override
298    public double getMean() {
299        final double u = parentNormal.getMean();
300        final double s = parentNormal.getStandardDeviation();
301        final double a = (lower - u) / s;
302        final double b = (upper - u) / s;
303        return u + moment1(a, b) * s;
304    }
305
306    /**
307     * {@inheritDoc}
308     *
309     * <p>Represents the true variance of the truncated normal distribution rather
310     * than the parent normal distribution variance.
311     *
312     * <p>For \( \mu \) mean of the parent normal distribution,
313     * \( \sigma \) standard deviation of the parent normal distribution, and
314     * \( a \lt b \) the truncation interval of the parent normal distribution, the variance is:
315     *
316     * <p>\[ \sigma^2 \left[1 + \frac{a\phi(a)-b\phi(b)}{\Phi(b) - \Phi(a)} -
317     *       \left( \frac{\phi(a)-\phi(b)}{\Phi(b) - \Phi(a)} \right)^2 \right] \]
318     *
319     * <p>where \( \phi \) is the probability density function of the standard normal distribution
320     * and \( \Phi \) is its cumulative distribution function.
321     */
322    @Override
323    public double getVariance() {
324        final double u = parentNormal.getMean();
325        final double s = parentNormal.getStandardDeviation();
326        final double a = (lower - u) / s;
327        final double b = (upper - u) / s;
328        return variance(a, b) * s * s;
329    }
330
331    /**
332     * {@inheritDoc}
333     *
334     * <p>The lower bound of the support is equal to the lower bound parameter
335     * of the distribution.
336     */
337    @Override
338    public double getSupportLowerBound() {
339        return lower;
340    }
341
342    /**
343     * {@inheritDoc}
344     *
345     * <p>The upper bound of the support is equal to the upper bound parameter
346     * of the distribution.
347     */
348    @Override
349    public double getSupportUpperBound() {
350        return upper;
351    }
352
353    /**
354     * Clip the value to the range [lower, upper].
355     * This is used to handle floating-point error at the support bound.
356     *
357     * @param x Value x
358     * @return x clipped to the range
359     */
360    private double clipToRange(double x) {
361        return clip(x, lower, upper);
362    }
363
364    /**
365     * Clip the value to the range [lower, upper].
366     *
367     * @param x Value x
368     * @param lower Lower bound (inclusive)
369     * @param upper Upper bound (inclusive)
370     * @return x clipped to the range
371     */
372    private static double clip(double x, double lower, double upper) {
373        if (x <= lower) {
374            return lower;
375        }
376        return x < upper ? x : upper;
377    }
378
379    // Calculation of variance and mean can suffer from cancellation.
380    //
381    // Use formulas from Jorge Fernandez-de-Cossio-Diaz adapted under the
382    // terms of the MIT "Expat" License (see NOTICE and LICENSE).
383    //
384    // These formulas use the complementary error function
385    //   erfcx(z) = erfc(z) * exp(z^2)
386    // This avoids computation of exp terms for the Gaussian PDF and then
387    // dividing by the error functions erf or erfc:
388    //   exp(-0.5*x*x) / erfc(x / sqrt(2)) == 1 / erfcx(x / sqrt(2))
389    // At large z the erfcx function is computable but exp(-0.5*z*z) and
390    // erfc(z) are zero. Use of these formulas allows computation of the
391    // mean and variance for the usable range of the truncated distribution
392    // (cdf(a, b) != 0). The variance is not accurate when it approaches
393    // machine epsilon (2^-52) at extremely narrow truncations and the
394    // computation -> 0.
395    //
396    // See: https://github.com/cossio/TruncatedNormal.jl
397
398    /**
399     * Compute the first moment (mean) of the truncated standard normal distribution.
400     *
401     * <p>Assumes {@code a <= b}.
402     *
403     * @param a Lower bound
404     * @param b Upper bound
405     * @return the first moment
406     */
407    static double moment1(double a, double b) {
408        // Assume a <= b
409        if (a == b) {
410            return a;
411        }
412        if (Math.abs(a) > Math.abs(b)) {
413            // Subtract from zero to avoid generating -0.0
414            return 0 - moment1(-b, -a);
415        }
416
417        // Here:
418        // |a| <= |b|
419        // a < b
420        // 0 < b
421
422        if (a <= -MAX_X) {
423            // No truncation
424            return 0;
425        }
426        if (b >= MAX_X) {
427            // One-sided truncation
428            return ROOT_2_PI / Erfcx.value(a / ROOT2);
429        }
430
431        // pdf = exp(-0.5*x*x) / sqrt(2*pi)
432        // cdf = erfc(-x/sqrt(2)) / 2
433        // Compute:
434        // -(pdf(b) - pdf(a)) / cdf(b, a)
435        // Note:
436        // exp(-0.5*b*b) - exp(-0.5*a*a)
437        // Use cancellation of powers:
438        // exp(-0.5*(b*b-a*a)) * exp(-0.5*a*a) - exp(-0.5*a*a)
439        // expm1(-0.5*(b*b-a*a)) * exp(-0.5*a*a)
440
441        // dx = -0.5*(b*b-a*a)
442        final double dx = 0.5 * (b + a) * (b - a);
443        double m;
444        if (a <= 0) {
445            // Opposite signs
446            m = ROOT_2_PI * -Math.expm1(-dx) * Math.exp(-0.5 * a * a) / ErfDifference.value(a / ROOT2, b / ROOT2);
447        } else {
448            final double z = Math.exp(-dx) * Erfcx.value(b / ROOT2) - Erfcx.value(a / ROOT2);
449            if (z == 0) {
450                // Occurs when a and b have large magnitudes and are very close
451                return (a + b) * 0.5;
452            }
453            m = ROOT_2_PI * Math.expm1(-dx) / z;
454        }
455
456        // Clip to the range
457        return clip(m, a, b);
458    }
459
460    /**
461     * Compute the second moment of the truncated standard normal distribution.
462     *
463     * <p>Assumes {@code a <= b}.
464     *
465     * @param a Lower bound
466     * @param b Upper bound
467     * @return the first moment
468     */
469    private static double moment2(double a, double b) {
470        // Assume a < b.
471        // a == b is handled in the variance method
472        if (Math.abs(a) > Math.abs(b)) {
473            return moment2(-b, -a);
474        }
475
476        // Here:
477        // |a| <= |b|
478        // a < b
479        // 0 < b
480
481        if (a <= -MAX_X) {
482            // No truncation
483            return 1;
484        }
485        if (b >= MAX_X) {
486            // One-sided truncation.
487            // For a -> inf : moment2 -> a*a
488            // This occurs when erfcx(z) is approximated by (1/sqrt(pi)) / z and terms
489            // cancel. z > 6.71e7, a > 9.49e7
490            return 1 + ROOT_2_PI * a / Erfcx.value(a / ROOT2);
491        }
492
493        // pdf = exp(-0.5*x*x) / sqrt(2*pi)
494        // cdf = erfc(-x/sqrt(2)) / 2
495        // Compute:
496        // 1 - (b*pdf(b) - a*pdf(a)) / cdf(b, a)
497        // = (cdf(b, a) - b*pdf(b) -a*pdf(a)) / cdf(b, a)
498
499        // Note:
500        // For z -> 0:
501        //   sqrt(pi / 2) * erf(z / sqrt(2)) -> z
502        //   z * Math.exp(-0.5 * z * z) -> z
503        // Both computations below have cancellation as b -> 0 and the
504        // second moment is not computable as the fraction P/Q
505        // since P < ulp(Q). This always occurs when b < MIN_X
506        // if MIN_X is set at the point where
507        //   exp(-0.5 * z * z) / sqrt(2 pi) == 1 / sqrt(2 pi).
508        // This is JDK dependent due to variations in Math.exp.
509        // For b < MIN_X the second moment can be approximated using
510        // a uniform distribution: (b^3 - a^3) / (3b - 3a).
511        // In practice it also occurs when b > MIN_X since any a < MIN_X
512        // is effectively zero for part of the computation. A
513        // threshold to transition to a uniform distribution
514        // approximation is a compromise. Also note it will not
515        // correct computation when (b-a) is small and is far from 0.
516        // Thus the second moment is left to be inaccurate for
517        // small ranges (b-a) and the variance -> 0 when the true
518        // variance is close to or below machine epsilon.
519
520        double m;
521
522        if (a <= 0) {
523            // Opposite signs
524            final double ea = ROOT_PI_2 * Erf.value(a / ROOT2);
525            final double eb = ROOT_PI_2 * Erf.value(b / ROOT2);
526            final double fa = ea - a * Math.exp(-0.5 * a * a);
527            final double fb = eb - b * Math.exp(-0.5 * b * b);
528            // Assume fb >= fa && eb >= ea
529            // If fb <= fa this is a tiny range around 0
530            m = (fb - fa) / (eb - ea);
531            // Clip to the range
532            m = clip(m, 0, 1);
533        } else {
534            final double dx = 0.5 * (b + a) * (b - a);
535            final double ex = Math.exp(-dx);
536            final double ea = ROOT_PI_2 * Erfcx.value(a / ROOT2);
537            final double eb = ROOT_PI_2 * Erfcx.value(b / ROOT2);
538            final double fa = ea + a;
539            final double fb = eb + b;
540            m = (fa - fb * ex) / (ea - eb * ex);
541            // Clip to the range
542            m = clip(m, a * a, b * b);
543        }
544        return m;
545    }
546
547    /**
548     * Compute the variance of the truncated standard normal distribution.
549     *
550     * <p>Assumes {@code a <= b}.
551     *
552     * @param a Lower bound
553     * @param b Upper bound
554     * @return the first moment
555     */
556    static double variance(double a, double b) {
557        if (a == b) {
558            return 0;
559        }
560
561        final double m1 = moment1(a, b);
562        double m2 = moment2(a, b);
563        // variance = m2 - m1*m1
564        // rearrange x^2 - y^2 as (x-y)(x+y)
565        m2 = Math.sqrt(m2);
566        final double variance = (m2 - m1) * (m2 + m1);
567
568        // Detect floating-point error.
569        if (variance >= 1) {
570            // Note:
571            // Extreme truncations in the tails can compute a variance above 1,
572            // for example if m2 is infinite: m2 - m1*m1 > 1
573            // Detect no truncation as the terms a and b lie far either side of zero;
574            // otherwise return 0 to indicate very small unknown variance.
575            return a < -1 && b > 1 ? 1 : 0;
576        } else if (variance <= 0) {
577            // Floating-point error can create negative variance so return 0.
578            return 0;
579        }
580
581        return variance;
582    }
583}