BetaDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.distribution;
- import org.apache.commons.numbers.gamma.LogBeta;
- import org.apache.commons.numbers.gamma.RegularizedBeta;
- import org.apache.commons.rng.UniformRandomProvider;
- import org.apache.commons.rng.sampling.distribution.ChengBetaSampler;
- /**
- * Implementation of the beta distribution.
- *
- * <p>The probability density function of \( X \) is:
- *
- * <p>\[ f(x; \alpha, \beta) = \frac{1}{ B(\alpha, \beta)} x^{\alpha-1} (1-x)^{\beta-1} \]
- *
- * <p>for \( \alpha > 0 \),
- * \( \beta > 0 \), \( x \in [0, 1] \), and
- * the beta function, \( B \), is a normalization constant:
- *
- * <p>\[ B(\alpha, \beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \]
- *
- * <p>where \( \Gamma \) is the gamma function.
- *
- * <p>\( \alpha \) and \( \beta \) are <em>shape</em> parameters.
- *
- * @see <a href="https://en.wikipedia.org/wiki/Beta_distribution">Beta distribution (Wikipedia)</a>
- * @see <a href="https://mathworld.wolfram.com/BetaDistribution.html">Beta distribution (MathWorld)</a>
- */
- public final class BetaDistribution extends AbstractContinuousDistribution {
- /** First shape parameter. */
- private final double alpha;
- /** Second shape parameter. */
- private final double beta;
- /** Normalizing factor used in log density computations. log(beta(a, b)). */
- private final double logBeta;
- /** Cached value for inverse probability function. */
- private final double mean;
- /** Cached value for inverse probability function. */
- private final double variance;
- /**
- * @param alpha First shape parameter (must be positive).
- * @param beta Second shape parameter (must be positive).
- */
- private BetaDistribution(double alpha,
- double beta) {
- this.alpha = alpha;
- this.beta = beta;
- logBeta = LogBeta.value(alpha, beta);
- final double alphabetasum = alpha + beta;
- mean = alpha / alphabetasum;
- variance = (alpha * beta) / ((alphabetasum * alphabetasum) * (alphabetasum + 1));
- }
- /**
- * Creates a beta distribution.
- *
- * @param alpha First shape parameter (must be positive).
- * @param beta Second shape parameter (must be positive).
- * @return the distribution
- * @throws IllegalArgumentException if {@code alpha <= 0} or {@code beta <= 0}.
- */
- public static BetaDistribution of(double alpha,
- double beta) {
- if (alpha <= 0) {
- throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, alpha);
- }
- if (beta <= 0) {
- throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, beta);
- }
- return new BetaDistribution(alpha, beta);
- }
- /**
- * Gets the first shape parameter of this distribution.
- *
- * @return the first shape parameter.
- */
- public double getAlpha() {
- return alpha;
- }
- /**
- * Gets the second shape parameter of this distribution.
- *
- * @return the second shape parameter.
- */
- public double getBeta() {
- return beta;
- }
- /** {@inheritDoc}
- *
- * <p>The density is not defined when {@code x = 0, alpha < 1}, or {@code x = 1, beta < 1}.
- * In this case the limit of infinity is returned.
- */
- @Override
- public double density(double x) {
- if (x < 0 || x > 1) {
- return 0;
- }
- return RegularizedBeta.derivative(x, alpha, beta);
- }
- /** {@inheritDoc}
- *
- * <p>The density is not defined when {@code x = 0, alpha < 1}, or {@code x = 1, beta < 1}.
- * In this case the limit of infinity is returned.
- */
- @Override
- public double logDensity(double x) {
- if (x < 0 || x > 1) {
- return Double.NEGATIVE_INFINITY;
- } else if (x == 0) {
- if (alpha < 1) {
- // Distribution is not valid when x=0, alpha<1
- // due to a divide by zero error.
- // Do not raise an exception and return the limit.
- return Double.POSITIVE_INFINITY;
- }
- // Special case of cancellation: x^(a-1) (1-x)^(b-1) / B(a, b) = 1 / B(a, b)
- if (alpha == 1) {
- return -logBeta;
- }
- return Double.NEGATIVE_INFINITY;
- } else if (x == 1) {
- if (beta < 1) {
- // Distribution is not valid when x=1, beta<1
- // due to a divide by zero error.
- // Do not raise an exception and return the limit.
- return Double.POSITIVE_INFINITY;
- }
- // Special case of cancellation: x^(a-1) (1-x)^(b-1) / B(a, b) = 1 / B(a, b)
- if (beta == 1) {
- return -logBeta;
- }
- return Double.NEGATIVE_INFINITY;
- }
- // Log computation
- final double logX = Math.log(x);
- final double log1mX = Math.log1p(-x);
- return (alpha - 1) * logX + (beta - 1) * log1mX - logBeta;
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(double x) {
- if (x <= 0) {
- return 0;
- } else if (x >= 1) {
- return 1;
- } else {
- return RegularizedBeta.value(x, alpha, beta);
- }
- }
- /** {@inheritDoc} */
- @Override
- public double survivalProbability(double x) {
- if (x <= 0) {
- return 1;
- } else if (x >= 1) {
- return 0;
- } else {
- return RegularizedBeta.complement(x, alpha, beta);
- }
- }
- /**
- * {@inheritDoc}
- *
- * <p>For first shape parameter \( \alpha \) and second shape parameter
- * \( \beta \), the mean is:
- *
- * <p>\[ \frac{\alpha}{\alpha + \beta} \]
- */
- @Override
- public double getMean() {
- return mean;
- }
- /**
- * {@inheritDoc}
- *
- * <p>For first shape parameter \( \alpha \) and second shape parameter
- * \( \beta \), the variance is:
- *
- * <p>\[ \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)} \]
- */
- @Override
- public double getVariance() {
- return variance;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The lower bound of the support is always 0.
- *
- * @return 0.
- */
- @Override
- public double getSupportLowerBound() {
- return 0;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The upper bound of the support is always 1.
- *
- * @return 1.
- */
- @Override
- public double getSupportUpperBound() {
- return 1;
- }
- /** {@inheritDoc} */
- @Override
- public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) {
- // Beta distribution sampler.
- return ChengBetaSampler.of(rng, alpha, beta)::sample;
- }
- }