ChiSquaredDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.distribution;
- import org.apache.commons.rng.UniformRandomProvider;
- /**
- * Implementation of the chi-squared distribution.
- *
- * <p>The probability density function of \( X \) is:
- *
- * <p>\[ f(x; k) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{k/2 -1} e^{-x/2} \]
- *
- * <p>for \( k > 0 \) the degrees of freedom,
- * \( \Gamma(k/2) \) is the gamma function, and
- * \( x \in [0, \infty) \).
- *
- * @see <a href="https://en.wikipedia.org/wiki/Chi-squared_distribution">Chi-squared distribution (Wikipedia)</a>
- * @see <a href="https://mathworld.wolfram.com/Chi-SquaredDistribution.html">Chi-squared distribution (MathWorld)</a>
- */
- public final class ChiSquaredDistribution extends AbstractContinuousDistribution {
- /** Internal Gamma distribution. */
- private final GammaDistribution gamma;
- /**
- * @param degreesOfFreedom Degrees of freedom.
- */
- private ChiSquaredDistribution(double degreesOfFreedom) {
- gamma = GammaDistribution.of(degreesOfFreedom / 2, 2);
- }
- /**
- * Creates a chi-squared distribution.
- *
- * @param degreesOfFreedom Degrees of freedom.
- * @return the distribution
- * @throws IllegalArgumentException if {@code degreesOfFreedom <= 0}.
- */
- public static ChiSquaredDistribution of(double degreesOfFreedom) {
- return new ChiSquaredDistribution(degreesOfFreedom);
- }
- /**
- * Gets the degrees of freedom parameter of this distribution.
- *
- * @return the degrees of freedom.
- */
- public double getDegreesOfFreedom() {
- return gamma.getShape() * 2;
- }
- /** {@inheritDoc}
- *
- * <p>Returns the limit when {@code x = 0}:
- * <ul>
- * <li>{@code df < 2}: Infinity
- * <li>{@code df == 2}: 1 / 2
- * <li>{@code df > 2}: 0
- * </ul>
- */
- @Override
- public double density(double x) {
- return gamma.density(x);
- }
- /** {@inheritDoc}
- *
- * <p>Returns the limit when {@code x = 0}:
- * <ul>
- * <li>{@code df < 2}: Infinity
- * <li>{@code df == 2}: log(1 / 2)
- * <li>{@code df > 2}: -Infinity
- * </ul>
- */
- @Override
- public double logDensity(double x) {
- return gamma.logDensity(x);
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(double x) {
- return gamma.cumulativeProbability(x);
- }
- /** {@inheritDoc} */
- @Override
- public double survivalProbability(double x) {
- return gamma.survivalProbability(x);
- }
- /** {@inheritDoc} */
- @Override
- public double inverseCumulativeProbability(double p) {
- return gamma.inverseCumulativeProbability(p);
- }
- /** {@inheritDoc} */
- @Override
- public double inverseSurvivalProbability(double p) {
- return gamma.inverseSurvivalProbability(p);
- }
- /**
- * {@inheritDoc}
- *
- * <p>For \( k \) degrees of freedom, the mean is \( k \).
- */
- @Override
- public double getMean() {
- return getDegreesOfFreedom();
- }
- /**
- * {@inheritDoc}
- *
- * <p>For \( k \) degrees of freedom, the variance is \( 2k \).
- */
- @Override
- public double getVariance() {
- return 2 * getDegreesOfFreedom();
- }
- /**
- * {@inheritDoc}
- *
- * <p>The lower bound of the support is always 0.
- *
- * @return 0.
- */
- @Override
- public double getSupportLowerBound() {
- return 0;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The upper bound of the support is always positive infinity.
- *
- * @return {@linkplain Double#POSITIVE_INFINITY positive infinity}.
- */
- @Override
- public double getSupportUpperBound() {
- return Double.POSITIVE_INFINITY;
- }
- /** {@inheritDoc} */
- @Override
- public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) {
- return gamma.createSampler(rng);
- }
- }