ExponentialDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.distribution;
- import org.apache.commons.rng.UniformRandomProvider;
- import org.apache.commons.rng.sampling.distribution.ZigguratSampler;
- /**
- * Implementation of the exponential distribution.
- *
- * <p>The probability density function of \( X \) is:
- *
- * <p>\[ f(x; \mu) = \frac{1}{\mu} e^{-x / \mu} \]
- *
- * <p>for \( \mu > 0 \) the mean and
- * \( x \in [0, \infty) \).
- *
- * <p>This implementation uses the scale parameter \( \mu \) which is the mean of the distribution.
- * A common alternative parameterization uses the rate parameter \( \lambda \) which is the reciprocal
- * of the mean. The distribution can be be created using \( \mu = \frac{1}{\lambda} \).
- *
- * @see <a href="https://en.wikipedia.org/wiki/Exponential_distribution">Exponential distribution (Wikipedia)</a>
- * @see <a href="https://mathworld.wolfram.com/ExponentialDistribution.html">Exponential distribution (MathWorld)</a>
- */
- public final class ExponentialDistribution extends AbstractContinuousDistribution {
- /** Support lower bound. */
- private static final double SUPPORT_LO = 0;
- /** Support upper bound. */
- private static final double SUPPORT_HI = Double.POSITIVE_INFINITY;
- /** The mean of this distribution. */
- private final double mean;
- /** The logarithm of the mean, stored to reduce computing time. */
- private final double logMean;
- /**
- * @param mean Mean of this distribution.
- */
- private ExponentialDistribution(double mean) {
- this.mean = mean;
- logMean = Math.log(mean);
- }
- /**
- * Creates an exponential distribution.
- *
- * @param mean Mean of this distribution. This is a scale parameter.
- * @return the distribution
- * @throws IllegalArgumentException if {@code mean <= 0}.
- */
- public static ExponentialDistribution of(double mean) {
- if (mean <= 0) {
- throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, mean);
- }
- return new ExponentialDistribution(mean);
- }
- /** {@inheritDoc} */
- @Override
- public double density(double x) {
- if (x < SUPPORT_LO) {
- return 0;
- }
- return Math.exp(-x / mean) / mean;
- }
- /** {@inheritDoc} **/
- @Override
- public double logDensity(double x) {
- if (x < SUPPORT_LO) {
- return Double.NEGATIVE_INFINITY;
- }
- return -x / mean - logMean;
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(double x) {
- if (x <= SUPPORT_LO) {
- return 0;
- }
- return -Math.expm1(-x / mean);
- }
- /** {@inheritDoc} */
- @Override
- public double survivalProbability(double x) {
- if (x <= SUPPORT_LO) {
- return 1;
- }
- return Math.exp(-x / mean);
- }
- /**
- * {@inheritDoc}
- *
- * <p>Returns {@code 0} when {@code p == 0} and
- * {@link Double#POSITIVE_INFINITY} when {@code p == 1}.
- */
- @Override
- public double inverseCumulativeProbability(double p) {
- ArgumentUtils.checkProbability(p);
- if (p == 1) {
- return Double.POSITIVE_INFINITY;
- }
- // Subtract from zero to prevent returning -0.0 for p=-0.0
- return 0 - mean * Math.log1p(-p);
- }
- /**
- * {@inheritDoc}
- *
- * <p>Returns {@code 0} when {@code p == 1} and
- * {@link Double#POSITIVE_INFINITY} when {@code p == 0}.
- */
- @Override
- public double inverseSurvivalProbability(double p) {
- ArgumentUtils.checkProbability(p);
- if (p == 0) {
- return Double.POSITIVE_INFINITY;
- }
- // Subtract from zero to prevent returning -0.0 for p=1
- return 0 - mean * Math.log(p);
- }
- /** {@inheritDoc} */
- @Override
- public double getMean() {
- return mean;
- }
- /**
- * {@inheritDoc}
- *
- * <p>For mean \( \mu \), the variance is \( \mu^2 \).
- */
- @Override
- public double getVariance() {
- return mean * mean;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The lower bound of the support is always 0.
- *
- * @return 0.
- */
- @Override
- public double getSupportLowerBound() {
- return SUPPORT_LO;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The upper bound of the support is always positive infinity.
- *
- * @return {@linkplain Double#POSITIVE_INFINITY positive infinity}.
- */
- @Override
- public double getSupportUpperBound() {
- return SUPPORT_HI;
- }
- /** {@inheritDoc} */
- @Override
- double getMedian() {
- // Overridden for the probability(double, double) method.
- // This is intentionally not a public method.
- // ln(2) / rate = mean * ln(2)
- return mean * Constants.LN_TWO;
- }
- /** {@inheritDoc} */
- @Override
- public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) {
- // Exponential distribution sampler.
- return ZigguratSampler.Exponential.of(rng, getMean())::sample;
- }
- }