ExtendedPrecision.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.distribution;
- import org.apache.commons.numbers.core.DD;
- /**
- * Computes extended precision floating-point operations.
- *
- * <p>Extended precision computation is delegated to the {@link DD} class. The methods here
- * verify the arguments to the computations will not overflow.
- */
- final class ExtendedPrecision {
- /** sqrt(2 pi) as a double-double number.
- * Divided into two parts from the value sqrt(2 pi) computed to 64 decimal digits. */
- static final DD SQRT2PI = DD.ofSum(2.5066282746310007, -1.8328579980459167e-16);
- /** Threshold for a big number that may overflow when squared. 2^500. */
- private static final double BIG = 0x1.0p500;
- /** Threshold for a small number that may underflow when squared. 2^-500. */
- private static final double SMALL = 0x1.0p-500;
- /** Scale up by 2^600. */
- private static final double SCALE_UP = 0x1.0p600;
- /** Scale down by 2^600. */
- private static final double SCALE_DOWN = 0x1.0p-600;
- /** X squared value where {@code exp(-0.5*x*x)} cannot increase accuracy using the round-off
- * from x squared. */
- private static final int EXP_M_HALF_XX_MIN_VALUE = 2;
- /** Approximate x squared value where {@code exp(-0.5*x*x) == 0}. This is above
- * {@code -2 * ln(2^-1074)} due to rounding performed within the exp function. */
- private static final int EXP_M_HALF_XX_MAX_VALUE = 1491;
- /** No instances. */
- private ExtendedPrecision() {}
- /**
- * Multiply the term by sqrt(2 pi).
- *
- * @param x Value (assumed to be positive)
- * @return x * sqrt(2 pi)
- */
- static double xsqrt2pi(double x) {
- // Note: Do not convert x to absolute for this use case
- if (x > BIG) {
- if (x == Double.POSITIVE_INFINITY) {
- return Double.POSITIVE_INFINITY;
- }
- return computeXsqrt2pi(x * SCALE_DOWN) * SCALE_UP;
- } else if (x < SMALL) {
- // Note: Ignore possible zero for this use case
- return computeXsqrt2pi(x * SCALE_UP) * SCALE_DOWN;
- } else {
- return computeXsqrt2pi(x);
- }
- }
- /**
- * Compute {@code a * sqrt(2 * pi)}.
- *
- * @param a Value
- * @return the result
- */
- private static double computeXsqrt2pi(double a) {
- return SQRT2PI.multiply(a).hi();
- }
- /**
- * Compute {@code sqrt(2 * x * x)}.
- *
- * <p>The result is computed using a high precision computation of
- * {@code sqrt(2 * x * x)} avoiding underflow or overflow of {@code x}
- * squared.
- *
- * @param x Value (assumed to be positive)
- * @return {@code sqrt(2 * x * x)}
- */
- static double sqrt2xx(double x) {
- // Note: Do not convert x to absolute for this use case
- if (x > BIG) {
- if (x == Double.POSITIVE_INFINITY) {
- return Double.POSITIVE_INFINITY;
- }
- return computeSqrt2aa(x * SCALE_DOWN) * SCALE_UP;
- } else if (x < SMALL) {
- // Note: Ignore possible zero for this use case
- return computeSqrt2aa(x * SCALE_UP) * SCALE_DOWN;
- } else {
- return computeSqrt2aa(x);
- }
- }
- /**
- * Compute {@code sqrt(2 * a * a)}.
- *
- * @param a Value
- * @return the result
- */
- private static double computeSqrt2aa(double a) {
- return DD.ofProduct(2 * a, a).sqrt().hi();
- }
- /**
- * Compute {@code exp(-0.5*x*x)} with high accuracy. This is performed using information in the
- * round-off from {@code x*x}.
- *
- * <p>This is accurate at large x to 1 ulp until exp(-0.5*x*x) is close to sub-normal. For very
- * small exp(-0.5*x*x) the adjustment is sub-normal and bits can be lost in the adjustment for a
- * max observed error of {@code < 2} ulp.
- *
- * <p>At small x the accuracy cannot be improved over using exp(-0.5*x*x). This occurs at
- * {@code x <= sqrt(2)}.
- *
- * @param x Value
- * @return exp(-0.5*x*x)
- * @see <a href="https://issues.apache.org/jira/browse/STATISTICS-52">STATISTICS-52</a>
- */
- static double expmhxx(double x) {
- final double z = x * x;
- if (z <= EXP_M_HALF_XX_MIN_VALUE) {
- return Math.exp(-0.5 * z);
- } else if (z >= EXP_M_HALF_XX_MAX_VALUE) {
- // exp(-745.5) == 0
- return 0;
- }
- final DD x2 = DD.ofSquare(x);
- return expxx(-0.5 * x2.hi(), -0.5 * x2.lo());
- }
- /**
- * Compute {@code exp(a+b)} with high accuracy assuming {@code a+b = a}.
- *
- * <p>This is accurate at large positive a to 1 ulp. If a is negative and exp(a) is close to
- * sub-normal a bit of precision may be lost when adjusting result as the adjustment is sub-normal
- * (max observed error {@code < 2} ulp). For the use case of multiplication of a number less than
- * 1 by exp(-x*x), a = -x*x, the result will be sub-normal and the rounding error is lost.
- *
- * <p>At small |a| the accuracy cannot be improved over using exp(a) as the round-off is too small
- * to create terms that can adjust the standard result by more than 0.5 ulp. This occurs at
- * {@code |a| <= 1}.
- *
- * @param a High bits of a split number
- * @param b Low bits of a split number
- * @return exp(a+b)
- * @see <a href="https://issues.apache.org/jira/projects/NUMBERS/issues/NUMBERS-177">
- * Numbers-177: Accurate scaling by exp(z*z)</a>
- */
- private static double expxx(double a, double b) {
- // exp(a+b) = exp(a) * exp(b)
- // = exp(a) * (exp(b) - 1) + exp(a)
- // Assuming:
- // 1. -746 < a < 710 for no under/overflow of exp(a)
- // 2. a+b = a
- // As b -> 0 then exp(b) -> 1; expm1(b) -> b
- // The round-off b is limited to ~ 0.5 * ulp(746) ~ 5.68e-14
- // and we can use an approximation for expm1 (x/1! + x^2/2! + ...)
- // The second term is required for the expm1 result but the
- // bits are not significant to change the following sum with exp(a)
- final double ea = Math.exp(a);
- // b ~ expm1(b)
- return ea * b + ea;
- }
- }