GammaDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.distribution;
- import org.apache.commons.numbers.gamma.LogGamma;
- import org.apache.commons.numbers.gamma.RegularizedGamma;
- import org.apache.commons.rng.UniformRandomProvider;
- import org.apache.commons.rng.sampling.distribution.AhrensDieterMarsagliaTsangGammaSampler;
- /**
- * Implementation of the gamma distribution.
- *
- * <p>The probability density function of \( X \) is:
- *
- * <p>\[ f(x;k,\theta) = \frac{x^{k-1}e^{-x/\theta}}{\theta^k\Gamma(k)} \]
- *
- * <p>for \( k > 0 \) the shape, \( \theta > 0 \) the scale, \( \Gamma(k) \) is the gamma function
- * and \( x \in (0, \infty) \).
- *
- * @see <a href="https://en.wikipedia.org/wiki/Gamma_distribution">Gamma distribution (Wikipedia)</a>
- * @see <a href="https://mathworld.wolfram.com/GammaDistribution.html">Gamma distribution (MathWorld)</a>
- */
- public final class GammaDistribution extends AbstractContinuousDistribution {
- /** Support lower bound. */
- private static final double SUPPORT_LO = 0;
- /** Support upper bound. */
- private static final double SUPPORT_HI = Double.POSITIVE_INFINITY;
- /** The shape parameter. */
- private final double shape;
- /** The scale parameter. */
- private final double scale;
- /** Precomputed term for the log density: {@code -log(gamma(shape)) - log(scale)}. */
- private final double minusLogGammaShapeMinusLogScale;
- /** Cached value for inverse probability function. */
- private final double mean;
- /** Cached value for inverse probability function. */
- private final double variance;
- /**
- * @param shape Shape parameter.
- * @param scale Scale parameter.
- */
- private GammaDistribution(double shape,
- double scale) {
- this.shape = shape;
- this.scale = scale;
- this.minusLogGammaShapeMinusLogScale = -LogGamma.value(shape) - Math.log(scale);
- mean = shape * scale;
- variance = shape * scale * scale;
- }
- /**
- * Creates a gamma distribution.
- *
- * @param shape Shape parameter.
- * @param scale Scale parameter.
- * @return the distribution
- * @throws IllegalArgumentException if {@code shape <= 0} or {@code scale <= 0}.
- */
- public static GammaDistribution of(double shape,
- double scale) {
- if (shape <= 0) {
- throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, shape);
- }
- if (scale <= 0) {
- throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, scale);
- }
- return new GammaDistribution(shape, scale);
- }
- /**
- * Gets the shape parameter of this distribution.
- *
- * @return the shape parameter.
- */
- public double getShape() {
- return shape;
- }
- /**
- * Gets the scale parameter of this distribution.
- *
- * @return the scale parameter.
- */
- public double getScale() {
- return scale;
- }
- /** {@inheritDoc}
- *
- * <p>Returns the limit when {@code x = 0}:
- * <ul>
- * <li>{@code shape < 1}: Infinity
- * <li>{@code shape == 1}: 1 / scale
- * <li>{@code shape > 1}: 0
- * </ul>
- */
- @Override
- public double density(double x) {
- if (x <= SUPPORT_LO ||
- x >= SUPPORT_HI) {
- // Special case x=0
- if (x == SUPPORT_LO && shape <= 1) {
- return shape == 1 ?
- 1 / scale :
- Double.POSITIVE_INFINITY;
- }
- return 0;
- }
- return RegularizedGamma.P.derivative(shape, x / scale) / scale;
- }
- /** {@inheritDoc}
- *
- * <p>Returns the limit when {@code x = 0}:
- * <ul>
- * <li>{@code shape < 1}: Infinity
- * <li>{@code shape == 1}: -log(scale)
- * <li>{@code shape > 1}: -Infinity
- * </ul>
- */
- @Override
- public double logDensity(double x) {
- if (x <= SUPPORT_LO ||
- x >= SUPPORT_HI) {
- // Special case x=0
- if (x == SUPPORT_LO && shape <= 1) {
- return shape == 1 ?
- -Math.log(scale) :
- Double.POSITIVE_INFINITY;
- }
- return Double.NEGATIVE_INFINITY;
- }
- final double y = x / scale;
- // More accurate to log the density when it is finite.
- // See NUMBERS-174: 'Log of the Gamma P Derivative'
- final double p = RegularizedGamma.P.derivative(shape, y) / scale;
- if (p <= Double.MAX_VALUE && p >= Double.MIN_NORMAL) {
- return Math.log(p);
- }
- // Use the log computation
- return minusLogGammaShapeMinusLogScale - y + Math.log(y) * (shape - 1);
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(double x) {
- if (x <= SUPPORT_LO) {
- return 0;
- } else if (x >= SUPPORT_HI) {
- return 1;
- }
- return RegularizedGamma.P.value(shape, x / scale);
- }
- /** {@inheritDoc} */
- @Override
- public double survivalProbability(double x) {
- if (x <= SUPPORT_LO) {
- return 1;
- } else if (x >= SUPPORT_HI) {
- return 0;
- }
- return RegularizedGamma.Q.value(shape, x / scale);
- }
- /**
- * {@inheritDoc}
- *
- * <p>For shape parameter \( k \) and scale parameter \( \theta \), the
- * mean is \( k \theta \).
- */
- @Override
- public double getMean() {
- return mean;
- }
- /**
- * {@inheritDoc}
- *
- * <p>For shape parameter \( k \) and scale parameter \( \theta \), the
- * variance is \( k \theta^2 \).
- */
- @Override
- public double getVariance() {
- return variance;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The lower bound of the support is always 0.
- *
- * @return 0.
- */
- @Override
- public double getSupportLowerBound() {
- return SUPPORT_LO;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The upper bound of the support is always positive infinity.
- *
- * @return {@linkplain Double#POSITIVE_INFINITY positive infinity}.
- */
- @Override
- public double getSupportUpperBound() {
- return SUPPORT_HI;
- }
- /** {@inheritDoc} */
- @Override
- public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) {
- // Gamma distribution sampler.
- return AhrensDieterMarsagliaTsangGammaSampler.of(rng, shape, scale)::sample;
- }
- }