GumbelDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.distribution;
- /**
- * Implementation of the Gumbel distribution.
- *
- * <p>The probability density function of \( X \) is:
- *
- * <p>\[ f(x; \mu, \beta) = \frac{1}{\beta} e^{-(z+e^{-z})} \]
- *
- * <p>where \[ z = \frac{x - \mu}{\beta} \]
- *
- * <p>for \( \mu \) the location,
- * \( \beta > 0 \) the scale, and
- * \( x \in (-\infty, \infty) \).
- *
- * @see <a href="https://en.wikipedia.org/wiki/Gumbel_distribution">Gumbel distribution (Wikipedia)</a>
- * @see <a href="https://mathworld.wolfram.com/GumbelDistribution.html">Gumbel distribution (MathWorld)</a>
- */
- public final class GumbelDistribution extends AbstractContinuousDistribution {
- /** Support lower bound. */
- private static final double SUPPORT_LO = Double.NEGATIVE_INFINITY;
- /** Support upper bound. */
- private static final double SUPPORT_HI = Double.POSITIVE_INFINITY;
- /** π<sup>2</sup>/6. https://oeis.org/A013661. */
- private static final double PI_SQUARED_OVER_SIX = 1.644934066848226436472415166646;
- /**
- * <a href="https://en.wikipedia.org/wiki/Euler%27s_constant">
- * Approximation of Euler's constant</a>.
- * https://oeis.org/A001620.
- */
- private static final double EULER = 0.5772156649015328606065;
- /** ln(ln(2)). https://oeis.org/A074785. */
- private static final double LN_LN_2 = -0.3665129205816643270124;
- /** Location parameter. */
- private final double mu;
- /** Scale parameter. */
- private final double beta;
- /**
- * @param mu Location parameter.
- * @param beta Scale parameter (must be positive).
- */
- private GumbelDistribution(double mu,
- double beta) {
- this.beta = beta;
- this.mu = mu;
- }
- /**
- * Creates a Gumbel distribution.
- *
- * @param mu Location parameter.
- * @param beta Scale parameter (must be positive).
- * @return the distribution
- * @throws IllegalArgumentException if {@code beta <= 0}
- */
- public static GumbelDistribution of(double mu,
- double beta) {
- if (beta <= 0) {
- throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, beta);
- }
- return new GumbelDistribution(mu, beta);
- }
- /**
- * Gets the location parameter of this distribution.
- *
- * @return the location parameter.
- */
- public double getLocation() {
- return mu;
- }
- /**
- * Gets the scale parameter of this distribution.
- *
- * @return the scale parameter.
- */
- public double getScale() {
- return beta;
- }
- /** {@inheritDoc} */
- @Override
- public double density(double x) {
- if (x <= SUPPORT_LO) {
- return 0;
- }
- final double z = (x - mu) / beta;
- final double t = Math.exp(-z);
- return Math.exp(-z - t) / beta;
- }
- /** {@inheritDoc} */
- @Override
- public double logDensity(double x) {
- if (x <= SUPPORT_LO) {
- return Double.NEGATIVE_INFINITY;
- }
- final double z = (x - mu) / beta;
- final double t = Math.exp(-z);
- return -z - t - Math.log(beta);
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(double x) {
- final double z = (x - mu) / beta;
- return Math.exp(-Math.exp(-z));
- }
- /** {@inheritDoc} */
- @Override
- public double survivalProbability(double x) {
- final double z = (x - mu) / beta;
- return -Math.expm1(-Math.exp(-z));
- }
- /** {@inheritDoc} */
- @Override
- public double inverseCumulativeProbability(double p) {
- ArgumentUtils.checkProbability(p);
- if (p == 0) {
- return Double.NEGATIVE_INFINITY;
- } else if (p == 1) {
- return Double.POSITIVE_INFINITY;
- }
- return mu - Math.log(-Math.log(p)) * beta;
- }
- /** {@inheritDoc} */
- @Override
- public double inverseSurvivalProbability(double p) {
- ArgumentUtils.checkProbability(p);
- if (p == 1) {
- return Double.NEGATIVE_INFINITY;
- } else if (p == 0) {
- return Double.POSITIVE_INFINITY;
- }
- return mu - Math.log(-Math.log1p(-p)) * beta;
- }
- /**
- * {@inheritDoc}
- *
- * <p>For location parameter \( \mu \) and scale parameter \( \beta \), the mean is:
- *
- * <p>\[ \mu + \beta \gamma \]
- *
- * <p>where \( \gamma \) is the
- * <a href="https://mathworld.wolfram.com/Euler-MascheroniConstantApproximations.html">
- * Euler-Mascheroni constant</a>.
- */
- @Override
- public double getMean() {
- return mu + EULER * beta;
- }
- /**
- * {@inheritDoc}
- *
- * <p>For scale parameter \( \beta \), the variance is:
- *
- * <p>\[ \frac{\pi^2}{6} \beta^2 \]
- */
- @Override
- public double getVariance() {
- return PI_SQUARED_OVER_SIX * beta * beta;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The lower bound of the support is always negative infinity.
- *
- * @return {@linkplain Double#NEGATIVE_INFINITY negative infinity}.
- */
- @Override
- public double getSupportLowerBound() {
- return SUPPORT_LO;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The upper bound of the support is always positive infinity.
- *
- * @return {@linkplain Double#POSITIVE_INFINITY positive infinity}.
- */
- @Override
- public double getSupportUpperBound() {
- return SUPPORT_HI;
- }
- /** {@inheritDoc} */
- @Override
- double getMedian() {
- // Overridden for the probability(double, double) method.
- // This is intentionally not a public method.
- // u - beta * ln(ln(2))
- return mu - beta * LN_LN_2;
- }
- }