LaplaceDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.distribution;
- /**
- * Implementation of the Laplace distribution.
- *
- * <p>The probability density function of \( X \) is:
- *
- * <p>\[ f(x; \mu, b) = \frac{1}{2b} \exp \left( -\frac{|x-\mu|}{b} \right) \]
- *
- * <p>for \( \mu \) the location,
- * \( b > 0 \) the scale, and
- * \( x \in (-\infty, \infty) \).
- *
- * @see <a href="https://en.wikipedia.org/wiki/Laplace_distribution">Laplace distribution (Wikipedia)</a>
- * @see <a href="https://mathworld.wolfram.com/LaplaceDistribution.html">Laplace distribution (MathWorld)</a>
- */
- public final class LaplaceDistribution extends AbstractContinuousDistribution {
- /** The location parameter. */
- private final double mu;
- /** The scale parameter. */
- private final double beta;
- /** log(2 * beta). */
- private final double log2beta;
- /**
- * @param mu Location parameter.
- * @param beta Scale parameter (must be positive).
- */
- private LaplaceDistribution(double mu,
- double beta) {
- this.mu = mu;
- this.beta = beta;
- log2beta = Math.log(2.0 * beta);
- }
- /**
- * Creates a Laplace distribution.
- *
- * @param mu Location parameter.
- * @param beta Scale parameter (must be positive).
- * @return the distribution
- * @throws IllegalArgumentException if {@code beta <= 0}
- */
- public static LaplaceDistribution of(double mu,
- double beta) {
- if (beta <= 0) {
- throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, beta);
- }
- return new LaplaceDistribution(mu, beta);
- }
- /**
- * Gets the location parameter of this distribution.
- *
- * @return the location parameter.
- */
- public double getLocation() {
- return mu;
- }
- /**
- * Gets the scale parameter of this distribution.
- *
- * @return the scale parameter.
- */
- public double getScale() {
- return beta;
- }
- /** {@inheritDoc} */
- @Override
- public double density(double x) {
- return Math.exp(-Math.abs(x - mu) / beta) / (2.0 * beta);
- }
- /** {@inheritDoc} */
- @Override
- public double logDensity(double x) {
- return -Math.abs(x - mu) / beta - log2beta;
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(double x) {
- if (x <= mu) {
- return 0.5 * Math.exp((x - mu) / beta);
- }
- return 1.0 - 0.5 * Math.exp((mu - x) / beta);
- }
- /** {@inheritDoc} */
- @Override
- public double survivalProbability(double x) {
- if (x <= mu) {
- return 1.0 - 0.5 * Math.exp((x - mu) / beta);
- }
- return 0.5 * Math.exp((mu - x) / beta);
- }
- /** {@inheritDoc} */
- @Override
- public double inverseCumulativeProbability(double p) {
- ArgumentUtils.checkProbability(p);
- if (p == 0) {
- return Double.NEGATIVE_INFINITY;
- } else if (p == 1) {
- return Double.POSITIVE_INFINITY;
- }
- final double x = (p > 0.5) ? -Math.log(2.0 * (1.0 - p)) : Math.log(2.0 * p);
- return mu + beta * x;
- }
- /** {@inheritDoc} */
- @Override
- public double inverseSurvivalProbability(double p) {
- ArgumentUtils.checkProbability(p);
- if (p == 1) {
- return Double.NEGATIVE_INFINITY;
- } else if (p == 0) {
- return Double.POSITIVE_INFINITY;
- }
- // By symmetry: x = -icdf(p); then transform back by the scale and location
- final double x = (p > 0.5) ? Math.log(2.0 * (1.0 - p)) : -Math.log(2.0 * p);
- return mu + beta * x;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The mean is equal to the {@linkplain #getLocation() location}.
- */
- @Override
- public double getMean() {
- return getLocation();
- }
- /**
- * {@inheritDoc}
- *
- * <p>For scale parameter \( b \), the variance is \( 2 b^2 \).
- */
- @Override
- public double getVariance() {
- return 2.0 * beta * beta;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The lower bound of the support is always negative infinity.
- *
- * @return {@linkplain Double#NEGATIVE_INFINITY negative infinity}.
- */
- @Override
- public double getSupportLowerBound() {
- return Double.NEGATIVE_INFINITY;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The upper bound of the support is always positive infinity.
- *
- * @return {@linkplain Double#POSITIVE_INFINITY positive infinity}.
- */
- @Override
- public double getSupportUpperBound() {
- return Double.POSITIVE_INFINITY;
- }
- /** {@inheritDoc} */
- @Override
- double getMedian() {
- // Overridden for the probability(double, double) method.
- // This is intentionally not a public method.
- return mu;
- }
- }