LevyDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.distribution;
- import org.apache.commons.numbers.gamma.Erf;
- import org.apache.commons.numbers.gamma.Erfc;
- import org.apache.commons.numbers.gamma.InverseErf;
- import org.apache.commons.numbers.gamma.InverseErfc;
- import org.apache.commons.rng.UniformRandomProvider;
- import org.apache.commons.rng.sampling.distribution.LevySampler;
- /**
- * Implementation of the Lévy distribution.
- *
- * <p>The probability density function of \( X \) is:
- *
- * <p>\[ f(x; \mu, c) = \sqrt{\frac{c}{2\pi}}~~\frac{e^{ -\frac{c}{2(x-\mu)}}} {(x-\mu)^{3/2}} \]
- *
- * <p>for \( \mu \) the location,
- * \( c > 0 \) the scale, and
- * \( x \in [\mu, \infty) \).
- *
- * @see <a href="https://en.wikipedia.org/wiki/L%C3%A9vy_distribution">Lévy distribution (Wikipedia)</a>
- * @see <a href="https://mathworld.wolfram.com/LevyDistribution.html">Lévy distribution (MathWorld)</a>
- */
- public final class LevyDistribution extends AbstractContinuousDistribution {
- /** 1 / 2(erfc^-1 (0.5))^2. Computed using Matlab's VPA to 30 digits. */
- private static final double HALF_OVER_ERFCINV_HALF_SQUARED = 2.1981093383177324039996779530797;
- /** Location parameter. */
- private final double mu;
- /** Scale parameter. */
- private final double c;
- /** Half of c (for calculations). */
- private final double halfC;
- /**
- * @param mu Location parameter.
- * @param c Scale parameter.
- */
- private LevyDistribution(double mu,
- double c) {
- this.mu = mu;
- this.c = c;
- this.halfC = 0.5 * c;
- }
- /**
- * Creates a Levy distribution.
- *
- * @param mu Location parameter.
- * @param c Scale parameter.
- * @return the distribution
- * @throws IllegalArgumentException if {@code c <= 0}.
- */
- public static LevyDistribution of(double mu,
- double c) {
- if (c <= 0) {
- throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE,
- c);
- }
- return new LevyDistribution(mu, c);
- }
- /**
- * Gets the location parameter of this distribution.
- *
- * @return the location parameter.
- */
- public double getLocation() {
- return mu;
- }
- /**
- * Gets the scale parameter of this distribution.
- *
- * @return the scale parameter.
- */
- public double getScale() {
- return c;
- }
- /**
- * {@inheritDoc}
- *
- * <p>If {@code x} is less than the location parameter then {@code 0} is
- * returned, as in these cases the distribution is not defined.
- */
- @Override
- public double density(final double x) {
- if (x <= mu) {
- // x=mu creates NaN:
- // sqrt(c / 2pi) * exp(-c / 2(x-mu)) / (x-mu)^1.5
- // = F * exp(-inf) * (x-mu)^-1.5 = F * 0 * inf
- // Return 0 for this case.
- return 0;
- }
- final double delta = x - mu;
- final double f = halfC / delta;
- return Math.sqrt(f / Math.PI) * Math.exp(-f) / delta;
- }
- /** {@inheritDoc} */
- @Override
- public double logDensity(double x) {
- if (x <= mu) {
- return Double.NEGATIVE_INFINITY;
- }
- final double delta = x - mu;
- final double f = halfC / delta;
- return 0.5 * Math.log(f / Math.PI) - f - Math.log(delta);
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(final double x) {
- if (x <= mu) {
- return 0;
- }
- return Erfc.value(Math.sqrt(halfC / (x - mu)));
- }
- /** {@inheritDoc} */
- @Override
- public double survivalProbability(final double x) {
- if (x <= mu) {
- return 1;
- }
- return Erf.value(Math.sqrt(halfC / (x - mu)));
- }
- /** {@inheritDoc} */
- @Override
- public double inverseCumulativeProbability(double p) {
- ArgumentUtils.checkProbability(p);
- final double t = InverseErfc.value(p);
- return mu + halfC / (t * t);
- }
- /** {@inheritDoc} */
- @Override
- public double inverseSurvivalProbability(double p) {
- ArgumentUtils.checkProbability(p);
- final double t = InverseErf.value(p);
- return mu + halfC / (t * t);
- }
- /**
- * {@inheritDoc}
- *
- * <p>The mean is equal to positive infinity.
- *
- * @return {@linkplain Double#POSITIVE_INFINITY positive infinity}.
- */
- @Override
- public double getMean() {
- return Double.POSITIVE_INFINITY;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The variance is equal to positive infinity.
- *
- * @return {@linkplain Double#POSITIVE_INFINITY positive infinity}.
- */
- @Override
- public double getVariance() {
- return Double.POSITIVE_INFINITY;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The lower bound of the support is the {@linkplain #getLocation() location}.
- *
- * @return location.
- */
- @Override
- public double getSupportLowerBound() {
- return getLocation();
- }
- /**
- * {@inheritDoc}
- *
- * <p>The upper bound of the support is always positive infinity.
- *
- * @return {@linkplain Double#POSITIVE_INFINITY positive infinity}.
- */
- @Override
- public double getSupportUpperBound() {
- return Double.POSITIVE_INFINITY;
- }
- /** {@inheritDoc} */
- @Override
- double getMedian() {
- // Overridden for the probability(double, double) method.
- // This is intentionally not a public method.
- // u + c / 2(erfc^-1 (0.5))^2
- return mu + c * HALF_OVER_ERFCINV_HALF_SQUARED;
- }
- /** {@inheritDoc} */
- @Override
- public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) {
- // Levy distribution sampler.
- return LevySampler.of(rng, getLocation(), getScale())::sample;
- }
- }