LogUniformDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.distribution;
- import org.apache.commons.rng.UniformRandomProvider;
- import org.apache.commons.rng.sampling.distribution.ContinuousUniformSampler;
- import org.apache.commons.rng.sampling.distribution.SharedStateContinuousSampler;
- /**
- * Implementation of the log-uniform distribution. This is also known as the reciprocal distribution.
- *
- * <p>The probability density function of \( X \) is:
- *
- * <p>\[ f(x; a, b) = \frac{1}{x \ln \frac b a} \]
- *
- * <p>for \( 0 \lt a \lt b \lt \infty \) and
- * \( x \in [a, b] \).
- *
- * @see <a href="https://en.wikipedia.org/wiki/Reciprocal_distribution">Reciprocal distribution (Wikipedia)</a>
- * @since 1.1
- */
- public final class LogUniformDistribution extends AbstractContinuousDistribution {
- /** Lower bound (a) of this distribution (inclusive). */
- private final double lower;
- /** Upper bound (b) of this distribution (exclusive). */
- private final double upper;
- /** log(a). */
- private final double logA;
- /** log(b). */
- private final double logB;
- /** log(b) - log(a). */
- private final double logBmLogA;
- /** log(log(b) - log(a)). */
- private final double logLogBmLogA;
- /**
- * @param lower Lower bound of this distribution (inclusive).
- * @param upper Upper bound of this distribution (inclusive).
- */
- private LogUniformDistribution(double lower,
- double upper) {
- this.lower = lower;
- this.upper = upper;
- logA = Math.log(lower);
- logB = Math.log(upper);
- logBmLogA = logB - logA;
- logLogBmLogA = Math.log(logBmLogA);
- }
- /**
- * Creates a log-uniform distribution.
- *
- * @param lower Lower bound of this distribution (inclusive).
- * @param upper Upper bound of this distribution (inclusive).
- * @return the distribution
- * @throws IllegalArgumentException if {@code lower >= upper}; the range between the bounds
- * is not finite; or {@code lower <= 0}
- */
- public static LogUniformDistribution of(double lower,
- double upper) {
- if (lower >= upper) {
- throw new DistributionException(DistributionException.INVALID_RANGE_LOW_GTE_HIGH,
- lower, upper);
- }
- if (!Double.isFinite(upper - lower)) {
- throw new DistributionException("Range %s is not finite", upper - lower);
- }
- if (lower <= 0) {
- throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, lower);
- }
- return new LogUniformDistribution(lower, upper);
- }
- /** {@inheritDoc} */
- @Override
- public double density(double x) {
- if (x < lower || x > upper) {
- return 0;
- }
- return Math.exp(logDensity(x));
- }
- /** {@inheritDoc} */
- @Override
- public double logDensity(double x) {
- if (x < lower || x > upper) {
- return Double.NEGATIVE_INFINITY;
- }
- return -Math.log(x) - logLogBmLogA;
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(double x) {
- if (x <= lower) {
- return 0;
- }
- if (x >= upper) {
- return 1;
- }
- return (Math.log(x) - logA) / logBmLogA;
- }
- /** {@inheritDoc} */
- @Override
- public double survivalProbability(double x) {
- if (x <= lower) {
- return 1;
- }
- if (x >= upper) {
- return 0;
- }
- return (logB - Math.log(x)) / logBmLogA;
- }
- /** {@inheritDoc} */
- @Override
- public double inverseCumulativeProbability(double p) {
- ArgumentUtils.checkProbability(p);
- // Avoid floating-point error at the bounds
- return clipToRange(Math.exp(logA + p * logBmLogA));
- }
- @Override
- public double inverseSurvivalProbability(double p) {
- ArgumentUtils.checkProbability(p);
- // Avoid floating-point error at the bounds
- return clipToRange(Math.exp(logB - p * logBmLogA));
- }
- /**
- * {@inheritDoc}
- *
- * <p>For lower bound \( a \) and upper bound \( b \), the mean is:
- *
- * <p>\[ \frac{b - a}{\ln \frac b a} \]
- */
- @Override
- public double getMean() {
- return (upper - lower) / logBmLogA;
- }
- /**
- * {@inheritDoc}
- *
- * <p>For lower bound \( a \) and upper bound \( b \), the variance is:
- *
- * <p>\[ \frac{b^2 - a^2}{2 \ln \frac b a} - \left( \frac{b - a}{\ln \frac b a} \right)^2 \]
- */
- @Override
- public double getVariance() {
- // Compute u_2 via a stabilising rearrangement:
- // https://docs.scipy.org/doc/scipy/tutorial/stats/continuous_loguniform.html
- final double a = lower;
- final double b = upper;
- final double d = -logBmLogA;
- return (a - b) * (a * (d - 2) + b * (d + 2)) / (2 * d * d);
- }
- /**
- * {@inheritDoc}
- *
- * <p>The lower bound of the support is equal to the lower bound parameter
- * of the distribution.
- */
- @Override
- public double getSupportLowerBound() {
- return lower;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The upper bound of the support is equal to the upper bound parameter
- * of the distribution.
- */
- @Override
- public double getSupportUpperBound() {
- return upper;
- }
- /**
- * Clip the value to the range [lower, upper].
- * This is used to handle floating-point error at the support bound.
- *
- * @param x Value x
- * @return x clipped to the range
- */
- private double clipToRange(double x) {
- return clip(x, lower, upper);
- }
- /**
- * Clip the value to the range [lower, upper].
- *
- * @param x Value x
- * @param lower Lower bound (inclusive)
- * @param upper Upper bound (inclusive)
- * @return x clipped to the range
- */
- private static double clip(double x, double lower, double upper) {
- if (x <= lower) {
- return lower;
- }
- return x < upper ? x : upper;
- }
- /** {@inheritDoc} */
- @Override
- double getMedian() {
- // Overridden for the probability(double, double) method.
- // This is intentionally not a public method.
- // sqrt(ab) avoiding overflow
- return Math.exp(0.5 * (logA + logB));
- }
- /** {@inheritDoc} */
- @Override
- public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) {
- // Exponentiate a uniform distribution sampler of the logarithmic range.
- final SharedStateContinuousSampler s = ContinuousUniformSampler.of(rng, logA, logB);
- return () -> Math.exp(s.sample());
- }
- }