NakagamiDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.distribution;
- import org.apache.commons.numbers.gamma.Gamma;
- import org.apache.commons.numbers.gamma.GammaRatio;
- import org.apache.commons.numbers.gamma.LogGamma;
- import org.apache.commons.numbers.gamma.RegularizedGamma;
- import org.apache.commons.rng.UniformRandomProvider;
- import org.apache.commons.rng.sampling.distribution.AhrensDieterMarsagliaTsangGammaSampler;
- import org.apache.commons.rng.sampling.distribution.SharedStateContinuousSampler;
- /**
- * Implementation of the Nakagami distribution.
- *
- * <p>The probability density function of \( X \) is:
- *
- * <p>\[ f(x; \mu, \Omega) = \frac{2\mu^\mu}{\Gamma(\mu)\Omega^\mu}x^{2\mu-1}\exp\left(-\frac{\mu}{\Omega}x^2\right) \]
- *
- * <p>for \( \mu > 0 \) the shape,
- * \( \Omega > 0 \) the scale, and
- * \( x \in (0, \infty) \).
- *
- * @see <a href="https://en.wikipedia.org/wiki/Nakagami_distribution">Nakagami distribution (Wikipedia)</a>
- */
- public final class NakagamiDistribution extends AbstractContinuousDistribution {
- /** Support lower bound. */
- private static final double SUPPORT_LO = 0;
- /** Support upper bound. */
- private static final double SUPPORT_HI = Double.POSITIVE_INFINITY;
- /** The shape parameter. */
- private final double mu;
- /** The scale parameter. */
- private final double omega;
- /** Density prefactor. */
- private final double densityPrefactor;
- /** Log density prefactor. */
- private final double logDensityPrefactor;
- /** Cached value for inverse probability function. */
- private final double mean;
- /** Cached value for inverse probability function. */
- private final double variance;
- /**
- * @param mu Shape parameter (must be positive).
- * @param omega Scale parameter (must be positive). Controls the spread of the distribution.
- */
- private NakagamiDistribution(double mu,
- double omega) {
- this.mu = mu;
- this.omega = omega;
- densityPrefactor = 2.0 * Math.pow(mu, mu) / (Gamma.value(mu) * Math.pow(omega, mu));
- logDensityPrefactor = Constants.LN_TWO + Math.log(mu) * mu - LogGamma.value(mu) - Math.log(omega) * mu;
- final double v = GammaRatio.delta(mu, 0.5);
- mean = Math.sqrt(omega / mu) / v;
- variance = omega - (omega / mu) / v / v;
- }
- /**
- * Creates a Nakagami distribution.
- *
- * @param mu Shape parameter (must be positive).
- * @param omega Scale parameter (must be positive). Controls the spread of the distribution.
- * @return the distribution
- * @throws IllegalArgumentException if {@code mu <= 0} or if
- * {@code omega <= 0}.
- */
- public static NakagamiDistribution of(double mu,
- double omega) {
- if (mu <= 0) {
- throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, mu);
- }
- if (omega <= 0) {
- throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, omega);
- }
- return new NakagamiDistribution(mu, omega);
- }
- /**
- * Gets the shape parameter of this distribution.
- *
- * @return the shape parameter.
- */
- public double getShape() {
- return mu;
- }
- /**
- * Gets the scale parameter of this distribution.
- *
- * @return the scale parameter.
- */
- public double getScale() {
- return omega;
- }
- /** {@inheritDoc} */
- @Override
- public double density(double x) {
- if (x <= SUPPORT_LO ||
- x >= SUPPORT_HI) {
- return 0;
- }
- return densityPrefactor * Math.pow(x, 2 * mu - 1) * Math.exp(-mu * x * x / omega);
- }
- /** {@inheritDoc} */
- @Override
- public double logDensity(double x) {
- if (x <= SUPPORT_LO ||
- x >= SUPPORT_HI) {
- return Double.NEGATIVE_INFINITY;
- }
- return logDensityPrefactor + Math.log(x) * (2 * mu - 1) - (mu * x * x / omega);
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(double x) {
- if (x <= SUPPORT_LO) {
- return 0;
- } else if (x >= SUPPORT_HI) {
- return 1;
- }
- return RegularizedGamma.P.value(mu, mu * x * x / omega);
- }
- /** {@inheritDoc} */
- @Override
- public double survivalProbability(double x) {
- if (x <= SUPPORT_LO) {
- return 1;
- } else if (x >= SUPPORT_HI) {
- return 0;
- }
- return RegularizedGamma.Q.value(mu, mu * x * x / omega);
- }
- /**
- * {@inheritDoc}
- *
- * <p>For shape parameter \( \mu \) and scale parameter \( \Omega \), the mean is:
- *
- * <p>\[ \frac{\Gamma(m+\frac{1}{2})}{\Gamma(m)}\left(\frac{\Omega}{m}\right)^{1/2} \]
- */
- @Override
- public double getMean() {
- return mean;
- }
- /**
- * {@inheritDoc}
- *
- * <p>For shape parameter \( \mu \) and scale parameter \( \Omega \), the variance is:
- *
- * <p>\[ \Omega\left(1-\frac{1}{m}\left(\frac{\Gamma(m+\frac{1}{2})}{\Gamma(m)}\right)^2\right) \]
- */
- @Override
- public double getVariance() {
- return variance;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The lower bound of the support is always 0.
- *
- * @return 0.
- */
- @Override
- public double getSupportLowerBound() {
- return SUPPORT_LO;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The upper bound of the support is always positive infinity.
- *
- * @return {@linkplain Double#POSITIVE_INFINITY positive infinity}.
- */
- @Override
- public double getSupportUpperBound() {
- return SUPPORT_HI;
- }
- @Override
- public Sampler createSampler(UniformRandomProvider rng) {
- // Generate using a related Gamma distribution
- // See https://en.wikipedia.org/wiki/Nakagami_distribution#Generation
- final double shape = mu;
- final double scale = omega / mu;
- final SharedStateContinuousSampler sampler =
- AhrensDieterMarsagliaTsangGammaSampler.of(rng, shape, scale);
- return () -> Math.sqrt(sampler.sample());
- }
- }