PascalDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.distribution;
- import org.apache.commons.numbers.combinatorics.BinomialCoefficientDouble;
- import org.apache.commons.numbers.combinatorics.LogBinomialCoefficient;
- import org.apache.commons.numbers.gamma.RegularizedBeta;
- /**
- * Implementation of the Pascal distribution.
- *
- * <p>The Pascal distribution is a special case of the negative binomial distribution
- * where the number of successes parameter is an integer.
- *
- * <p>There are various ways to express the probability mass and distribution
- * functions for the Pascal distribution. The present implementation represents
- * the distribution of the number of failures before \( r \) successes occur.
- * This is the convention adopted in e.g.
- * <a href="https://mathworld.wolfram.com/NegativeBinomialDistribution.html">MathWorld</a>,
- * but <em>not</em> in
- * <a href="https://en.wikipedia.org/wiki/Negative_binomial_distribution">Wikipedia</a>.
- *
- * <p>The probability mass function of \( X \) is:
- *
- * <p>\[ f(k; r, p) = \binom{k+r-1}{r-1} p^r \, (1-p)^k \]
- *
- * <p>for \( r \in \{1, 2, \dots\} \) the number of successes,
- * \( p \in (0, 1] \) the probability of success,
- * \( k \in \{0, 1, 2, \dots\} \) the total number of failures, and
- *
- * <p>\[ \binom{k+r-1}{r-1} = \frac{(k+r-1)!}{(r-1)! \, k!} \]
- *
- * <p>is the binomial coefficient.
- *
- * <p>The cumulative distribution function of \( X \) is:
- *
- * <p>\[ P(X \leq k) = I(p, r, k + 1) \]
- *
- * <p>where \( I \) is the regularized incomplete beta function.
- *
- * @see <a href="https://en.wikipedia.org/wiki/Negative_binomial_distribution">Negative binomial distribution (Wikipedia)</a>
- * @see <a href="https://mathworld.wolfram.com/NegativeBinomialDistribution.html">Negative binomial distribution (MathWorld)</a>
- */
- public final class PascalDistribution extends AbstractDiscreteDistribution {
- /** The number of successes. */
- private final int numberOfSuccesses;
- /** The probability of success. */
- private final double probabilityOfSuccess;
- /** The value of {@code log(p) * n}, where {@code p} is the probability of success
- * and {@code n} is the number of successes, stored for faster computation. */
- private final double logProbabilityOfSuccessByNumOfSuccesses;
- /** The value of {@code log(1-p)}, where {@code p} is the probability of success,
- * stored for faster computation. */
- private final double log1mProbabilityOfSuccess;
- /** The value of {@code p^n}, where {@code p} is the probability of success
- * and {@code n} is the number of successes, stored for faster computation. */
- private final double probabilityOfSuccessPowNumOfSuccesses;
- /**
- * @param r Number of successes.
- * @param p Probability of success.
- */
- private PascalDistribution(int r,
- double p) {
- numberOfSuccesses = r;
- probabilityOfSuccess = p;
- logProbabilityOfSuccessByNumOfSuccesses = Math.log(p) * numberOfSuccesses;
- log1mProbabilityOfSuccess = Math.log1p(-p);
- probabilityOfSuccessPowNumOfSuccesses = Math.pow(probabilityOfSuccess, numberOfSuccesses);
- }
- /**
- * Create a Pascal distribution.
- *
- * @param r Number of successes.
- * @param p Probability of success.
- * @return the distribution
- * @throws IllegalArgumentException if {@code r <= 0} or {@code p <= 0} or
- * {@code p > 1}.
- */
- public static PascalDistribution of(int r,
- double p) {
- if (r <= 0) {
- throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, r);
- }
- if (p <= 0 ||
- p > 1) {
- throw new DistributionException(DistributionException.INVALID_NON_ZERO_PROBABILITY, p);
- }
- return new PascalDistribution(r, p);
- }
- /**
- * Gets the number of successes parameter of this distribution.
- *
- * @return the number of successes.
- */
- public int getNumberOfSuccesses() {
- return numberOfSuccesses;
- }
- /**
- * Gets the probability of success parameter of this distribution.
- *
- * @return the probability of success.
- */
- public double getProbabilityOfSuccess() {
- return probabilityOfSuccess;
- }
- /** {@inheritDoc} */
- @Override
- public double probability(int x) {
- if (x <= 0) {
- // Special case of x=0 exploiting cancellation.
- return x == 0 ? probabilityOfSuccessPowNumOfSuccesses : 0.0;
- }
- final int n = x + numberOfSuccesses - 1;
- if (n < 0) {
- // overflow
- return 0.0;
- }
- return BinomialCoefficientDouble.value(n, numberOfSuccesses - 1) *
- probabilityOfSuccessPowNumOfSuccesses *
- Math.pow(1.0 - probabilityOfSuccess, x);
- }
- /** {@inheritDoc} */
- @Override
- public double logProbability(int x) {
- if (x <= 0) {
- // Special case of x=0 exploiting cancellation.
- return x == 0 ? logProbabilityOfSuccessByNumOfSuccesses : Double.NEGATIVE_INFINITY;
- }
- final int n = x + numberOfSuccesses - 1;
- if (n < 0) {
- // overflow
- return Double.NEGATIVE_INFINITY;
- }
- return LogBinomialCoefficient.value(n, numberOfSuccesses - 1) +
- logProbabilityOfSuccessByNumOfSuccesses +
- log1mProbabilityOfSuccess * x;
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(int x) {
- if (x < 0) {
- return 0.0;
- }
- return RegularizedBeta.value(probabilityOfSuccess,
- numberOfSuccesses, x + 1.0);
- }
- /** {@inheritDoc} */
- @Override
- public double survivalProbability(int x) {
- if (x < 0) {
- return 1.0;
- }
- return RegularizedBeta.complement(probabilityOfSuccess,
- numberOfSuccesses, x + 1.0);
- }
- /**
- * {@inheritDoc}
- *
- * <p>For number of successes \( r \) and probability of success \( p \),
- * the mean is:
- *
- * <p>\[ \frac{r (1 - p)}{p} \]
- */
- @Override
- public double getMean() {
- final double p = getProbabilityOfSuccess();
- final double r = getNumberOfSuccesses();
- return (r * (1 - p)) / p;
- }
- /**
- * {@inheritDoc}
- *
- * <p>For number of successes \( r \) and probability of success \( p \),
- * the variance is:
- *
- * <p>\[ \frac{r (1 - p)}{p^2} \]
- */
- @Override
- public double getVariance() {
- final double p = getProbabilityOfSuccess();
- final double r = getNumberOfSuccesses();
- return r * (1 - p) / (p * p);
- }
- /**
- * {@inheritDoc}
- *
- * <p>The lower bound of the support is always 0.
- *
- * @return 0.
- */
- @Override
- public int getSupportLowerBound() {
- return 0;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The upper bound of the support is positive infinity except for the
- * probability parameter {@code p = 1.0}.
- *
- * @return {@link Integer#MAX_VALUE} or 0.
- */
- @Override
- public int getSupportUpperBound() {
- return probabilityOfSuccess < 1 ? Integer.MAX_VALUE : 0;
- }
- }