TriangularDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.distribution;
- /**
- * Implementation of the triangular distribution.
- *
- * <p>The probability density function of \( X \) is:
- *
- * <p>\[ f(x; a, b, c) = \begin{cases}
- * \frac{2(x-a)}{(b-a)(c-a)} & \text{for } a \le x \lt c \\
- * \frac{2}{b-a} & \text{for } x = c \\
- * \frac{2(b-x)}{(b-a)(b-c)} & \text{for } c \lt x \le b \\
- * \end{cases} \]
- *
- * <p>for \( -\infty \lt a \le c \le b \lt \infty \) and
- * \( x \in [a, b] \).
- *
- * @see <a href="https://en.wikipedia.org/wiki/Triangular_distribution">Triangular distribution (Wikipedia)</a>
- * @see <a href="https://mathworld.wolfram.com/TriangularDistribution.html">Triangular distribution (MathWorld)</a>
- */
- public final class TriangularDistribution extends AbstractContinuousDistribution {
- /** Lower limit of this distribution (inclusive). */
- private final double a;
- /** Upper limit of this distribution (inclusive). */
- private final double b;
- /** Mode of this distribution. */
- private final double c;
- /** Cached value ((b - a) * (c - a). */
- private final double divisor1;
- /** Cached value ((b - a) * (b - c)). */
- private final double divisor2;
- /** Cumulative probability at the mode. */
- private final double cdfMode;
- /** Survival probability at the mode. */
- private final double sfMode;
- /**
- * @param a Lower limit of this distribution (inclusive).
- * @param c Mode of this distribution.
- * @param b Upper limit of this distribution (inclusive).
- */
- private TriangularDistribution(double a,
- double c,
- double b) {
- this.a = a;
- this.c = c;
- this.b = b;
- divisor1 = (b - a) * (c - a);
- divisor2 = (b - a) * (b - c);
- cdfMode = (c - a) / (b - a);
- sfMode = (b - c) / (b - a);
- }
- /**
- * Creates a triangular distribution.
- *
- * @param a Lower limit of this distribution (inclusive).
- * @param c Mode of this distribution.
- * @param b Upper limit of this distribution (inclusive).
- * @return the distribution
- * @throws IllegalArgumentException if {@code a >= b}, if {@code c > b} or if
- * {@code c < a}.
- */
- public static TriangularDistribution of(double a,
- double c,
- double b) {
- if (a >= b) {
- throw new DistributionException(DistributionException.INVALID_RANGE_LOW_GTE_HIGH,
- a, b);
- }
- if (c < a) {
- throw new DistributionException(DistributionException.TOO_SMALL,
- c, a);
- }
- if (c > b) {
- throw new DistributionException(DistributionException.TOO_LARGE,
- c, b);
- }
- return new TriangularDistribution(a, c, b);
- }
- /**
- * Gets the mode parameter of this distribution.
- *
- * @return the mode.
- */
- public double getMode() {
- return c;
- }
- /** {@inheritDoc} */
- @Override
- public double density(double x) {
- if (x < a) {
- return 0;
- }
- if (x < c) {
- final double divident = 2 * (x - a);
- return divident / divisor1;
- }
- if (x == c) {
- return 2 / (b - a);
- }
- if (x <= b) {
- final double divident = 2 * (b - x);
- return divident / divisor2;
- }
- return 0;
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(double x) {
- if (x <= a) {
- return 0;
- }
- if (x < c) {
- final double divident = (x - a) * (x - a);
- return divident / divisor1;
- }
- if (x == c) {
- return cdfMode;
- }
- if (x < b) {
- final double divident = (b - x) * (b - x);
- return 1 - (divident / divisor2);
- }
- return 1;
- }
- /** {@inheritDoc} */
- @Override
- public double survivalProbability(double x) {
- // By symmetry:
- if (x <= a) {
- return 1;
- }
- if (x < c) {
- final double divident = (x - a) * (x - a);
- return 1 - (divident / divisor1);
- }
- if (x == c) {
- return sfMode;
- }
- if (x < b) {
- final double divident = (b - x) * (b - x);
- return divident / divisor2;
- }
- return 0;
- }
- /** {@inheritDoc} */
- @Override
- public double inverseCumulativeProbability(double p) {
- ArgumentUtils.checkProbability(p);
- if (p == 0) {
- return a;
- }
- if (p == 1) {
- return b;
- }
- if (p < cdfMode) {
- return a + Math.sqrt(p * divisor1);
- }
- return b - Math.sqrt((1 - p) * divisor2);
- }
- /** {@inheritDoc} */
- @Override
- public double inverseSurvivalProbability(double p) {
- // By symmetry:
- ArgumentUtils.checkProbability(p);
- if (p == 1) {
- return a;
- }
- if (p == 0) {
- return b;
- }
- if (p >= sfMode) {
- return a + Math.sqrt((1 - p) * divisor1);
- }
- return b - Math.sqrt(p * divisor2);
- }
- /**
- * {@inheritDoc}
- *
- * <p>For lower limit \( a \), upper limit \( b \), and mode \( c \),
- * the mean is \( (a + b + c) / 3 \).
- */
- @Override
- public double getMean() {
- return (a + b + c) / 3;
- }
- /**
- * {@inheritDoc}
- *
- * <p>For lower limit \( a \), upper limit \( b \), and mode \( c \),
- * the variance is \( (a^2 + b^2 + c^2 - ab - ac - bc) / 18 \).
- */
- @Override
- public double getVariance() {
- return (a * a + b * b + c * c - a * b - a * c - b * c) / 18;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The lower bound of the support is equal to the lower limit parameter
- * {@code a} of the distribution.
- */
- @Override
- public double getSupportLowerBound() {
- return a;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The upper bound of the support is equal to the upper limit parameter
- * {@code b} of the distribution.
- */
- @Override
- public double getSupportUpperBound() {
- return b;
- }
- }