UniformContinuousDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.distribution;
- import org.apache.commons.rng.UniformRandomProvider;
- import org.apache.commons.rng.sampling.distribution.ContinuousUniformSampler;
- /**
- * Implementation of the uniform distribution.
- *
- * <p>The probability density function of \( X \) is:
- *
- * <p>\[ f(x; a, b) = \frac{1}{b-a} \]
- *
- * <p>for \( -\infty \lt a \lt b \lt \infty \) and
- * \( x \in [a, b] \).
- *
- * @see <a href="https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)">
- * Uniform distribution (Wikipedia)</a>
- * @see <a href="https://mathworld.wolfram.com/UniformDistribution.html">
- * Uniform distribution (MathWorld)</a>
- */
- public final class UniformContinuousDistribution extends AbstractContinuousDistribution {
- /** Lower bound of this distribution (inclusive). */
- private final double lower;
- /** Upper bound of this distribution (exclusive). */
- private final double upper;
- /** Range between the upper and lower bound of this distribution (cached for computations). */
- private final double upperMinusLower;
- /** Cache of the density. */
- private final double pdf;
- /** Cache of the log density. */
- private final double logPdf;
- /**
- * @param lower Lower bound of this distribution (inclusive).
- * @param upper Upper bound of this distribution (inclusive).
- */
- private UniformContinuousDistribution(double lower,
- double upper) {
- this.lower = lower;
- this.upper = upper;
- upperMinusLower = upper - lower;
- pdf = 1.0 / upperMinusLower;
- logPdf = -Math.log(upperMinusLower);
- }
- /**
- * Creates a uniform continuous distribution.
- *
- * @param lower Lower bound of this distribution (inclusive).
- * @param upper Upper bound of this distribution (inclusive).
- * @return the distribution
- * @throws IllegalArgumentException if {@code lower >= upper} or the range between the bounds
- * is not finite
- */
- public static UniformContinuousDistribution of(double lower,
- double upper) {
- if (lower >= upper) {
- throw new DistributionException(DistributionException.INVALID_RANGE_LOW_GTE_HIGH,
- lower, upper);
- }
- if (!Double.isFinite(upper - lower)) {
- throw new DistributionException("Range %s is not finite", upper - lower);
- }
- return new UniformContinuousDistribution(lower, upper);
- }
- /** {@inheritDoc} */
- @Override
- public double density(double x) {
- if (x < lower ||
- x > upper) {
- return 0;
- }
- return pdf;
- }
- /** {@inheritDoc} */
- @Override
- public double probability(double x0,
- double x1) {
- if (x0 > x1) {
- throw new DistributionException(DistributionException.INVALID_RANGE_LOW_GT_HIGH, x0, x1);
- }
- if (x0 >= upper || x1 <= lower) {
- // (x0, x1] does not overlap [lower, upper]
- return 0;
- }
- // x0 < upper
- // x1 >= lower
- // Find the range between x0 and x1 that is within [lower, upper].
- final double l = Math.max(lower, x0);
- final double u = Math.min(upper, x1);
- return (u - l) / upperMinusLower;
- }
- /** {@inheritDoc} */
- @Override
- public double logDensity(double x) {
- if (x < lower ||
- x > upper) {
- return Double.NEGATIVE_INFINITY;
- }
- return logPdf;
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(double x) {
- if (x <= lower) {
- return 0;
- }
- if (x >= upper) {
- return 1;
- }
- return (x - lower) / upperMinusLower;
- }
- /** {@inheritDoc} */
- @Override
- public double survivalProbability(double x) {
- if (x <= lower) {
- return 1;
- }
- if (x >= upper) {
- return 0;
- }
- return (upper - x) / upperMinusLower;
- }
- /** {@inheritDoc} */
- @Override
- public double inverseCumulativeProbability(double p) {
- ArgumentUtils.checkProbability(p);
- // Avoid floating-point error for lower + p * (upper - lower) when p == 1.
- return p == 1 ? upper : p * upperMinusLower + lower;
- }
- /** {@inheritDoc} */
- @Override
- public double inverseSurvivalProbability(double p) {
- ArgumentUtils.checkProbability(p);
- // Avoid floating-point error for upper - p * (upper - lower) when p == 1.
- return p == 1 ? lower : upper - p * upperMinusLower;
- }
- /**
- * {@inheritDoc}
- *
- * <p>For lower bound \( a \) and upper bound \( b \), the mean is \( \frac{1}{2} (a + b) \).
- */
- @Override
- public double getMean() {
- // Avoid overflow
- return 0.5 * lower + 0.5 * upper;
- }
- /**
- * {@inheritDoc}
- *
- * <p>For lower bound \( a \) and upper bound \( b \), the variance is \( \frac{1}{12} (b - a)^2 \).
- */
- @Override
- public double getVariance() {
- return upperMinusLower * upperMinusLower / 12;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The lower bound of the support is equal to the lower bound parameter
- * of the distribution.
- */
- @Override
- public double getSupportLowerBound() {
- return lower;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The upper bound of the support is equal to the upper bound parameter
- * of the distribution.
- */
- @Override
- public double getSupportUpperBound() {
- return upper;
- }
- /** {@inheritDoc} */
- @Override
- public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) {
- // Uniform distribution sampler.
- return ContinuousUniformSampler.of(rng, lower, upper)::sample;
- }
- }