UniformDiscreteDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.distribution;
- import org.apache.commons.rng.UniformRandomProvider;
- import org.apache.commons.rng.sampling.distribution.DiscreteUniformSampler;
- /**
- * Implementation of the uniform discrete distribution.
- *
- * <p>The probability mass function of \( X \) is:
- *
- * <p>\[ f(k; a, b) = \frac{1}{b-a+1} \]
- *
- * <p>for integer \( a, b \) and \( a \le b \) and
- * \( k \in [a, b] \).
- *
- * @see <a href="https://en.wikipedia.org/wiki/Uniform_distribution_(discrete)">
- * Uniform distribution (discrete) (Wikipedia)</a>
- * @see <a href="https://mathworld.wolfram.com/DiscreteUniformDistribution.html">
- * Discrete uniform distribution (MathWorld)</a>
- */
- public final class UniformDiscreteDistribution extends AbstractDiscreteDistribution {
- /** Lower bound (inclusive) of this distribution. */
- private final int lower;
- /** Upper bound (inclusive) of this distribution. */
- private final int upper;
- /** "upper" - "lower" + 1 (as a double to avoid overflow). */
- private final double upperMinusLowerPlus1;
- /** Cache of the probability. */
- private final double pmf;
- /** Cache of the log probability. */
- private final double logPmf;
- /** Value of survival probability for x=0. Used in the inverse survival function. */
- private final double sf0;
- /**
- * @param lower Lower bound (inclusive) of this distribution.
- * @param upper Upper bound (inclusive) of this distribution.
- */
- private UniformDiscreteDistribution(int lower,
- int upper) {
- this.lower = lower;
- this.upper = upper;
- upperMinusLowerPlus1 = (double) upper - lower + 1;
- pmf = 1.0 / upperMinusLowerPlus1;
- logPmf = -Math.log(upperMinusLowerPlus1);
- sf0 = (upperMinusLowerPlus1 - 1) / upperMinusLowerPlus1;
- }
- /**
- * Creates a new uniform discrete distribution.
- *
- * @param lower Lower bound (inclusive) of this distribution.
- * @param upper Upper bound (inclusive) of this distribution.
- * @return the distribution
- * @throws IllegalArgumentException if {@code lower > upper}.
- */
- public static UniformDiscreteDistribution of(int lower,
- int upper) {
- if (lower > upper) {
- throw new DistributionException(DistributionException.INVALID_RANGE_LOW_GT_HIGH,
- lower, upper);
- }
- return new UniformDiscreteDistribution(lower, upper);
- }
- /** {@inheritDoc} */
- @Override
- public double probability(int x) {
- if (x < lower || x > upper) {
- return 0;
- }
- return pmf;
- }
- /** {@inheritDoc} */
- @Override
- public double probability(int x0,
- int x1) {
- if (x0 > x1) {
- throw new DistributionException(DistributionException.INVALID_RANGE_LOW_GT_HIGH, x0, x1);
- }
- if (x0 >= upper || x1 < lower) {
- // (x0, x1] does not overlap [lower, upper]
- return 0;
- }
- // x0 < upper
- // x1 >= lower
- // Find the range between x0 (exclusive) and x1 (inclusive) within [lower, upper].
- // In the case of x0 < lower set l so that u - l == (u - lower) + 1
- // long arithmetic prevents overflow
- final long l = Math.max(lower - 1L, x0);
- final long u = Math.min(upper, x1);
- return (u - l) / upperMinusLowerPlus1;
- }
- /** {@inheritDoc} */
- @Override
- public double logProbability(int x) {
- if (x < lower || x > upper) {
- return Double.NEGATIVE_INFINITY;
- }
- return logPmf;
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(int x) {
- if (x <= lower) {
- // Note: CDF(x=0) = PDF(x=0)
- return x == lower ? pmf : 0;
- }
- if (x >= upper) {
- return 1;
- }
- return ((double) x - lower + 1) / upperMinusLowerPlus1;
- }
- /** {@inheritDoc} */
- @Override
- public double survivalProbability(int x) {
- if (x <= lower) {
- // Note: SF(x=0) = 1 - PDF(x=0)
- // Use a pre-computed value to avoid cancellation when probabilityOfSuccess -> 0
- return x == lower ? sf0 : 1;
- }
- if (x >= upper) {
- return 0;
- }
- return ((double) upper - x) / upperMinusLowerPlus1;
- }
- /** {@inheritDoc} */
- @Override
- public int inverseCumulativeProbability(double p) {
- ArgumentUtils.checkProbability(p);
- if (p > sf0) {
- return upper;
- }
- if (p <= pmf) {
- return lower;
- }
- // p in ( pmf , sf0 ]
- // p in ( 1 / {u-l+1} , {u-l} / {u-l+1} ]
- // x in ( l , u-1 ]
- int x = (int) (lower + Math.ceil(p * upperMinusLowerPlus1) - 1);
- // Correct rounding errors.
- // This ensures x == icdf(cdf(x))
- // Note: Directly computing the CDF(x-1) avoids integer overflow if x=min_value
- if (((double) x - lower) / upperMinusLowerPlus1 >= p) {
- // No check for x > lower: cdf(x=lower) = 0 and thus is below p
- // cdf(x-1) >= p
- x--;
- } else if (((double) x - lower + 1) / upperMinusLowerPlus1 < p) {
- // No check for x < upper: cdf(x=upper) = 1 and thus is above p
- // cdf(x) < p
- x++;
- }
- return x;
- }
- /** {@inheritDoc} */
- @Override
- public int inverseSurvivalProbability(final double p) {
- ArgumentUtils.checkProbability(p);
- if (p < pmf) {
- return upper;
- }
- if (p >= sf0) {
- return lower;
- }
- // p in [ pmf , sf0 )
- // p in [ 1 / {u-l+1} , {u-l} / {u-l+1} )
- // x in [ u-1 , l )
- int x = (int) (upper - Math.floor(p * upperMinusLowerPlus1));
- // Correct rounding errors.
- // This ensures x == isf(sf(x))
- // Note: Directly computing the SF(x-1) avoids integer overflow if x=min_value
- if (((double) upper - x + 1) / upperMinusLowerPlus1 <= p) {
- // No check for x > lower: sf(x=lower) = 1 and thus is above p
- // sf(x-1) <= p
- x--;
- } else if (((double) upper - x) / upperMinusLowerPlus1 > p) {
- // No check for x < upper: sf(x=upper) = 0 and thus is below p
- // sf(x) > p
- x++;
- }
- return x;
- }
- /**
- * {@inheritDoc}
- *
- * <p>For lower bound \( a \) and upper bound \( b \), the mean is \( \frac{1}{2} (a + b) \).
- */
- @Override
- public double getMean() {
- // Avoid overflow
- return 0.5 * ((double) upper + lower);
- }
- /**
- * {@inheritDoc}
- *
- * <p>For lower bound \( a \) and upper bound \( b \), the variance is:
- *
- * <p>\[ \frac{1}{12} (n^2 - 1) \]
- *
- * <p>where \( n = b - a + 1 \).
- */
- @Override
- public double getVariance() {
- return (upperMinusLowerPlus1 * upperMinusLowerPlus1 - 1) / 12;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The lower bound of the support is equal to the lower bound parameter
- * of the distribution.
- */
- @Override
- public int getSupportLowerBound() {
- return lower;
- }
- /**
- * {@inheritDoc}
- *
- * <p>The upper bound of the support is equal to the upper bound parameter
- * of the distribution.
- */
- @Override
- public int getSupportUpperBound() {
- return upper;
- }
- /** {@inheritDoc} */
- @Override
- public DiscreteDistribution.Sampler createSampler(final UniformRandomProvider rng) {
- // Discrete uniform distribution sampler.
- return DiscreteUniformSampler.of(rng, lower, upper)::sample;
- }
- }