BinomialTest.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.inference;
- import java.util.Objects;
- import org.apache.commons.statistics.distribution.BinomialDistribution;
- /**
- * Implements binomial test statistics.
- *
- * <p>Performs an exact test for the statistical significance of deviations from a
- * theoretically expected distribution of observations into two categories.
- *
- * @see <a href="http://en.wikipedia.org/wiki/Binomial_test">Binomial test (Wikipedia)</a>
- * @since 1.1
- */
- public final class BinomialTest {
- /** Default instance. */
- private static final BinomialTest DEFAULT = new BinomialTest(AlternativeHypothesis.TWO_SIDED);
- /** Alternative hypothesis. */
- private final AlternativeHypothesis alternative;
- /**
- * @param alternative Alternative hypothesis.
- */
- private BinomialTest(AlternativeHypothesis alternative) {
- this.alternative = alternative;
- }
- /**
- * Return an instance using the default options.
- *
- * <ul>
- * <li>{@link AlternativeHypothesis#TWO_SIDED}
- * </ul>
- *
- * @return default instance
- */
- public static BinomialTest withDefaults() {
- return DEFAULT;
- }
- /**
- * Return an instance with the configured alternative hypothesis.
- *
- * @param v Value.
- * @return an instance
- */
- public BinomialTest with(AlternativeHypothesis v) {
- return new BinomialTest(Objects.requireNonNull(v));
- }
- /**
- * Performs a binomial test about the probability of success \( \pi \).
- *
- * <p>The null hypothesis is \( H_0:\pi=\pi_0 \) where \( \pi_0 \) is between 0 and 1.
- *
- * <p>The probability of observing \( k \) successes from \( n \) trials with a given
- * probability of success \( p \) is:
- *
- * <p>\[ \Pr(X=k)=\binom{n}{k}p^k(1-p)^{n-k} \]
- *
- * <p>The test is defined by the {@link AlternativeHypothesis}.
- *
- * <p>To test \( \pi < \pi_0 \) (less than):
- *
- * <p>\[ p = \sum_{i=0}^k\Pr(X=i)=\sum_{i=0}^k\binom{n}{i}\pi_0^i(1-\pi_0)^{n-i} \]
- *
- * <p>To test \( \pi > \pi_0 \) (greater than):
- *
- * <p>\[ p = \sum_{i=0}^k\Pr(X=i)=\sum_{i=k}^n\binom{n}{i}\pi_0^i(1-\pi_0)^{n-i} \]
- *
- * <p>To test \( \pi \ne \pi_0 \) (two-sided) requires finding all \( i \) such that
- * \( \mathcal{I}=\{i:\Pr(X=i)\leq \Pr(X=k)\} \) and compute the sum:
- *
- * <p>\[ p = \sum_{i\in\mathcal{I}}\Pr(X=i)=\sum_{i\in\mathcal{I}}\binom{n}{i}\pi_0^i(1-\pi_0)^{n-i} \]
- *
- * <p>The two-sided p-value represents the likelihood of getting a result at least as
- * extreme as the sample, given the provided {@code probability} of success on a
- * single trial.
- *
- * <p>The test statistic is equal to the estimated proportion \( \frac{k}{n} \).
- *
- * @param numberOfTrials Number of trials performed.
- * @param numberOfSuccesses Number of successes observed.
- * @param probability Assumed probability of a single trial under the null
- * hypothesis.
- * @return test result
- * @throws IllegalArgumentException if {@code numberOfTrials} or
- * {@code numberOfSuccesses} is negative; {@code probability} is not between 0
- * and 1; or if {@code numberOfTrials < numberOfSuccesses}
- * @see #with(AlternativeHypothesis)
- */
- public SignificanceResult test(int numberOfTrials, int numberOfSuccesses, double probability) {
- // Note: The distribution validates number of trials and probability.
- // Here we only have to validate the number of successes.
- Arguments.checkNonNegative(numberOfSuccesses);
- if (numberOfTrials < numberOfSuccesses) {
- throw new InferenceException(
- "must have n >= k for binomial coefficient (n, k), got n = %d, k = %d",
- numberOfSuccesses, numberOfTrials);
- }
- final BinomialDistribution distribution = BinomialDistribution.of(numberOfTrials, probability);
- final double p;
- if (alternative == AlternativeHypothesis.GREATER_THAN) {
- p = distribution.survivalProbability(numberOfSuccesses - 1);
- } else if (alternative == AlternativeHypothesis.LESS_THAN) {
- p = distribution.cumulativeProbability(numberOfSuccesses);
- } else {
- p = twoSidedBinomialTest(numberOfTrials, numberOfSuccesses, probability, distribution);
- }
- return new BaseSignificanceResult((double) numberOfSuccesses / numberOfTrials, p);
- }
- /**
- * Returns the <i>observed significance level</i>, or p-value, associated with a
- * two-sided binomial test about the probability of success \( \pi \).
- *
- * @param n Number of trials performed.
- * @param k Number of successes observed.
- * @param probability Assumed probability of a single trial under the null
- * hypothesis.
- * @param distribution Binomial distribution.
- * @return p-value
- */
- private static double twoSidedBinomialTest(int n, int k, double probability,
- BinomialDistribution distribution) {
- // Find all i where Pr(X = i) <= Pr(X = k) and sum them.
- // Exploit the known unimodal distribution to increase the
- // search speed. Note the search depends only on magnitude differences.
- // The current BinomialDistribution is faster using log probability
- // as it omits a call to Math.exp.
- // Use the mode as the point of largest probability.
- // The lower or upper mode is important for the search below.
- final int m1 = (int) Math.ceil((n + 1.0) * probability) - 1;
- final int m2 = (int) Math.floor((n + 1.0) * probability);
- if (k < m1) {
- final double pk = distribution.logProbability(k);
- // Lower half = cdf(k)
- // Find upper half. As k < lower mode i should never
- // reach the lower mode based on the probability alone.
- // Bracket with the upper mode.
- final int i = Searches.searchDescending(m2, n, pk, distribution::logProbability);
- return distribution.cumulativeProbability(k) +
- distribution.survivalProbability(i - 1);
- } else if (k > m2) {
- final double pk = distribution.logProbability(k);
- // Upper half = sf(k - 1)
- // Find lower half. As k > upper mode i should never
- // reach the upper mode based on the probability alone.
- // Bracket with the lower mode.
- final int i = Searches.searchAscending(0, m1, pk, distribution::logProbability);
- return distribution.cumulativeProbability(i) +
- distribution.survivalProbability(k - 1);
- }
- // k == mode
- // Edge case where the sum of probabilities will be either
- // 1 or 1 - Pr(X = mode) where mode != k
- final double pk = distribution.probability(k);
- final double pm = distribution.probability(k == m1 ? m2 : m1);
- return pm > pk ? 1 - pm : 1;
- }
- }