TTest.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.inference;
- import java.util.EnumSet;
- import java.util.Objects;
- import org.apache.commons.statistics.descriptive.DoubleStatistics;
- import org.apache.commons.statistics.descriptive.Statistic;
- import org.apache.commons.statistics.distribution.TDistribution;
- /**
- * Implements Student's t-test statistics.
- *
- * <p>Tests can be:
- * <ul>
- * <li>One-sample or two-sample
- * <li>One-sided or two-sided
- * <li>Paired or unpaired (for two-sample tests)
- * <li>Homoscedastic (equal variance assumption) or heteroscedastic (for two sample tests)
- * </ul>
- *
- * <p>Input to tests can be either {@code double[]} arrays or the mean, variance, and size
- * of the sample.
- *
- * @see <a href="https://en.wikipedia.org/wiki/Student%27s_t-test">Student's t-test (Wikipedia)</a>
- * @since 1.1
- */
- public final class TTest {
- /** Default instance. */
- private static final TTest DEFAULT = new TTest(AlternativeHypothesis.TWO_SIDED, false, 0);
- /** Alternative hypothesis. */
- private final AlternativeHypothesis alternative;
- /** Assume the two samples have the same population variance. */
- private final boolean equalVariances;
- /** The true value of the mean (or difference in means for a two sample test). */
- private final double mu;
- /**
- * Result for the t-test.
- *
- * <p>This class is immutable.
- */
- public static final class Result extends BaseSignificanceResult {
- /** Degrees of freedom. */
- private final double degreesOfFreedom;
- /**
- * Create an instance.
- *
- * @param statistic Test statistic.
- * @param degreesOfFreedom Degrees of freedom.
- * @param p Result p-value.
- */
- Result(double statistic, double degreesOfFreedom, double p) {
- super(statistic, p);
- this.degreesOfFreedom = degreesOfFreedom;
- }
- /**
- * Gets the degrees of freedom.
- *
- * @return the degrees of freedom
- */
- public double getDegreesOfFreedom() {
- return degreesOfFreedom;
- }
- }
- /**
- * @param alternative Alternative hypothesis.
- * @param equalVariances Assume the two samples have the same population variance.
- * @param mu true value of the mean (or difference in means for a two sample test).
- */
- private TTest(AlternativeHypothesis alternative, boolean equalVariances, double mu) {
- this.alternative = alternative;
- this.equalVariances = equalVariances;
- this.mu = mu;
- }
- /**
- * Return an instance using the default options.
- *
- * <ul>
- * <li>{@link AlternativeHypothesis#TWO_SIDED}
- * <li>{@link DataDispersion#HETEROSCEDASTIC}
- * <li>{@linkplain #withMu(double) mu = 0}
- * </ul>
- *
- * @return default instance
- */
- public static TTest withDefaults() {
- return DEFAULT;
- }
- /**
- * Return an instance with the configured alternative hypothesis.
- *
- * @param v Value.
- * @return an instance
- */
- public TTest with(AlternativeHypothesis v) {
- return new TTest(Objects.requireNonNull(v), equalVariances, mu);
- }
- /**
- * Return an instance with the configured assumption on the data dispersion.
- *
- * <p>Applies to the two-sample independent t-test.
- * The statistic can compare the means without the assumption of equal
- * sub-population variances (heteroscedastic); otherwise the means are compared
- * under the assumption of equal sub-population variances (homoscedastic).
- *
- * @param v Value.
- * @return an instance
- * @see #test(double[], double[])
- * @see #test(double, double, long, double, double, long)
- */
- public TTest with(DataDispersion v) {
- return new TTest(alternative, Objects.requireNonNull(v) == DataDispersion.HOMOSCEDASTIC, mu);
- }
- /**
- * Return an instance with the configured {@code mu}.
- *
- * <p>For the one-sample test this is the expected mean.
- *
- * <p>For the two-sample test this is the expected difference between the means.
- *
- * @param v Value.
- * @return an instance
- * @throws IllegalArgumentException if the value is not finite
- */
- public TTest withMu(double v) {
- return new TTest(alternative, equalVariances, Arguments.checkFinite(v));
- }
- /**
- * Computes a one-sample t statistic comparing the mean of the dataset to {@code mu}.
- *
- * <p>The returned t-statistic is:
- *
- * <p>\[ t = \frac{m - \mu}{ \sqrt{ \frac{v}{n} } } \]
- *
- * @param m Sample mean.
- * @param v Sample variance.
- * @param n Sample size.
- * @return t statistic
- * @throws IllegalArgumentException if the number of samples is {@code < 2}; or the
- * variance is negative
- * @see #withMu(double)
- */
- public double statistic(double m, double v, long n) {
- Arguments.checkNonNegative(v);
- checkSampleSize(n);
- return computeT(m - mu, v, n);
- }
- /**
- * Computes a one-sample t statistic comparing the mean of the sample to {@code mu}.
- *
- * @param x Sample values.
- * @return t statistic
- * @throws IllegalArgumentException if the number of samples is {@code < 2}
- * @see #statistic(double, double, long)
- * @see #withMu(double)
- */
- public double statistic(double[] x) {
- final long n = checkSampleSize(x.length);
- final DoubleStatistics s = DoubleStatistics.of(
- EnumSet.of(Statistic.MEAN, Statistic.VARIANCE), x);
- final double m = s.getAsDouble(Statistic.MEAN);
- final double v = s.getAsDouble(Statistic.VARIANCE);
- return computeT(m - mu, v, n);
- }
- /**
- * Computes a paired two-sample t-statistic on related samples comparing the mean difference
- * between the samples to {@code mu}.
- *
- * <p>The t-statistic returned is functionally equivalent to what would be returned by computing
- * the one-sample t-statistic {@link #statistic(double[])}, with
- * the sample array consisting of the (signed) differences between corresponding
- * entries in {@code x} and {@code y}.
- *
- * @param x First sample values.
- * @param y Second sample values.
- * @return t statistic
- * @throws IllegalArgumentException if the number of samples is {@code < 2}; or the
- * the size of the samples is not equal
- * @see #withMu(double)
- */
- public double pairedStatistic(double[] x, double[] y) {
- final long n = checkSampleSize(x.length);
- final double m = StatisticUtils.meanDifference(x, y);
- final double v = StatisticUtils.varianceDifference(x, y, m);
- return computeT(m - mu, v, n);
- }
- /**
- * Computes a two-sample t statistic on independent samples comparing the difference in means
- * of the datasets to {@code mu}.
- *
- * <p>Use the {@link DataDispersion} to control the computation of the variance.
- *
- * <p>The heteroscedastic t-statistic is:
- *
- * <p>\[ t = \frac{m1 - m2 - \mu}{ \sqrt{ \frac{v_1}{n_1} + \frac{v_2}{n_2} } } \]
- *
- * <p>The homoscedastic t-statistic is:
- *
- * <p>\[ t = \frac{m1 - m2 - \mu}{ \sqrt{ v (\frac{1}{n_1} + \frac{1}{n_2}) } } \]
- *
- * <p>where \( v \) is the pooled variance estimate:
- *
- * <p>\[ v = \frac{(n_1-1)v_1 + (n_2-1)v_2}{n_1 + n_2 - 2} \]
- *
- * @param m1 First sample mean.
- * @param v1 First sample variance.
- * @param n1 First sample size.
- * @param m2 Second sample mean.
- * @param v2 Second sample variance.
- * @param n2 Second sample size.
- * @return t statistic
- * @throws IllegalArgumentException if the number of samples in either dataset is
- * {@code < 2}; or the variances are negative.
- * @see #withMu(double)
- * @see #with(DataDispersion)
- */
- public double statistic(double m1, double v1, long n1,
- double m2, double v2, long n2) {
- Arguments.checkNonNegative(v1);
- Arguments.checkNonNegative(v2);
- checkSampleSize(n1);
- checkSampleSize(n2);
- return equalVariances ?
- computeHomoscedasticT(mu, m1, v1, n1, m2, v2, n2) :
- computeT(mu, m1, v1, n1, m2, v2, n2);
- }
- /**
- * Computes a two-sample t statistic on independent samples comparing the difference
- * in means of the samples to {@code mu}.
- *
- * <p>Use the {@link DataDispersion} to control the computation of the variance.
- *
- * @param x First sample values.
- * @param y Second sample values.
- * @return t statistic
- * @throws IllegalArgumentException if the number of samples in either dataset is {@code < 2}
- * @see #withMu(double)
- * @see #with(DataDispersion)
- */
- public double statistic(double[] x, double[] y) {
- final long n1 = checkSampleSize(x.length);
- final long n2 = checkSampleSize(y.length);
- final DoubleStatistics.Builder b = DoubleStatistics.builder(Statistic.MEAN, Statistic.VARIANCE);
- final DoubleStatistics s1 = b.build(x);
- final double m1 = s1.getAsDouble(Statistic.MEAN);
- final double v1 = s1.getAsDouble(Statistic.VARIANCE);
- final DoubleStatistics s2 = b.build(y);
- final double m2 = s2.getAsDouble(Statistic.MEAN);
- final double v2 = s2.getAsDouble(Statistic.VARIANCE);
- return equalVariances ?
- computeHomoscedasticT(mu, m1, v1, n1, m2, v2, n2) :
- computeT(mu, m1, v1, n1, m2, v2, n2);
- }
- /**
- * Perform a one-sample t-test comparing the mean of the dataset to {@code mu}.
- *
- * <p>Degrees of freedom are \( v = n - 1 \).
- *
- * @param m Sample mean.
- * @param v Sample variance.
- * @param n Sample size.
- * @return test result
- * @throws IllegalArgumentException if the number of samples is {@code < 2}; or the
- * variance is negative
- * @see #statistic(double, double, long)
- */
- public Result test(double m, double v, long n) {
- final double t = statistic(m, v, n);
- final double df = n - 1.0;
- final double p = computeP(t, df);
- return new Result(t, df, p);
- }
- /**
- * Performs a one-sample t-test comparing the mean of the sample to {@code mu}.
- *
- * <p>Degrees of freedom are \( v = n - 1 \).
- *
- * @param sample Sample values.
- * @return the test result
- * @throws IllegalArgumentException if the number of samples is {@code < 2}; or the
- * the size of the samples is not equal
- * @see #statistic(double[])
- */
- public Result test(double[] sample) {
- final double t = statistic(sample);
- final double df = sample.length - 1.0;
- final double p = computeP(t, df);
- return new Result(t, df, p);
- }
- /**
- * Performs a paired two-sample t-test on related samples comparing the mean difference between
- * the samples to {@code mu}.
- *
- * <p>The test is functionally equivalent to what would be returned by computing
- * the one-sample t-test {@link #test(double[])}, with
- * the sample array consisting of the (signed) differences between corresponding
- * entries in {@code x} and {@code y}.
- *
- * @param x First sample values.
- * @param y Second sample values.
- * @return the test result
- * @throws IllegalArgumentException if the number of samples is {@code < 2}; or the
- * the size of the samples is not equal
- * @see #pairedStatistic(double[], double[])
- */
- public Result pairedTest(double[] x, double[] y) {
- final double t = pairedStatistic(x, y);
- final double df = x.length - 1.0;
- final double p = computeP(t, df);
- return new Result(t, df, p);
- }
- /**
- * Performs a two-sample t-test on independent samples comparing the difference in means of the
- * datasets to {@code mu}.
- *
- * <p>Use the {@link DataDispersion} to control the computation of the variance.
- *
- * <p>The heteroscedastic degrees of freedom are estimated using the
- * Welch-Satterthwaite approximation:
- *
- * <p>\[ v = \frac{ (\frac{v_1}{n_1} + \frac{v_2}{n_2})^2 }
- * { \frac{(v_1/n_1)^2}{n_1-1} + \frac{(v_2/n_2)^2}{n_2-1} } \]
- *
- * <p>The homoscedastic degrees of freedom are \( v = n_1 + n_2 - 2 \).
- *
- * @param m1 First sample mean.
- * @param v1 First sample variance.
- * @param n1 First sample size.
- * @param m2 Second sample mean.
- * @param v2 Second sample variance.
- * @param n2 Second sample size.
- * @return test result
- * @throws IllegalArgumentException if the number of samples in either dataset is
- * {@code < 2}; or the variances are negative.
- * @see #statistic(double, double, long, double, double, long)
- */
- public Result test(double m1, double v1, long n1,
- double m2, double v2, long n2) {
- final double t = statistic(m1, v1, n1, m2, v2, n2);
- final double df = equalVariances ?
- -2.0 + n1 + n2 :
- computeDf(v1, n1, v2, n2);
- final double p = computeP(t, df);
- return new Result(t, df, p);
- }
- /**
- * Performs a two-sample t-test on independent samples comparing the difference in means of
- * the samples to {@code mu}.
- *
- * <p>Use the {@link DataDispersion} to control the computation of the variance.
- *
- * @param x First sample values.
- * @param y Second sample values.
- * @return the test result
- * @throws IllegalArgumentException if the number of samples in either dataset
- * is {@code < 2}
- * @see #statistic(double[], double[])
- * @see #test(double, double, long, double, double, long)
- */
- public Result test(double[] x, double[] y) {
- // Here we do not call statistic(double[], double[]) because the degreesOfFreedom
- // requires the variance. So repeat the computation and compute p.
- final long n1 = checkSampleSize(x.length);
- final long n2 = checkSampleSize(y.length);
- final DoubleStatistics.Builder b = DoubleStatistics.builder(Statistic.MEAN, Statistic.VARIANCE);
- final DoubleStatistics s1 = b.build(x);
- final double m1 = s1.getAsDouble(Statistic.MEAN);
- final double v1 = s1.getAsDouble(Statistic.VARIANCE);
- final DoubleStatistics s2 = b.build(y);
- final double m2 = s2.getAsDouble(Statistic.MEAN);
- final double v2 = s2.getAsDouble(Statistic.VARIANCE);
- final double t;
- final double df;
- if (equalVariances) {
- t = computeHomoscedasticT(mu, m1, v1, n1, m2, v2, n2);
- df = -2.0 + n1 + n2;
- } else {
- t = computeT(mu, m1, v1, n1, m2, v2, n2);
- df = computeDf(v1, n1, v2, n2);
- }
- final double p = computeP(t, df);
- return new Result(t, df, p);
- }
- /**
- * Computes t statistic for one-sample t-test.
- *
- * @param m Sample mean.
- * @param v Sample variance.
- * @param n Sample size.
- * @return t test statistic
- */
- private static double computeT(double m, double v, long n) {
- return m / Math.sqrt(v / n);
- }
- /**
- * Computes t statistic for two-sample t-test without the assumption of equal
- * samples sizes or sub-population variances.
- *
- * @param mu Expected difference between means.
- * @param m1 First sample mean.
- * @param v1 First sample variance.
- * @param n1 First sample size.
- * @param m2 Second sample mean.
- * @param v2 Second sample variance.
- * @param n2 Second sample size.
- * @return t test statistic
- */
- private static double computeT(double mu,
- double m1, double v1, long n1,
- double m2, double v2, long n2) {
- return (m1 - m2 - mu) / Math.sqrt((v1 / n1) + (v2 / n2));
- }
- /**
- * Computes approximate degrees of freedom for two-sample t-test without the
- * assumption of equal samples sizes or sub-population variances.
- *
- * @param v1 First sample variance.
- * @param n1 First sample size.
- * @param v2 Second sample variance.
- * @param n2 Second sample size.
- * @return approximate degrees of freedom
- */
- private static double computeDf(double v1, long n1,
- double v2, long n2) {
- // Sample sizes are specified as a double to avoid integer overflow
- final double d1 = n1;
- final double d2 = n2;
- return (((v1 / d1) + (v2 / d2)) * ((v1 / d1) + (v2 / d2))) /
- ((v1 * v1) / (d1 * d1 * (n1 - 1)) + (v2 * v2) / (d2 * d2 * (n2 - 1)));
- }
- /**
- * Computes t statistic for two-sample t-test under the hypothesis of equal
- * sub-population variances.
- *
- * @param mu Expected difference between means.
- * @param m1 First sample mean.
- * @param v1 First sample variance.
- * @param n1 First sample size.
- * @param m2 Second sample mean.
- * @param v2 Second sample variance.
- * @param n2 Second sample size.
- * @return t test statistic
- */
- private static double computeHomoscedasticT(double mu,
- double m1, double v1, long n1,
- double m2, double v2, long n2) {
- final double pooledVariance = ((n1 - 1) * v1 + (n2 - 1) * v2) / (-2.0 + n1 + n2);
- return (m1 - m2 - mu) / Math.sqrt(pooledVariance * (1.0 / n1 + 1.0 / n2));
- }
- /**
- * Computes p-value for the specified t statistic.
- *
- * @param t T statistic.
- * @param degreesOfFreedom Degrees of freedom.
- * @return p-value for t-test
- */
- private double computeP(double t, double degreesOfFreedom) {
- if (alternative == AlternativeHypothesis.LESS_THAN) {
- return TDistribution.of(degreesOfFreedom).cumulativeProbability(t);
- }
- if (alternative == AlternativeHypothesis.GREATER_THAN) {
- return TDistribution.of(degreesOfFreedom).survivalProbability(t);
- }
- // two-sided
- return 2.0 * TDistribution.of(degreesOfFreedom).survivalProbability(Math.abs(t));
- }
- /**
- * Check sample data size.
- *
- * @param n Data size.
- * @return the sample size
- * @throws IllegalArgumentException if the number of samples {@code < 2}
- */
- private static long checkSampleSize(long n) {
- if (n <= 1) {
- throw new InferenceException(InferenceException.TWO_VALUES_REQUIRED, n);
- }
- return n;
- }
- }