KolmogorovSmirnovDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.inference;
- import java.util.Arrays;
- import org.apache.commons.numbers.combinatorics.Factorial;
- import org.apache.commons.numbers.combinatorics.LogFactorial;
- import org.apache.commons.numbers.core.DD;
- import org.apache.commons.numbers.core.DDMath;
- import org.apache.commons.numbers.core.Sum;
- import org.apache.commons.statistics.inference.SquareMatrixSupport.RealSquareMatrix;
- /**
- * Computes the complementary probability for the one-sample Kolmogorov-Smirnov distribution.
- *
- * @since 1.1
- */
- final class KolmogorovSmirnovDistribution {
- /** pi^2. */
- private static final double PI2 = 9.8696044010893586188344909;
- /** sqrt(2*pi). */
- private static final double ROOT_TWO_PI = 2.5066282746310005024157652;
- /** Value of x when the KS sum is 0.5. */
- private static final double X_KS_HALF = 0.8275735551899077;
- /** Value of x when the KS sum is 1.0. */
- private static final double X_KS_ONE = 0.1754243674345323;
- /** Machine epsilon, 2^-52. */
- private static final double EPS = 0x1.0p-52;
- /** No instances. */
- private KolmogorovSmirnovDistribution() {}
- /**
- * Computes the complementary probability {@code P[D_n >= x]}, or survival function (SF),
- * for the two-sided one-sample Kolmogorov-Smirnov distribution.
- *
- * <pre>
- * D_n = sup_x |F(x) - CDF_n(x)|
- * </pre>
- *
- * <p>where {@code n} is the sample size; {@code CDF_n(x)} is an empirical
- * cumulative distribution function; and {@code F(x)} is the expected
- * distribution.
- *
- * <p>
- * References:
- * <ol>
- * <li>Simard, R., & L’Ecuyer, P. (2011).
- * <a href="https://doi.org/10.18637/jss.v039.i11">Computing the Two-Sided Kolmogorov-Smirnov Distribution.</a>
- * Journal of Statistical Software, 39(11), 1–18.
- * <li>
- * Marsaglia, G., Tsang, W. W., & Wang, J. (2003).
- * <a href="https://doi.org/10.18637/jss.v008.i18">Evaluating Kolmogorov's Distribution.</a>
- * Journal of Statistical Software, 8(18), 1–4.
- * </ol>
- *
- * <p>Note that [2] contains an error in computing h, refer to <a
- * href="https://issues.apache.org/jira/browse/MATH-437">MATH-437</a> for details.
- *
- * @since 1.1
- */
- static final class Two {
- /** pi^2. */
- private static final double PI2 = 9.8696044010893586188344909;
- /** pi^4. */
- private static final double PI4 = 97.409091034002437236440332;
- /** pi^6. */
- private static final double PI6 = 961.38919357530443703021944;
- /** sqrt(2*pi). */
- private static final double ROOT_TWO_PI = 2.5066282746310005024157652;
- /** sqrt(pi/2). */
- private static final double ROOT_HALF_PI = 1.2533141373155002512078826;
- /** Threshold for Pelz-Good where the 1 - CDF == 1.
- * Occurs when sqrt(2pi/z) exp(-pi^2 / (8 z^2)) is far below 2^-53.
- * Threshold set at exp(-pi^2 / (8 z^2)) = 2^-80. */
- private static final double LOG_PG_MIN = -55.451774444795625;
- /** Factor 4a in the quadratic equation to solve max k: log(2^-52) * 8. */
- private static final double FOUR_A = -288.3492271129372;
- /** The scaling threshold in the MTW algorithm. Marsaglia used 1e-140. This uses 2^-400 ~ 3.87e-121. */
- private static final double MTW_SCALE_THRESHOLD = 0x1.0p-400;
- /** The up-scaling factor in the MTW algorithm. Marsaglia used 1e140. This uses 2^400 ~ 2.58e120. */
- private static final double MTW_UP_SCALE = 0x1.0p400;
- /** The power-of-2 of the up-scaling factor in the MTW algorithm, n if the up-scale factor is 2^n. */
- private static final int MTW_UP_SCALE_POWER = 400;
- /** The scaling threshold in the Pomeranz algorithm. */
- private static final double P_DOWN_SCALE = 0x1.0p-128;
- /** The up-scaling factor in the Pomeranz algorithm. */
- private static final double P_UP_SCALE = 0x1.0p128;
- /** The power-of-2 of the up-scaling factor in the Pomeranz algorithm, n if the up-scale factor is 2^n. */
- private static final int P_SCALE_POWER = 128;
- /** Maximum finite factorial. */
- private static final int MAX_FACTORIAL = 170;
- /** Approximate threshold for ln(MIN_NORMAL). */
- private static final int LOG_MIN_NORMAL = -708;
- /** 140, n threshold for small n for the sf computation.*/
- private static final int N140 = 140;
- /** 0.754693, nxx threshold for small n Durbin matrix sf computation. */
- private static final double NXX_0_754693 = 0.754693;
- /** 4, nxx threshold for small n Pomeranz sf computation. */
- private static final int NXX_4 = 4;
- /** 2.2, nxx threshold for large n Miller approximation sf computation. */
- private static final double NXX_2_2 = 2.2;
- /** 100000, n threshold for large n Durbin matrix sf computation. */
- private static final int N_100000 = 100000;
- /** 1.4, nx^(3/2) threshold for large n Durbin matrix sf computation. */
- private static final double NX32_1_4 = 1.4;
- /** 1/2. */
- private static final double HALF = 0.5;
- /** No instances. */
- private Two() {}
- /**
- * Calculates complementary probability {@code P[D_n >= x]} for the two-sided
- * one-sample Kolmogorov-Smirnov distribution.
- *
- * @param x Statistic.
- * @param n Sample size (assumed to be positive).
- * @return \(P(D_n ≥ x)\)
- */
- static double sf(double x, int n) {
- final double p = sfExact(x, n);
- if (p >= 0) {
- return p;
- }
- // The computation is divided based on the x-n plane.
- final double nxx = n * x * x;
- if (n <= N140) {
- // 10 decimal digits of precision
- // nx^2 < 4 use 1 - CDF(x).
- if (nxx < NXX_0_754693) {
- // Durbin matrix (MTW)
- return 1 - durbinMTW(x, n);
- }
- if (nxx < NXX_4) {
- // Pomeranz
- return 1 - pomeranz(x, n);
- }
- // Miller approximation: 2 * one-sided D+ computation
- return 2 * One.sf(x, n);
- }
- // n > 140
- if (nxx >= NXX_2_2) {
- // 6 decimal digits of precision
- // Miller approximation: 2 * one-sided D+ computation
- return 2 * One.sf(x, n);
- }
- // nx^2 < 2.2 use 1 - CDF(x).
- // 5 decimal digits of precision (for n < 200000)
- // nx^1.5 <= 1.4
- if (n <= N_100000 && n * Math.pow(x, 1.5) < NX32_1_4) {
- // Durbin matrix (MTW)
- return 1 - durbinMTW(x, n);
- }
- // Pelz-Good, algorithm modified to sum negative terms from 1 for the SF.
- // (precision increases with n)
- return pelzGood(x, n);
- }
- /**
- * Calculates exact cases for the complementary probability
- * {@code P[D_n >= x]} the two-sided one-sample Kolmogorov-Smirnov distribution.
- *
- * <p>Exact cases handle x not in [0, 1]. It is assumed n is positive.
- *
- * @param x Statistic.
- * @param n Sample size (assumed to be positive).
- * @return \(P(D_n ≥ x)\)
- */
- private static double sfExact(double x, int n) {
- if (n * x * x >= 370 || x >= 1) {
- // p would underflow, or x is out of the domain
- return 0;
- }
- final double nx = x * n;
- if (nx <= 1) {
- // x <= 1/(2n)
- if (nx <= HALF) {
- // Also detects x <= 0 (iff n is positive)
- return 1;
- }
- if (n == 1) {
- // Simplification of:
- // 1 - (n! (2x - 1/n)^n) == 1 - (2x - 1)
- return 2.0 - 2.0 * x;
- }
- // 1/(2n) < x <= 1/n
- // 1 - (n! (2x - 1/n)^n)
- final double f = 2 * x - 1.0 / n;
- // Switch threshold where (2x - 1/n)^n is sub-normal
- // Max factorial threshold is n=170
- final double logf = Math.log(f);
- if (n <= MAX_FACTORIAL && n * logf > LOG_MIN_NORMAL) {
- return 1 - Factorial.doubleValue(n) * Math.pow(f, n);
- }
- return -Math.expm1(LogFactorial.create().value(n) + n * logf);
- }
- // 1 - 1/n <= x < 1
- if (n - 1 <= nx) {
- // 2 * (1-x)^n
- return 2 * Math.pow(1 - x, n);
- }
- return -1;
- }
- /**
- * Computes the Durbin matrix approximation for {@code P(D_n < d)} using the method
- * of Marsaglia, Tsang and Wang (2003).
- *
- * @param x Statistic.
- * @param n Sample size (assumed to be positive).
- * @return \(P(D_n < x)\)
- */
- private static double durbinMTW(double x, int n) {
- final int k = (int) Math.ceil(n * x);
- final RealSquareMatrix h = createH(x, n).power(n);
- // Use scaling as per Marsaglia's code to avoid underflow.
- double pFrac = h.get(k - 1, k - 1);
- int scale = h.scale();
- // Omit i == n as this is a no-op
- for (int i = 1; i < n; ++i) {
- pFrac *= (double) i / n;
- if (pFrac < MTW_SCALE_THRESHOLD) {
- pFrac *= MTW_UP_SCALE;
- scale -= MTW_UP_SCALE_POWER;
- }
- }
- // Return the CDF
- return clipProbability(Math.scalb(pFrac, scale));
- }
- /***
- * Creates {@code H} of size {@code m x m} as described in [1].
- *
- * @param x Statistic.
- * @param n Sample size (assumed to be positive).
- * @return H matrix
- */
- private static RealSquareMatrix createH(double x, int n) {
- // MATH-437:
- // This is *not* (int) (n * x) + 1.
- // This is only ever called when 1/n < x < 1 - 1/n.
- // => h cannot be >= 1 when using ceil. h can be 0 if nx is integral.
- final int k = (int) Math.ceil(n * x);
- final double h = k - n * x;
- final int m = 2 * k - 1;
- final double[] data = new double[m * m];
- // Start by filling everything with either 0 or 1.
- for (int i = 0; i < m; ++i) {
- // h[i][j] = i - j + 1 < 0 ? 0 : 1
- // => h[i][j<=i+1] = 1
- final int jend = Math.min(m - 1, i + 1);
- for (int j = i * m; j <= i * m + jend; j++) {
- data[j] = 1;
- }
- }
- // Setting up power-array to avoid calculating the same value twice:
- // hp[0] = h^1, ..., hp[m-1] = h^m
- final double[] hp = new double[m];
- hp[0] = h;
- for (int i = 1; i < m; ++i) {
- // Avoid compound rounding errors using h * hp[i - 1]
- // with Math.pow as it is within 1 ulp of the exact result
- hp[i] = Math.pow(h, i + 1);
- }
- // First column and last row has special values (each other reversed).
- for (int i = 0; i < m; ++i) {
- data[i * m] -= hp[i];
- data[(m - 1) * m + i] -= hp[m - i - 1];
- }
- // [1] states: "For 1/2 < h < 1 the bottom left element of the matrix should be
- // (1 - 2*h^m + (2h - 1)^m )/m!"
- if (2 * h - 1 > 0) {
- data[(m - 1) * m] += Math.pow(2 * h - 1, m);
- }
- // Aside from the first column and last row, the (i, j)-th element is 1/(i - j + 1)! if i -
- // j + 1 >= 0, else 0. 1's and 0's are already put, so only division with (i - j + 1)! is
- // needed in the elements that have 1's. Note that i - j + 1 > 0 <=> i + 1 > j instead of
- // j'ing all the way to m. Also note that we can use pre-computed factorials given
- // the limits where this method is called.
- for (int i = 0; i < m; ++i) {
- final int im = i * m;
- for (int j = 0; j < i + 1; ++j) {
- // Here (i - j + 1 > 0)
- // Divide by (i - j + 1)!
- // Note: This method is used when:
- // n <= 140; nxx < 0.754693
- // n <= 100000; n x^1.5 < 1.4
- // max m ~ 2nx ~ (1.4/1e5)^(2/3) * 2e5 = 116
- // Use a tabulated factorial
- data[im + j] /= Factorial.doubleValue(i - j + 1);
- }
- }
- return SquareMatrixSupport.create(m, data);
- }
- /**
- * Computes the Pomeranz approximation for {@code P(D_n < d)} using the method
- * as described in Simard and L’Ecuyer (2011).
- *
- * <p>Modifications have been made to the scaling of the intermediate values.
- *
- * @param x Statistic.
- * @param n Sample size (assumed to be positive).
- * @return \(P(D_n < x)\)
- */
- private static double pomeranz(double x, int n) {
- final double t = n * x;
- // Store floor(A-t) and ceil(A+t). This does not require computing A.
- final int[] amt = new int[2 * n + 3];
- final int[] apt = new int[2 * n + 3];
- computeA(n, t, amt, apt);
- // Precompute ((A[i] - A[i-1])/n)^(j-k) / (j-k)!
- // A[i] - A[i-1] has 4 possible values (based on multiples of A2)
- // A1 - A0 = 0 - 0 = 0
- // A2 - A1 = A2 - 0 = A2
- // A3 - A2 = (1 - A2) - A2 = 1 - 2 * A2
- // A4 - A3 = (A2 + 1) - (1 - A2) = 2 * A2
- // A5 - A4 = (1 - A2 + 1) - (A2 + 1) = 1 - 2 * A2
- // A6 - A5 = (A2 + 1 + 1) - (1 - A2 + 1) = 2 * A2
- // A7 - A6 = (1 - A2 + 1 + 1) - (A2 + 1 + 1) = 1 - 2 * A2
- // A8 - A7 = (A2 + 1 + 1 + 1) - (1 - A2 + 1 + 1) = 2 * A2
- // ...
- // Ai - Ai-1 = ((i-1)/2 - A2) - (A2 + (i-2)/2) = 1 - 2 * A2 ; i = odd
- // Ai - Ai-1 = (A2 + (i-1)/2) - ((i-2)/2 - A2) = 2 * A2 ; i = even
- // ...
- // A2n+2 - A2n+1 = n - (n - A2) = A2
- // ap[][j - k] = ((A[i] - A[i-1])/n)^(j-k) / (j-k)!
- // for each case: A[i] - A[i-1] in [A2, 1 - 2 * A2, 2 * A2]
- // Ignore case 0 as this is not used. Factors are ap[0] = 1, else 0.
- // If A2==0.5 then this is computed as a no-op due to multiplication by zero.
- final int n2 = n + 2;
- final double[][] ap = new double[3][n2];
- final double a2 = Math.min(t - Math.floor(t), Math.ceil(t) - t);
- computeAP(ap[0], a2 / n);
- computeAP(ap[1], (1 - 2 * a2) / n);
- computeAP(ap[2], (2 * a2) / n);
- // Current and previous V
- double[] vc = new double[n2];
- double[] vp = new double[n2];
- // Count of re-scaling
- int scale = 0;
- // V_1,1 = 1
- vc[1] = 1;
- for (int i = 2; i <= 2 * n + 2; i++) {
- final double[] v = vc;
- vc = vp;
- vp = v;
- // This is useful for following current values of vc
- Arrays.fill(vc, 0);
- // Select (A[i] - A[i-1]) factor
- final double[] p;
- if (i == 2 || i == 2 * n + 2) {
- // First or last
- p = ap[0];
- } else {
- // odd: [1] 1 - 2 * 2A
- // even: [2] 2 * A2
- p = ap[2 - (i & 1)];
- }
- // Set limits.
- // j is the ultimate bound for k and should be in [1, n+1]
- final int jmin = Math.max(1, amt[i] + 2);
- final int jmax = Math.min(n + 1, apt[i]);
- final int k1 = Math.max(1, amt[i - 1] + 2);
- // All numbers will reduce in size.
- // Maintain the largest close to 1.0.
- // This is a change from Simard and L’Ecuyer which scaled based on the smallest.
- double max = 0;
- for (int j = jmin; j <= jmax; j++) {
- final int k2 = Math.min(j, apt[i - 1]);
- // Accurate sum.
- // vp[high] is smaller
- // p[high] is smaller
- // Sum ascending has smaller products first.
- double sum = 0;
- for (int k = k1; k <= k2; k++) {
- sum += vp[k] * p[j - k];
- }
- vc[j] = sum;
- if (max < sum) {
- // Note: max *may* always be the first sum: vc[jmin]
- max = sum;
- }
- }
- // Rescale if too small
- if (max < P_DOWN_SCALE) {
- // Only scale in current range from V
- for (int j = jmin; j <= jmax; j++) {
- vc[j] *= P_UP_SCALE;
- }
- scale -= P_SCALE_POWER;
- }
- }
- // F_n(x) = n! V_{2n+2,n+1}
- double v = vc[n + 1];
- // This method is used when n < 140 where all n! are finite.
- // v is below 1 so we can directly compute the result without using logs.
- v *= Factorial.doubleValue(n);
- // Return the CDF (rescaling as required)
- return Math.scalb(v, scale);
- }
- /**
- * Compute the power factors.
- * <pre>
- * factor[j] = z^j / j!
- * </pre>
- *
- * @param p Power factors.
- * @param z (A[i] - A[i-1]) / n
- */
- private static void computeAP(double[] p, double z) {
- // Note z^0 / 0! = 1 for any z
- p[0] = 1;
- p[1] = z;
- for (int j = 2; j < p.length; j++) {
- // Only used when n <= 140 and can use the tabulated values of n!
- // This avoids using recursion: p[j] = z * p[j-1] / j.
- // Direct computation more closely agrees with the recursion using BigDecimal
- // with 200 digits of precision.
- p[j] = Math.pow(z, j) / Factorial.doubleValue(j);
- }
- }
- /**
- * Compute the factors floor(A-t) and ceil(A+t).
- * Arrays should have length 2n+3.
- *
- * @param n Sample size.
- * @param t Statistic x multiplied by n.
- * @param amt floor(A-t)
- * @param apt ceil(A+t)
- */
- // package-private for testing
- static void computeA(int n, double t, int[] amt, int[] apt) {
- final int l = (int) Math.floor(t);
- final double f = t - l;
- final int limit = 2 * n + 2;
- // 3-cases
- if (f > HALF) {
- // Case (iii): 1/2 < f < 1
- // for i = 1, 2, ...
- for (int j = 2; j <= limit; j += 2) {
- final int i = j >>> 1;
- amt[j] = i - 2 - l;
- apt[j] = i + l;
- }
- // for i = 0, 1, 2, ...
- for (int j = 1; j <= limit; j += 2) {
- final int i = j >>> 1;
- amt[j] = i - 1 - l;
- apt[j] = i + 1 + l;
- }
- } else if (f > 0) {
- // Case (ii): 0 < f <= 1/2
- amt[1] = -l - 1;
- apt[1] = l + 1;
- // for i = 1, 2, ...
- for (int j = 2; j <= limit; j++) {
- final int i = j >>> 1;
- amt[j] = i - 1 - l;
- apt[j] = i + l;
- }
- } else {
- // Case (i): f = 0
- // for i = 1, 2, ...
- for (int j = 2; j <= limit; j += 2) {
- final int i = j >>> 1;
- amt[j] = i - 1 - l;
- apt[j] = i - 1 + l;
- }
- // for i = 0, 1, 2, ...
- for (int j = 1; j <= limit; j += 2) {
- final int i = j >>> 1;
- amt[j] = i - l;
- apt[j] = i + l;
- }
- }
- }
- /**
- * Computes the Pelz-Good approximation for {@code P(D_n >= d)} as described in
- * Simard and L’Ecuyer (2011).
- *
- * <p>This has been modified to compute the complementary CDF by subtracting the
- * terms k0, k1, k2, k3 from 1. For use in computing the CDF the method should
- * be updated to return the sum of k0 ... k3.
- *
- * @param x Statistic.
- * @param n Sample size (assumed to be positive).
- * @return \(P(D_n ≥ x)\)
- * @throws ArithmeticException if the series does not converge
- */
- // package-private for testing
- static double pelzGood(double x, int n) {
- // Change the variable to z since approximation is for the distribution evaluated at d / sqrt(n)
- final double z2 = x * x * n;
- double lne = -PI2 / (8 * z2);
- // Final result is ~ (1 - K0) ~ 1 - sqrt(2pi/z) exp(-pi^2 / (8 z^2))
- // Do not compute when the exp value is far below eps.
- if (lne < LOG_PG_MIN) {
- // z ~ sqrt(-pi^2/(8*min)) ~ 0.1491
- return 1;
- }
- // Note that summing K1, ..., K3 over all k with factor
- // (k + 1/2) is equivalent to summing over all k with
- // 2 (k - 1/2) / 2 == (2k - 1) / 2
- // This is the form for K0.
- // Compute all together over odd integers and divide factors
- // of (k + 1/2)^b by 2^b.
- double k0 = 0;
- double k1 = 0;
- double k2 = 0;
- double k3 = 0;
- final double rootN = Math.sqrt(n);
- final double z = x * rootN;
- final double z3 = z * z2;
- final double z4 = z2 * z2;
- final double z6 = Math.pow(z2, 3);
- final double z7 = Math.pow(z2, 3.5);
- final double z8 = Math.pow(z2, 4);
- final double z10 = Math.pow(z2, 5);
- final double a1 = PI2 / 4;
- final double a2 = 6 * z6 + 2 * z4;
- final double b2 = (PI2 * (2 * z4 - 5 * z2)) / 4;
- final double c2 = (PI4 * (1 - 2 * z2)) / 16;
- final double a3 = (PI6 * (5 - 30 * z2)) / 64;
- final double b3 = (PI4 * (-60 * z2 + 212 * z4)) / 16;
- final double c3 = (PI2 * (135 * z4 - 96 * z6)) / 4;
- final double d3 = -(30 * z6 + 90 * z8);
- // Iterate j=(2k - 1) for k=1, 2, ...
- // Terms reduce in size. Stop when:
- // exp(-pi^2 / 8z^2) * eps = exp((2k-1)^2 * -pi^2 / 8z^2)
- // (2k-1)^2 = 1 - log(eps) * 8z^2 / pi^2
- // 0 = k^2 - k + log(eps) * 2z^2 / pi^2
- // Solve using quadratic equation and eps = ulp(1.0): 4a ~ -288
- final int max = (int) Math.ceil((1 + Math.sqrt(1 - FOUR_A * z2 / PI2)) / 2);
- // Sum smallest terms first
- for (int k = max; k > 0; k--) {
- final int j = 2 * k - 1;
- // Create (2k-1)^2; (2k-1)^4; (2k-1)^6
- final double j2 = (double) j * j;
- final double j4 = Math.pow(j, 4);
- final double j6 = Math.pow(j, 6);
- // exp(-pi^2 * (2k-1)^2 / 8z^2)
- final double e = Math.exp(lne * j2);
- k0 += e;
- k1 += (a1 * j2 - z2) * e;
- k2 += (a2 + b2 * j2 + c2 * j4) * e;
- k3 += (a3 * j6 + b3 * j4 + c3 * j2 + d3) * e;
- }
- k0 *= ROOT_TWO_PI / z;
- // Factors are halved as the sum is for k in -inf to +inf
- k1 *= ROOT_HALF_PI / (3 * z4);
- k2 *= ROOT_HALF_PI / (36 * z7);
- k3 *= ROOT_HALF_PI / (3240 * z10);
- // Compute additional K2,K3 terms
- double k2b = 0;
- double k3b = 0;
- // -pi^2 / (2z^2)
- lne *= 4;
- final double a3b = 3 * PI2 * z2;
- // Iterate for j=1, 2, ...
- // Note: Here max = sqrt(1 - FOUR_A z^2 / (4 pi^2)).
- // This is marginally smaller so we reuse the same value.
- for (int j = max; j > 0; j--) {
- final double j2 = (double) j * j;
- final double j4 = Math.pow(j, 4);
- // exp(-pi^2 * k^2 / 2z^2)
- final double e = Math.exp(lne * j2);
- k2b += PI2 * j2 * e;
- k3b += (-PI4 * j4 + a3b * j2) * e;
- }
- // Factors are halved as the sum is for k in -inf to +inf
- k2b *= ROOT_HALF_PI / (18 * z3);
- k3b *= ROOT_HALF_PI / (108 * z6);
- // Series: K0(z) + K1(z)/n^0.5 + K2(z)/n + K3(z)/n^1.5 + O(1/n^2)
- k1 /= rootN;
- k2 /= n;
- k3 /= n * rootN;
- k2b /= n;
- k3b /= n * rootN;
- // Return (1 - CDF) with an extended precision sum in order of descending magnitude
- return clipProbability(Sum.of(1, -k0, -k1, -k2, -k3, +k2b, -k3b).getAsDouble());
- }
- }
- /**
- * Computes the complementary probability {@code P[D_n^+ >= x]} for the one-sided
- * one-sample Kolmogorov-Smirnov distribution.
- *
- * <pre>
- * D_n^+ = sup_x {CDF_n(x) - F(x)}
- * </pre>
- *
- * <p>where {@code n} is the sample size; {@code CDF_n(x)} is an empirical
- * cumulative distribution function; and {@code F(x)} is the expected
- * distribution. The computation uses Smirnov's stable formula:
- *
- * <pre>
- * floor(n(1-x)) (n) ( j ) (j-1) ( j ) (n-j)
- * P[D_n^+ >= x] = x Sum ( ) ( - + x ) ( 1 - x - - )
- * j=0 (j) ( n ) ( n )
- * </pre>
- *
- * <p>Computing using logs is not as accurate as direct multiplication when n is large.
- * However the terms are very large and small. Multiplication uses a scaled representation
- * with a separate exponent term to support the extreme range. Extended precision
- * representation of the numbers reduces the error in the power terms. Details in
- * van Mulbregt (2018).
- *
- * <p>
- * References:
- * <ol>
- * <li>
- * van Mulbregt, P. (2018).
- * <a href="https://doi.org/10.48550/arxiv.1802.06966">Computing the Cumulative Distribution Function and Quantiles of the One-sided Kolmogorov-Smirnov Statistic</a>
- * arxiv:1802.06966.
- * <li>Magg & Dicaire (1971).
- * <a href="https://doi.org/10.1093/biomet/58.3.653">On Kolmogorov-Smirnov Type One-Sample Statistics</a>
- * Biometrika 58.3 pp. 653–656.
- * </ol>
- *
- * @since 1.1
- */
- static final class One {
- /** "Very large" n to use a asymptotic limiting form.
- * [1] suggests 1e12 but this is reduced to avoid excess
- * computation time. */
- private static final int VERY_LARGE_N = 1000000;
- /** Maximum number of term for the Smirnov-Dwass algorithm. */
- private static final int SD_MAX_TERMS = 3;
- /** Minimum sample size for the Smirnov-Dwass algorithm. */
- private static final int SD_MIN_N = 8;
- /** Number of bits of precision in the sum of terms Aj.
- * This does not have to be the full 106 bits of a double-double as the final result
- * is used as a double. The terms are represented as fractions with an exponent:
- * <pre>
- * Aj = 2^b * f
- * f of sum(A) in [0.5, 1)
- * f of Aj in [0.25, 2]
- * </pre>
- * <p>The terms can be added if their exponents overlap. The bits of precision must
- * account for the extra range of the fractional part of Aj by 1 bit. Note that
- * additional bits are added to this dynamically based on the number of terms. */
- private static final int SUM_PRECISION_BITS = 53;
- /** Number of bits of precision in the sum of terms Aj.
- * For Smirnov-Dwass we use the full 106 bits of a double-double due to the summation
- * of terms that cancel. Account for the extra range of the fractional part of Aj by 1 bit. */
- private static final int SD_SUM_PRECISION_BITS = 107;
- /** Proxy for the default choice of the scaled power function.
- * The actual choice is based on the chosen algorithm. */
- private static final ScaledPower POWER_DEFAULT = null;
- /**
- * Defines a scaled power function.
- * Package-private to allow the main sf method to be called direct in testing.
- */
- interface ScaledPower {
- /**
- * Compute the number {@code x} raised to the power {@code n}.
- *
- * <p>The value is returned as fractional {@code f} and integral
- * {@code 2^exp} components.
- * <pre>
- * (x+xx)^n = (f+ff) * 2^exp
- * </pre>
- *
- * @param x x.
- * @param n Power.
- * @param exp Result power of two scale factor (integral exponent).
- * @return Fraction part.
- * @see DD#frexp(int[])
- * @see DD#pow(int, long[])
- * @see DDMath#pow(DD, int, long[])
- */
- DD pow(DD x, int n, long[] exp);
- }
- /** No instances. */
- private One() {}
- /**
- * Calculates complementary probability {@code P[D_n^+ >= x]}, or survival
- * function (SF), for the one-sided one-sample Kolmogorov-Smirnov distribution.
- *
- * @param x Statistic.
- * @param n Sample size (assumed to be positive).
- * @return \(P(D_n^+ ≥ x)\)
- */
- static double sf(double x, int n) {
- final double p = sfExact(x, n);
- if (p >= 0) {
- return p;
- }
- // Note: This is not referring to N = floor(n*x).
- // Here n is the sample size and a suggested limit 10^12 is noted on pp.15 in [1].
- // This uses a lower threshold where the full computation takes ~ 1 second.
- if (n > VERY_LARGE_N) {
- return sfAsymptotic(x, n);
- }
- return sf(x, n, POWER_DEFAULT);
- }
- /**
- * Calculates exact cases for the complementary probability
- * {@code P[D_n^+ >= x]} the one-sided one-sample Kolmogorov-Smirnov distribution.
- *
- * <p>Exact cases handle x not in [0, 1]. It is assumed n is positive.
- *
- * @param x Statistic.
- * @param n Sample size (assumed to be positive).
- * @return \(P(D_n^+ ≥ x)\)
- */
- private static double sfExact(double x, int n) {
- if (n * x * x >= 372.5 || x >= 1) {
- // p would underflow, or x is out of the domain
- return 0;
- }
- if (x <= 0) {
- // edge-of, or out-of, the domain
- return 1;
- }
- if (n == 1) {
- return x;
- }
- // x <= 1/n
- // [1] Equation (33)
- final double nx = n * x;
- if (nx <= 1) {
- // 1 - x (1+x)^(n-1): here x may be small so use log1p
- return 1 - x * Math.exp((n - 1) * Math.log1p(x));
- }
- // 1 - 1/n <= x < 1
- // [1] Equation (16)
- if (n - 1 <= nx) {
- // (1-x)^n: here x > 0.5 and 1-x is exact
- return Math.pow(1 - x, n);
- }
- return -1;
- }
- /**
- * Calculates complementary probability {@code P[D_n^+ >= x]}, or survival
- * function (SF), for the one-sided one-sample Kolmogorov-Smirnov distribution.
- *
- * <p>Computes the result using the asymptotic formula Eq 5 in [1].
- *
- * @param x Statistic.
- * @param n Sample size (assumed to be positive).
- * @return \(P(D_n^+ ≥ x)\)
- */
- private static double sfAsymptotic(double x, int n) {
- // Magg & Dicaire (1971) limiting form
- return Math.exp(-Math.pow(6.0 * n * x + 1, 2) / (18.0 * n));
- }
- /**
- * Calculates complementary probability {@code P[D_n^+ >= x]}, or survival
- * function (SF), for the one-sided one-sample Kolmogorov-Smirnov distribution.
- *
- * <p>Computes the result using double-double arithmetic. The power function
- * can use a fast approximation or a full power computation.
- *
- * <p>This function is safe for {@code x > 1/n}. When {@code x} approaches
- * sub-normal then division or multiplication by x can under/overflow. The
- * case of {@code x < 1/n} can be computed in {@code sfExact}.
- *
- * @param x Statistic (typically in (1/n, 1 - 1/n)).
- * @param n Sample size (assumed to be positive).
- * @param power Function to compute the scaled power (can be null).
- * @return \(P(D_n^+ ≥ x)\)
- * @see DD#pow(int, long[])
- * @see DDMath#pow(DD, int, long[])
- */
- static double sf(double x, int n, ScaledPower power) {
- // Compute only the SF using Algorithm 1 pp 12.
- // Compute: k = floor(n*x), alpha = nx - k; x = (k+alpha)/n with 0 <= alpha < 1
- final double[] alpha = {0};
- final int k = splitX(n, x, alpha);
- // Choose the algorithm:
- // Eq (13) Smirnov/Birnbaum-Tingey; or Smirnov/Dwass Eq (31)
- // Eq. 13 sums j = 0 : floor( n(1-x) ) = n - 1 - floor(nx) iff alpha != 0; else n - floor(nx)
- // Eq. 31 sums j = ceil( n(1-x) ) : n = n - floor(nx)
- // Drop a term term if x = (n-j)/n. Equates to shifting the floor* down and ceil* up:
- // Eq. 13 N = floor*( n(1-x) ) = n - k - ((alpha!=0) ? 1 : 0) - ((alpha==0) ? 1 : 0)
- // Eq. 31 N = n - ceil*( n(1-x) ) = k - ((alpha==0) ? 1 : 0)
- // Where N is the number of terms - 1. This differs from Algorithm 1 by dropping
- // a SD term when it should be zero (to working precision).
- final int regN = n - k - 1;
- final int sdN = k - ((alpha[0] == 0) ? 1 : 0);
- // SD : Figure 3 (c) (pp. 6)
- // Terms Aj (j = n -> 0) have alternating signs through the range and may involve
- // numbers much bigger than 1 causing cancellation; magnitudes increase then decrease.
- // Section 3.3: Extra digits of precision required
- // grows like Order(sqrt(n)). E.g. sf=0.7 (x ~ 0.4/sqrt(n)) loses 8 digits.
- //
- // Regular : Figure 3 (a, b)
- // Terms Aj can have similar magnitude through the range; when x >= 1/sqrt(n)
- // the final few terms can be magnitudes smaller and could be ignored.
- // Section 3.4: As x increases the magnitude of terms becomes more peaked,
- // centred at j = (n-nx)/2, i.e. 50% of the terms.
- //
- // As n -> inf the sf for x = k/n agrees with the asymptote Eq 5 in log2(n) bits.
- //
- // Figure 4 has lines at x = 1/n and x = 3/sqrt(n).
- // Point between is approximately x = 4/n, i.e. nx < 4 : k <= 3.
- // If faster when x < 0.5 and requiring nx ~ 4 then requires n >= 8.
- //
- // Note: If SD accuracy scales with sqrt(n) then we could use 1 / sqrt(n).
- // That threshold is always above 4 / n when n is 16 (4/n = 1/sqrt(n) : n = 4^2).
- // So the current thresholds are conservative.
- boolean sd = false;
- if (sdN < regN) {
- // Here x < 0.5 and SD has fewer terms
- // Always choose when we only have one additional term (i.e x < 2/n)
- sd = sdN <= 1;
- // Otherwise when x < 4 / n
- sd |= sdN <= SD_MAX_TERMS && n >= SD_MIN_N;
- }
- final int maxN = sd ? sdN : regN;
- // Note: if N > "very large" use the asymptotic approximation.
- // Currently this check is done on n (sample size) in the calling function.
- // This provides a monotonic p-value for all x with the same n.
- // Configure the algorithm.
- // The error of double-double addition and multiplication is low (< 2^-102).
- // The error in Aj is mainly from the power function.
- // fastPow error is around 2^-52, pow error is ~ 2^-70 or lower.
- // Smirnoff-Dwass has a sum of terms that cancel and requires higher precision.
- // The power can optionally be specified.
- final ScaledPower fpow;
- if (power == POWER_DEFAULT) {
- // SD has only a few terms. Use a high accuracy power.
- fpow = sd ? DDMath::pow : DD::pow;
- } else {
- fpow = power;
- }
- // For the regular summation we must sum at least 50% of the terms. The number
- // of required bits to sum remaining terms of the same magnitude is log2(N/2).
- // These guards bits are conservative and > ~99% of terms are typically used.
- final int sumBits = sd ? SD_SUM_PRECISION_BITS : SUM_PRECISION_BITS + log2(maxN >> 1);
- // Working variable for the exponent of scaled values
- final int[] ie = {0};
- final long[] le = {0};
- // The terms Aj may over/underflow.
- // This is handled by maintaining the sum(Aj) using a fractional representation.
- // sum(Aj) maintained as 2^e * f with f in [0.5, 1)
- DD sum;
- long esum;
- // Compute A0
- if (sd) {
- // A0 = (1+x)^(n-1)
- sum = fpow.pow(DD.ofSum(1, x), n - 1, le);
- esum = le[0];
- } else {
- // A0 = (1-x)^n / x
- sum = fpow.pow(DD.ofDifference(1, x), n, le);
- esum = le[0];
- // x in (1/n, 1 - 1/n) so the divide of the fraction is safe
- sum = sum.divide(x).frexp(ie);
- esum += ie[0];
- }
- // Binomial coefficient c(n, j) maintained as 2^e * f with f in [1, 2)
- // This value is integral but maintained to limited precision
- DD c = DD.ONE;
- long ec = 0;
- for (int i = 1; i <= maxN; i++) {
- // c(n, j) = c(n, j-1) * (n-j+1) / j
- c = c.multiply(DD.fromQuotient(n - i + 1, i));
- // Here we maintain c in [1, 2) to restrict the scaled Aj term to [0.25, 2].
- final int b = Math.getExponent(c.hi());
- if (b != 0) {
- c = c.scalb(-b);
- ec += b;
- }
- // Compute Aj
- final int j = sd ? n - i : i;
- // Algorithm 4 pp. 27
- // S = ((j/n) + x)^(j-1)
- // T = ((n-j)/n - x)^(n-j)
- final DD s = fpow.pow(DD.fromQuotient(j, n).add(x), j - 1, le);
- final long es = le[0];
- final DD t = fpow.pow(DD.fromQuotient(n - j, n).subtract(x), n - j, le);
- final long et = le[0];
- // Aj = C(n, j) * T * S
- // = 2^e * [1, 2] * [0.5, 1] * [0.5, 1]
- // = 2^e * [0.25, 2]
- final long eaj = ec + es + et;
- // Only compute and add to the sum when the exponents overlap by n-bits.
- if (eaj > esum - sumBits) {
- DD aj = c.multiply(t).multiply(s);
- // Scaling must offset by the scale of the sum
- aj = aj.scalb((int) (eaj - esum));
- sum = sum.add(aj);
- } else {
- // Terms are expected to increase in magnitude then reduce.
- // Here the terms are insignificant and we can stop.
- // Effectively Aj -> eps * sum, and most of the computation is done.
- break;
- }
- // Re-scale the sum
- sum = sum.frexp(ie);
- esum += ie[0];
- }
- // p = x * sum(Ai). Since the sum is normalised
- // this is safe as long as x does not approach a sub-normal.
- // Typically x in (1/n, 1 - 1/n).
- sum = sum.multiply(x);
- // Rescale the result
- sum = sum.scalb((int) esum);
- if (sd) {
- // SF = 1 - CDF
- sum = sum.negate().add(1);
- }
- return clipProbability(sum.doubleValue());
- }
- /**
- * Compute exactly {@code x = (k + alpha) / n} with {@code k} an integer and
- * {@code alpha in [0, 1)}. Note that {@code k ~ floor(nx)} but may be rounded up
- * if {@code alpha -> 1} within working precision.
- *
- * <p>This computation is a significant source of increased error if performed in
- * 64-bit arithmetic. Although the value alpha is only used for the PDF computation
- * a value of {@code alpha == 0} indicates the final term of the SF summation can be
- * dropped due to the cancellation of a power term {@code (x + j/n)} to zero with
- * {@code x = (n-j)/n}. That is if {@code alpha == 0} then x is the fraction {@code k/n}
- * and one Aj term is zero.
- *
- * @param n Sample size.
- * @param x Statistic.
- * @param alpha Output alpha.
- * @return k
- */
- static int splitX(int n, double x, double[] alpha) {
- // Described on page 14 in van Mulbregt [1].
- // nx = U+V (exact)
- DD z = DD.ofProduct(n, x);
- // Integer part of nx is *almost* the integer part of U.
- // Compute k = floor((U,V)) (changed from the listing of floor(U)).
- int k = (int) z.floor().hi();
- // nx = k + ((U - k) + V) = k + (U1 + V1)
- // alpha = (U1, V1) = z - k
- z = z.subtract(k);
- // alpha is in [0, 1) in double-double precision.
- // Ensure the high part is in [0, 1) (i.e. in double precision).
- if (z.hi() == 1) {
- // Here alpha is ~ 1.0-eps.
- // This occurs when x ~ j/n and n is large.
- k += 1;
- alpha[0] = 0;
- } else {
- alpha[0] = z.hi();
- }
- return k;
- }
- /**
- * Returns {@code floor(log2(n))}.
- *
- * @param n Value.
- * @return approximate log2(n)
- */
- private static int log2(int n) {
- return 31 - Integer.numberOfLeadingZeros(n);
- }
- }
- /**
- * Computes {@code P(sqrt(n) D_n > x)}, the limiting form for the distribution of
- * Kolmogorov's D_n as described in Simard and L’Ecuyer (2011) (Eq. 5, or K0 Eq. 6).
- *
- * <p>Computes \( 2 \sum_{i=1}^\infty (-1)^(i-1) e^{-2 i^2 x^2} \), or
- * \( 1 - (\sqrt{2 \pi} / x) * \sum_{i=1}^\infty { e^{-(2i-1)^2 \pi^2 / (8x^2) } } \)
- * when x is small.
- *
- * <p>Note: This computes the upper Kolmogorov sum.
- *
- * @param x Argument x = sqrt(n) * d
- * @return Upper Kolmogorov sum evaluated at x
- */
- static double ksSum(double x) {
- // Switch computation when p ~ 0.5
- if (x < X_KS_HALF) {
- // When x -> 0 the result is 1
- if (x < X_KS_ONE) {
- return 1;
- }
- // t = exp(-pi^2/8x^2)
- // p = 1 - sqrt(2pi)/x * (t + t^9 + t^25 + t^49 + t^81 + ...)
- // = 1 - sqrt(2pi)/x * t * (1 + t^8 + t^24 + t^48 + t^80 + ...)
- final double logt = -PI2 / (8 * x * x);
- final double t = Math.exp(logt);
- final double s = ROOT_TWO_PI / x;
- final double t8 = Math.pow(t, 8);
- if (t8 < EPS) {
- // Cannot compute 1 + t^8.
- // 1 - sqrt(2pi)/x * exp(-pi^2/8x^2)
- // 1 - exp(log(sqrt(2pi)/x) - pi^2/8x^2)
- return -Math.expm1(Math.log(s) + logt);
- }
- // sum = t^((2i-1)^2 - 1), i=1, 2, 3, 4, 5, ...
- // = 1 + t^8 + t^24 + t^48 + t^80 + ...
- // With x = 0.82757... the smallest terms cannot be added when i==5
- // i.e. t^48 + t^80 == t^48
- // sum = 1 + (t^8 * (1 + t^16 * (1 + t^24)))
- final double sum = 1 + (t8 * (1 + t8 * t8 * (1 + t8 * t8 * t8)));
- return 1 - s * t * sum;
- }
- // t = exp(-2 x^2)
- // p = 2 * (t - t^4 + t^9 - t^16 + ...)
- // sum = -1^(i-1) t^(i^2), i=i, 2, 3, ...
- // Sum of alternating terms of reducing magnitude:
- // Will converge when exp(-2x^2) * eps >= exp(-2x^2)^(i^2)
- // When x = 0.82757... this requires max i==5
- // i.e. t * eps >= t^36 (i=6)
- final double t = Math.exp(-2 * x * x);
- // (t - t^4 + t^9 - t^16 + t^25)
- // t * (1 - t^3 * (1 - t^5 * (1 - t^7 * (1 - t^9))))
- final double t2 = t * t;
- final double t3 = t * t * t;
- final double t4 = t2 * t2;
- final double sum = t * (1 - t3 * (1 - t2 * t3 * (1 - t3 * t4 * (1 - t2 * t3 * t4))));
- return clipProbability(2 * sum);
- }
- /**
- * Clip the probability to the range [0, 1].
- *
- * @param p Probability.
- * @return p in [0, 1]
- */
- static double clipProbability(double p) {
- return Math.min(1, Math.max(0, p));
- }
- }