KolmogorovSmirnovTest.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.inference;
- import java.util.Arrays;
- import java.util.Objects;
- import java.util.function.DoubleSupplier;
- import java.util.function.DoubleUnaryOperator;
- import java.util.function.IntToDoubleFunction;
- import org.apache.commons.numbers.combinatorics.BinomialCoefficientDouble;
- import org.apache.commons.numbers.combinatorics.Factorial;
- import org.apache.commons.numbers.core.ArithmeticUtils;
- import org.apache.commons.numbers.core.Sum;
- import org.apache.commons.rng.UniformRandomProvider;
- /**
- * Implements the Kolmogorov-Smirnov (K-S) test for equality of continuous distributions.
- *
- * <p>The one-sample test uses a D statistic based on the maximum deviation of the empirical
- * distribution of sample data points from the distribution expected under the null hypothesis.
- *
- * <p>The two-sample test uses a D statistic based on the maximum deviation of the two empirical
- * distributions of sample data points. The two-sample tests evaluate the null hypothesis that
- * the two samples {@code x} and {@code y} come from the same underlying distribution.
- *
- * <p>References:
- * <ol>
- * <li>
- * Marsaglia, G., Tsang, W. W., & Wang, J. (2003).
- * <a href="https://doi.org/10.18637/jss.v008.i18">Evaluating Kolmogorov's Distribution.</a>
- * Journal of Statistical Software, 8(18), 1–4.
- * <li>Simard, R., & L’Ecuyer, P. (2011).
- * <a href="https://doi.org/10.18637/jss.v039.i11">Computing the Two-Sided Kolmogorov-Smirnov Distribution.</a>
- * Journal of Statistical Software, 39(11), 1–18.
- * <li>Sekhon, J. S. (2011).
- * <a href="https://doi.org/10.18637/jss.v042.i07">
- * Multivariate and Propensity Score Matching Software with Automated Balance Optimization:
- * The Matching package for R.</a>
- * Journal of Statistical Software, 42(7), 1–52.
- * <li>Viehmann, T (2021).
- * <a href="https://doi.org/10.48550/arXiv.2102.08037">
- * Numerically more stable computation of the p-values for the two-sample Kolmogorov-Smirnov test.</a>
- * arXiv:2102.08037
- * <li>Hodges, J. L. (1958).
- * <a href="https://doi.org/10.1007/BF02589501">
- * The significance probability of the smirnov two-sample test.</a>
- * Arkiv for Matematik, 3(5), 469-486.
- * </ol>
- *
- * <p>Note that [1] contains an error in computing h, refer to <a
- * href="https://issues.apache.org/jira/browse/MATH-437">MATH-437</a> for details.
- *
- * @see <a href="https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test">
- * Kolmogorov-Smirnov (K-S) test (Wikipedia)</a>
- * @since 1.1
- */
- public final class KolmogorovSmirnovTest {
- /** Name for sample 1. */
- private static final String SAMPLE_1_NAME = "Sample 1";
- /** Name for sample 2. */
- private static final String SAMPLE_2_NAME = "Sample 2";
- /** When the largest sample size exceeds this value, 2-sample test AUTO p-value
- * uses an asymptotic distribution to compute the p-value. */
- private static final int LARGE_SAMPLE = 10000;
- /** Maximum finite factorial. */
- private static final int MAX_FACTORIAL = 170;
- /** Maximum length of an array. This is used to determine if two arrays can be concatenated
- * to create a sampler from the joint distribution. The limit is copied from the limit
- * of java.util.ArrayList. */
- private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
- /** The maximum least common multiple (lcm) to attempt the exact p-value computation.
- * The integral d value is in [0, n*m] in steps of the greatest common denominator (gcd),
- * thus lcm = n*m/gcd is the number of possible different p-values.
- * Some methods have a lower limit due to computation limits. This should be larger
- * than LARGE_SAMPLE^2 so all AUTO p-values attempt an exact computation, i.e.
- * at least 10000^2 ~ 2^26.56. */
- private static final long MAX_LCM_TWO_SAMPLE_EXACT_P = 1L << 31;
- /** Placeholder to use for the two-sample sign array when the value can be ignored. */
- private static final int[] IGNORED_SIGN = new int[1];
- /** Placeholder to use for the two-sample ties D array when the value can be ignored. */
- private static final long[] IGNORED_D = new long[2];
- /** Default instance. */
- private static final KolmogorovSmirnovTest DEFAULT = new KolmogorovSmirnovTest(
- AlternativeHypothesis.TWO_SIDED, PValueMethod.AUTO, false, null, 1000);
- /** Alternative hypothesis. */
- private final AlternativeHypothesis alternative;
- /** Method to compute the p-value. */
- private final PValueMethod pValueMethod;
- /** Use a strict inequality for the two-sample exact p-value. */
- private final boolean strictInequality;
- /** Source of randomness. */
- private final UniformRandomProvider rng;
- /** Number of iterations . */
- private final int iterations;
- /**
- * Result for the one-sample Kolmogorov-Smirnov test.
- *
- * <p>This class is immutable.
- *
- * @since 1.1
- */
- public static class OneResult extends BaseSignificanceResult {
- /** Sign of the statistic. */
- private final int sign;
- /**
- * Create an instance.
- *
- * @param statistic Test statistic.
- * @param sign Sign of the statistic.
- * @param p Result p-value.
- */
- OneResult(double statistic, int sign, double p) {
- super(statistic, p);
- this.sign = sign;
- }
- /**
- * Gets the sign of the statistic. This is 1 for \(D^+\) and -1 for \(D^-\).
- * For a two sided-test this is zero if the magnitude of \(D^+\) and \(D^-\) was equal;
- * otherwise the sign indicates the larger of \(D^+\) or \(D^-\).
- *
- * @return the sign
- */
- public int getSign() {
- return sign;
- }
- }
- /**
- * Result for the two-sample Kolmogorov-Smirnov test.
- *
- * <p>This class is immutable.
- *
- * @since 1.1
- */
- public static final class TwoResult extends OneResult {
- /** Flag to indicate there were significant ties.
- * Note that in extreme cases there may be significant ties despite {@code upperD == D}
- * due to rounding when converting the integral statistic to a double. For this
- * reason the presence of ties is stored as a flag. */
- private final boolean significantTies;
- /** Upper bound of the D statistic from all possible paths through regions with ties. */
- private final double upperD;
- /** The p-value of the upper D value. */
- private final double upperP;
- /**
- * Create an instance.
- *
- * @param statistic Test statistic.
- * @param sign Sign of the statistic.
- * @param p Result p-value.
- * @param significantTies Flag to indicate there were significant ties.
- * @param upperD Upper bound of the D statistic from all possible paths through
- * regions with ties.
- * @param upperP The p-value of the upper D value.
- */
- TwoResult(double statistic, int sign, double p, boolean significantTies, double upperD, double upperP) {
- super(statistic, sign, p);
- this.significantTies = significantTies;
- this.upperD = upperD;
- this.upperP = upperP;
- }
- /**
- * {@inheritDoc}
- *
- * <p><strong>Ties</strong>
- *
- * <p>The presence of ties in the data creates a distribution for the D values generated
- * by all possible orderings of the tied regions. This statistic is computed using the
- * path with the <em>minimum</em> effect on the D statistic.
- *
- * <p>For a one-sided statistic \(D^+\) or \(D^-\), this is the lower bound of the D statistic.
- *
- * <p>For a two-sided statistic D, this may be <em>below</em> the lower bound of the
- * distribution of all possible D values. This case occurs when the number of ties
- * is very high and is identified by a {@link #getPValue() p-value} of 1.
- *
- * <p>If the two-sided statistic is zero this only occurs in the presence of ties:
- * either the two arrays are identical, are 'identical' data of a single value
- * (sample sizes may be different), or have a sequence of ties of 'identical' data
- * with a net zero effect on the D statistic, e.g.
- * <pre>
- * [1,2,3] vs [1,2,3]
- * [0,0,0,0] vs [0,0,0]
- * [0,0,0,0,1,1,1,1] vs [0,0,0,1,1,1]
- * </pre>
- */
- @Override
- public double getStatistic() {
- // Note: This method is here for documentation
- return super.getStatistic();
- }
- /**
- * Returns {@code true} if there were ties between samples that occurred
- * in a region which could change the D statistic if the ties were resolved to
- * a defined order.
- *
- * <p>Ties between the data can be interpreted as if the values were different
- * but within machine epsilon. In this case the order within the tie region is not known.
- * If the most extreme ordering of any tied regions (e.g. all tied values of {@code x}
- * before all tied values of {@code y}) could create a larger D statistic this
- * method will return {@code true}.
- *
- * <p>If there were no ties, or all possible orderings of tied regions create the same
- * D statistic, this method returns {@code false}.
- *
- * <p>Note it is possible that this method returns {@code true} when {@code D == upperD}
- * due to rounding when converting the computed D statistic to a double. This will
- * only occur for large sample sizes {@code n} and {@code m} where the product
- * {@code n*m >= 2^53}.
- *
- * @return true if the D statistic could be changed by resolution of ties
- * @see #getUpperD()
- */
- public boolean hasSignificantTies() {
- return significantTies;
- }
- /**
- * Return the upper bound of the D statistic from all possible paths through regions with ties.
- *
- * <p>This will return a value equal to or greater than {@link #getStatistic()}.
- *
- * @return the upper bound of D
- * @see #hasSignificantTies()
- */
- public double getUpperD() {
- return upperD;
- }
- /**
- * Return the p-value of the upper bound of the D statistic.
- *
- * <p>If computed, this will return a value equal to or less than
- * {@link #getPValue() getPValue}. It may be orders of magnitude smaller.
- *
- * <p>Note: This p-value corresponds to the most extreme p-value from all possible
- * orderings of tied regions. It is <strong>not</strong> recommended to use this to
- * reject the null hypothesis. The upper bound of D and the corresponding p-value
- * provide information that must be interpreted in the context of the sample data and
- * used to inform a decision on the suitability of the test to the data.
- *
- * <p>This value is set to {@link Double#NaN NaN} if the {@link #getPValue() p-value} was
- * {@linkplain PValueMethod#ESTIMATE estimated}. The estimated p-value will have been created
- * using a distribution of possible D values given the underlying joint distribution of
- * the sample data. Comparison of the p-value to the upper p-value is not applicable.
- *
- * @return the p-value of the upper bound of D (or NaN)
- * @see #getUpperD()
- */
- public double getUpperPValue() {
- return upperP;
- }
- }
- /**
- * @param alternative Alternative hypothesis.
- * @param method P-value method.
- * @param strict true to use a strict inequality.
- * @param rng Source of randomness.
- * @param iterations Number of iterations.
- */
- private KolmogorovSmirnovTest(AlternativeHypothesis alternative, PValueMethod method, boolean strict,
- UniformRandomProvider rng, int iterations) {
- this.alternative = alternative;
- this.pValueMethod = method;
- this.strictInequality = strict;
- this.rng = rng;
- this.iterations = iterations;
- }
- /**
- * Return an instance using the default options.
- *
- * <ul>
- * <li>{@link AlternativeHypothesis#TWO_SIDED}
- * <li>{@link PValueMethod#AUTO}
- * <li>{@link Inequality#NON_STRICT}
- * <li>{@linkplain #with(UniformRandomProvider) RNG = none}
- * <li>{@linkplain #withIterations(int) Iterations = 1000}
- * </ul>
- *
- * @return default instance
- */
- public static KolmogorovSmirnovTest withDefaults() {
- return DEFAULT;
- }
- /**
- * Return an instance with the configured alternative hypothesis.
- *
- * @param v Value.
- * @return an instance
- */
- public KolmogorovSmirnovTest with(AlternativeHypothesis v) {
- return new KolmogorovSmirnovTest(Objects.requireNonNull(v), pValueMethod, strictInequality, rng, iterations);
- }
- /**
- * Return an instance with the configured p-value method.
- *
- * <p>For the one-sample two-sided test Kolmogorov's asymptotic approximation can be used;
- * otherwise the p-value uses the distribution of the D statistic.
- *
- * <p>For the two-sample test the exact p-value can be computed for small sample sizes;
- * otherwise the p-value resorts to the asymptotic approximation. Alternatively a p-value
- * can be estimated from the combined distribution of the samples. This requires a source
- * of randomness.
- *
- * @param v Value.
- * @return an instance
- * @see #with(UniformRandomProvider)
- */
- public KolmogorovSmirnovTest with(PValueMethod v) {
- return new KolmogorovSmirnovTest(alternative, Objects.requireNonNull(v), strictInequality, rng, iterations);
- }
- /**
- * Return an instance with the configured inequality.
- *
- * <p>Computes the p-value for the two-sample test as \(P(D_{n,m} > d)\) if strict;
- * otherwise \(P(D_{n,m} \ge d)\), where \(D_{n,m}\) is the 2-sample
- * Kolmogorov-Smirnov statistic, either the two-sided \(D_{n,m}\) or one-sided
- * \(D_{n,m}^+\) or \(D_{n,m}^-\).
- *
- * @param v Value.
- * @return an instance
- */
- public KolmogorovSmirnovTest with(Inequality v) {
- return new KolmogorovSmirnovTest(alternative, pValueMethod,
- Objects.requireNonNull(v) == Inequality.STRICT, rng, iterations);
- }
- /**
- * Return an instance with the configured source of randomness.
- *
- * <p>Applies to the two-sample test when the p-value method is set to
- * {@link PValueMethod#ESTIMATE ESTIMATE}. The randomness
- * is used for sampling of the combined distribution.
- *
- * <p>There is no default source of randomness. If the randomness is not
- * set then estimation is not possible and an {@link IllegalStateException} will be
- * raised in the two-sample test.
- *
- * @param v Value.
- * @return an instance
- * @see #with(PValueMethod)
- */
- public KolmogorovSmirnovTest with(UniformRandomProvider v) {
- return new KolmogorovSmirnovTest(alternative, pValueMethod, strictInequality,
- Objects.requireNonNull(v), iterations);
- }
- /**
- * Return an instance with the configured number of iterations.
- *
- * <p>Applies to the two-sample test when the p-value method is set to
- * {@link PValueMethod#ESTIMATE ESTIMATE}. This is the number of sampling iterations
- * used to estimate the p-value. The p-value is a fraction using the {@code iterations}
- * as the denominator. The number of significant digits in the p-value is
- * upper bounded by log<sub>10</sub>(iterations); small p-values have fewer significant
- * digits. A large number of iterations is recommended when using a small critical
- * value to reject the null hypothesis.
- *
- * @param v Value.
- * @return an instance
- * @throws IllegalArgumentException if the number of iterations is not strictly positive
- */
- public KolmogorovSmirnovTest withIterations(int v) {
- return new KolmogorovSmirnovTest(alternative, pValueMethod, strictInequality, rng,
- Arguments.checkStrictlyPositive(v));
- }
- /**
- * Computes the one-sample Kolmogorov-Smirnov test statistic.
- *
- * <ul>
- * <li>two-sided: \(D_n=\sup_x |F_n(x)-F(x)|\)
- * <li>greater: \(D_n^+=\sup_x (F_n(x)-F(x))\)
- * <li>less: \(D_n^-=\sup_x (F(x)-F_n(x))\)
- * </ul>
- *
- * <p>where \(F\) is the distribution cumulative density function ({@code cdf}),
- * \(n\) is the length of {@code x} and \(F_n\) is the empirical distribution that puts
- * mass \(1/n\) at each of the values in {@code x}.
- *
- * <p>The cumulative distribution function should map a real value {@code x} to a probability
- * in [0, 1]. To use a reference distribution the CDF can be passed using a method reference:
- * <pre>
- * UniformContinuousDistribution dist = UniformContinuousDistribution.of(0, 1);
- * UniformRandomProvider rng = RandomSource.KISS.create(123);
- * double[] x = dist.sampler(rng).samples(100);
- * double d = KolmogorovSmirnovTest.withDefaults().statistic(x, dist::cumulativeProbability);
- * </pre>
- *
- * @param cdf Reference cumulative distribution function.
- * @param x Sample being evaluated.
- * @return Kolmogorov-Smirnov statistic
- * @throws IllegalArgumentException if {@code data} does not have length at least 2; or contains NaN values.
- * @see #test(double[], DoubleUnaryOperator)
- */
- public double statistic(double[] x, DoubleUnaryOperator cdf) {
- return computeStatistic(x, cdf, IGNORED_SIGN);
- }
- /**
- * Computes the two-sample Kolmogorov-Smirnov test statistic.
- *
- * <ul>
- * <li>two-sided: \(D_{n,m}=\sup_x |F_n(x)-F_m(x)|\)
- * <li>greater: \(D_{n,m}^+=\sup_x (F_n(x)-F_m(x))\)
- * <li>less: \(D_{n,m}^-=\sup_x (F_m(x)-F_n(x))\)
- * </ul>
- *
- * <p>where \(n\) is the length of {@code x}, \(m\) is the length of {@code y}, \(F_n\) is the
- * empirical distribution that puts mass \(1/n\) at each of the values in {@code x} and \(F_m\)
- * is the empirical distribution that puts mass \(1/m\) at each of the values in {@code y}.
- *
- * @param x First sample.
- * @param y Second sample.
- * @return Kolmogorov-Smirnov statistic
- * @throws IllegalArgumentException if either {@code x} or {@code y} does not
- * have length at least 2; or contain NaN values.
- * @see #test(double[], double[])
- */
- public double statistic(double[] x, double[] y) {
- final int n = checkArrayLength(x);
- final int m = checkArrayLength(y);
- // Clone to avoid destructive modification of input
- final long dnm = computeIntegralKolmogorovSmirnovStatistic(x.clone(), y.clone(),
- IGNORED_SIGN, IGNORED_D);
- // Re-use the method to compute D in [0, 1] for consistency
- return computeD(dnm, n, m, ArithmeticUtils.gcd(n, m));
- }
- /**
- * Performs a one-sample Kolmogorov-Smirnov test evaluating the null hypothesis
- * that {@code x} conforms to the distribution cumulative density function ({@code cdf}).
- *
- * <p>The test is defined by the {@link AlternativeHypothesis}:
- * <ul>
- * <li>Two-sided evaluates the null hypothesis that the two distributions are
- * identical, \(F_n(i) = F(i)\) for all \( i \); the alternative is that the are not
- * identical. The statistic is \( max(D_n^+, D_n^-) \) and the sign of \( D \) is provided.
- * <li>Greater evaluates the null hypothesis that the \(F_n(i) <= F(i)\) for all \( i \);
- * the alternative is \(F_n(i) > F(i)\) for at least one \( i \). The statistic is \( D_n^+ \).
- * <li>Less evaluates the null hypothesis that the \(F_n(i) >= F(i)\) for all \( i \);
- * the alternative is \(F_n(i) < F(i)\) for at least one \( i \). The statistic is \( D_n^- \).
- * </ul>
- *
- * <p>The p-value method defaults to exact. The one-sided p-value uses Smirnov's stable formula:
- *
- * <p>\[ P(D_n^+ \ge x) = x \sum_{j=0}^{\lfloor n(1-x) \rfloor} \binom{n}{j} \left(\frac{j}{n} + x\right)^{j-1} \left(1-x-\frac{j}{n} \right)^{n-j} \]
- *
- * <p>The two-sided p-value is computed using methods described in
- * Simard & L’Ecuyer (2011). The two-sided test supports an asymptotic p-value
- * using Kolmogorov's formula:
- *
- * <p>\[ \lim_{n\to\infty} P(\sqrt{n}D_n > z) = 2 \sum_{i=1}^\infty (-1)^{i-1} e^{-2 i^2 z^2} \]
- *
- * @param x Sample being being evaluated.
- * @param cdf Reference cumulative distribution function.
- * @return test result
- * @throws IllegalArgumentException if {@code data} does not have length at least 2; or contains NaN values.
- * @see #statistic(double[], DoubleUnaryOperator)
- */
- public OneResult test(double[] x, DoubleUnaryOperator cdf) {
- final int[] sign = {0};
- final double d = computeStatistic(x, cdf, sign);
- final double p;
- if (alternative == AlternativeHypothesis.TWO_SIDED) {
- PValueMethod method = pValueMethod;
- if (method == PValueMethod.AUTO) {
- // No switch to the asymptotic for large n
- method = PValueMethod.EXACT;
- }
- if (method == PValueMethod.ASYMPTOTIC) {
- // Kolmogorov's asymptotic formula using z = sqrt(n) * d
- p = KolmogorovSmirnovDistribution.ksSum(Math.sqrt(x.length) * d);
- } else {
- // exact
- p = KolmogorovSmirnovDistribution.Two.sf(d, x.length);
- }
- } else {
- // one-sided: always use exact
- p = KolmogorovSmirnovDistribution.One.sf(d, x.length);
- }
- return new OneResult(d, sign[0], p);
- }
- /**
- * Performs a two-sample Kolmogorov-Smirnov test on samples {@code x} and {@code y}.
- * Test the empirical distributions \(F_n\) and \(F_m\) where \(n\) is the length
- * of {@code x}, \(m\) is the length of {@code y}, \(F_n\) is the empirical distribution
- * that puts mass \(1/n\) at each of the values in {@code x} and \(F_m\) is the empirical
- * distribution that puts mass \(1/m\) of the {@code y} values.
- *
- * <p>The test is defined by the {@link AlternativeHypothesis}:
- * <ul>
- * <li>Two-sided evaluates the null hypothesis that the two distributions are
- * identical, \(F_n(i) = F_m(i)\) for all \( i \); the alternative is that they are not
- * identical. The statistic is \( max(D_n^+, D_n^-) \) and the sign of \( D \) is provided.
- * <li>Greater evaluates the null hypothesis that the \(F_n(i) <= F_m(i)\) for all \( i \);
- * the alternative is \(F_n(i) > F_m(i)\) for at least one \( i \). The statistic is \( D_n^+ \).
- * <li>Less evaluates the null hypothesis that the \(F_n(i) >= F_m(i)\) for all \( i \);
- * the alternative is \(F_n(i) < F_m(i)\) for at least one \( i \). The statistic is \( D_n^- \).
- * </ul>
- *
- * <p>If the {@linkplain PValueMethod p-value method} is auto, then an exact p computation
- * is attempted if both sample sizes are less than 10000 using the methods presented in
- * Viehmann (2021) and Hodges (1958); otherwise an asymptotic p-value is returned.
- * The two-sided p-value is \(\overline{F}(d, \sqrt{mn / (m + n)})\) where \(\overline{F}\)
- * is the complementary cumulative density function of the two-sided one-sample
- * Kolmogorov-Smirnov distribution. The one-sided p-value uses an approximation from
- * Hodges (1958) Eq 5.3.
- *
- * <p>\(D_{n,m}\) has a discrete distribution. This makes the p-value associated with the
- * null hypothesis \(H_0 : D_{n,m} \gt d \) differ from \(H_0 : D_{n,m} \ge d \)
- * by the mass of the observed value \(d\). These can be distinguished using an
- * {@link Inequality} parameter. This is ignored for large samples.
- *
- * <p>If the data contains ties there is no defined ordering in the tied region to use
- * for the difference between the two empirical distributions. Each ordering of the
- * tied region <em>may</em> create a different D statistic. All possible orderings
- * generate a distribution for the D value. In this case the tied region is traversed
- * entirely and the effect on the D value evaluated at the end of the tied region.
- * This is the path with the least change on the D statistic. The path with the
- * greatest change on the D statistic is also computed as the upper bound on D.
- * If these two values are different then the tied region is known to generate a
- * distribution for the D statistic and the p-value is an over estimate for the cases
- * with a larger D statistic. The presence of any significant tied regions is returned
- * in the result.
- *
- * <p>If the p-value method is {@link PValueMethod#ESTIMATE ESTIMATE} then the p-value is
- * estimated by repeat sampling of the joint distribution of {@code x} and {@code y}.
- * The p-value is the frequency that a sample creates a D statistic
- * greater than or equal to (or greater than for strict inequality) the observed value.
- * In this case a source of randomness must be configured or an {@link IllegalStateException}
- * will be raised. The p-value for the upper bound on D will not be estimated and is set to
- * {@link Double#NaN NaN}. This estimation procedure is not affected by ties in the data
- * and is increasingly robust for larger datasets. The method is modeled after
- * <a href="https://sekhon.berkeley.edu/matching/ks.boot.html">ks.boot</a>
- * in the R {@code Matching} package (Sekhon (2011)).
- *
- * @param x First sample.
- * @param y Second sample.
- * @return test result
- * @throws IllegalArgumentException if either {@code x} or {@code y} does not
- * have length at least 2; or contain NaN values.
- * @throws IllegalStateException if the p-value method is {@link PValueMethod#ESTIMATE ESTIMATE}
- * and there is no source of randomness.
- * @see #statistic(double[], double[])
- */
- public TwoResult test(double[] x, double[] y) {
- final int n = checkArrayLength(x);
- final int m = checkArrayLength(y);
- PValueMethod method = pValueMethod;
- final int[] sign = {0};
- final long[] tiesD = {0, 0};
- final double[] sx = x.clone();
- final double[] sy = y.clone();
- final long dnm = computeIntegralKolmogorovSmirnovStatistic(sx, sy, sign, tiesD);
- // Compute p-value. Note that the p-value is not invalidated by ties; it is the
- // D statistic that could be invalidated by resolution of the ties. So compute
- // the exact p even if ties are present.
- if (method == PValueMethod.AUTO) {
- // Use exact for small samples
- method = Math.max(n, m) < LARGE_SAMPLE ?
- PValueMethod.EXACT :
- PValueMethod.ASYMPTOTIC;
- }
- final int gcd = ArithmeticUtils.gcd(n, m);
- final double d = computeD(dnm, n, m, gcd);
- final boolean significantTies = tiesD[1] > dnm;
- final double d2 = significantTies ? computeD(tiesD[1], n, m, gcd) : d;
- final double p;
- double p2;
- // Allow bootstrap estimation of the p-value
- if (method == PValueMethod.ESTIMATE) {
- p = estimateP(sx, sy, dnm);
- p2 = Double.NaN;
- } else {
- final boolean exact = method == PValueMethod.EXACT;
- p = p2 = twoSampleP(dnm, n, m, gcd, d, exact);
- if (significantTies) {
- // Compute the upper bound on D.
- // The p-value is also computed. The alternative is to save the options
- // in the result with (upper dnm, n, m) and compute it on-demand.
- // Note detection of whether the exact P computation is possible is based on
- // n and m, thus this will use the same computation.
- p2 = twoSampleP(tiesD[1], n, m, gcd, d2, exact);
- }
- }
- return new TwoResult(d, sign[0], p, significantTies, d2, p2);
- }
- /**
- * Estimates the <i>p-value</i> of a two-sample Kolmogorov-Smirnov test evaluating the
- * null hypothesis that {@code x} and {@code y} are samples drawn from the same
- * probability distribution.
- *
- * <p>This method will destructively modify the input arrays (via a sort).
- *
- * <p>This method estimates the p-value by repeatedly sampling sets of size
- * {@code x.length} and {@code y.length} from the empirical distribution
- * of the combined sample. The memory requirement is an array copy of each of
- * the input arguments.
- *
- * <p>When using strict inequality, this is equivalent to the algorithm implemented in
- * the R function {@code ks.boot} as described in Sekhon (2011) Journal of Statistical
- * Software, 42(7), 1–52 [3].
- *
- * @param x First sample.
- * @param y Second sample.
- * @param dnm Integral D statistic.
- * @return p-value
- * @throws IllegalStateException if the source of randomness is null.
- */
- private double estimateP(double[] x, double[] y, long dnm) {
- if (rng == null) {
- throw new IllegalStateException("No source of randomness");
- }
- // Test if the random statistic is greater (strict), or greater or equal to d
- final long d = strictInequality ? dnm : dnm - 1;
- final long plus;
- final long minus;
- if (alternative == AlternativeHypothesis.GREATER_THAN) {
- plus = d;
- minus = Long.MIN_VALUE;
- } else if (alternative == AlternativeHypothesis.LESS_THAN) {
- plus = Long.MAX_VALUE;
- minus = -d;
- } else {
- // two-sided
- plus = d;
- minus = -d;
- }
- // Test dnm=0. This occurs for example when x == y.
- if (0 < minus || 0 > plus) {
- // Edge case where all possible d will be outside the inclusive bounds
- return 1;
- }
- // Sample randomly with replacement from the combined distribution.
- final DoubleSupplier gen = createSampler(x, y, rng);
- int count = 0;
- for (int i = iterations; i > 0; i--) {
- for (int j = 0; j < x.length; j++) {
- x[j] = gen.getAsDouble();
- }
- for (int j = 0; j < y.length; j++) {
- y[j] = gen.getAsDouble();
- }
- if (testIntegralKolmogorovSmirnovStatistic(x, y, plus, minus)) {
- count++;
- }
- }
- return count / (double) iterations;
- }
- /**
- * Computes the magnitude of the one-sample Kolmogorov-Smirnov test statistic.
- * The sign of the statistic is optionally returned in {@code sign}. For the two-sided case
- * the sign is 0 if the magnitude of D+ and D- was equal; otherwise it indicates which D
- * had the larger magnitude.
- *
- * @param x Sample being evaluated.
- * @param cdf Reference cumulative distribution function.
- * @param sign Sign of the statistic (non-zero length).
- * @return Kolmogorov-Smirnov statistic
- * @throws IllegalArgumentException if {@code data} does not have length at least 2;
- * or contains NaN values.
- */
- private double computeStatistic(double[] x, DoubleUnaryOperator cdf, int[] sign) {
- final int n = checkArrayLength(x);
- final double nd = n;
- final double[] sx = sort(x.clone(), "Sample");
- // Note: ties in the data do not matter as we compare the empirical CDF
- // immediately before the value (i/n) and at the value (i+1)/n. For ties
- // of length m this would be (i-m+1)/n and (i+1)/n and the result is the same.
- double d = 0;
- if (alternative == AlternativeHypothesis.GREATER_THAN) {
- // Compute D+
- for (int i = 0; i < n; i++) {
- final double yi = cdf.applyAsDouble(sx[i]);
- final double dp = (i + 1) / nd - yi;
- d = dp > d ? dp : d;
- }
- sign[0] = 1;
- } else if (alternative == AlternativeHypothesis.LESS_THAN) {
- // Compute D-
- for (int i = 0; i < n; i++) {
- final double yi = cdf.applyAsDouble(sx[i]);
- final double dn = yi - i / nd;
- d = dn > d ? dn : d;
- }
- sign[0] = -1;
- } else {
- // Two sided.
- // Compute both (as unsigned) and return the sign indicating the largest result.
- double plus = 0;
- double minus = 0;
- for (int i = 0; i < n; i++) {
- final double yi = cdf.applyAsDouble(sx[i]);
- final double dn = yi - i / nd;
- final double dp = (i + 1) / nd - yi;
- minus = dn > minus ? dn : minus;
- plus = dp > plus ? dp : plus;
- }
- sign[0] = Double.compare(plus, minus);
- d = Math.max(plus, minus);
- }
- return d;
- }
- /**
- * Computes the two-sample Kolmogorov-Smirnov test statistic. The statistic is integral
- * and has a value in {@code [0, n*m]}. Not all values are possible; the smallest
- * increment is the greatest common divisor of {@code n} and {@code m}.
- *
- * <p>This method will destructively modify the input arrays (via a sort).
- *
- * <p>The sign of the statistic is returned in {@code sign}. For the two-sided case
- * the sign is 0 if the magnitude of D+ and D- was equal; otherwise it indicates which D
- * had the larger magnitude. If the two-sided statistic is zero the two arrays are
- * identical, or are 'identical' data of a single value (sample sizes may be different),
- * or have a sequence of ties of 'identical' data with a net zero effect on the D statistic
- * e.g.
- * <pre>
- * [1,2,3] vs [1,2,3]
- * [0,0,0,0] vs [0,0,0]
- * [0,0,0,0,1,1,1,1] vs [0,0,0,1,1,1]
- * </pre>
- *
- * <p>This method detects ties in the input data. Not all ties will invalidate the returned
- * statistic. Ties between the data can be interpreted as if the values were different
- * but within machine epsilon. In this case the path through the tie region is not known.
- * All paths through the tie region end at the same point. This method will compute the
- * most extreme path through each tie region and the D statistic for these paths. If the
- * ties D statistic is a larger magnitude than the returned D statistic then at least
- * one tie region lies at a point on the full path that could result in a different
- * statistic in the absence of ties. This signals the P-value computed using the returned
- * D statistic is one of many possible p-values given the data and how ties are resolved.
- * Note: The tiesD value may be smaller than the returned D statistic as it is not set
- * to the maximum of D or tiesD. The only result of interest is when {@code tiesD > D}
- * due to a tie region that can change the output D. On output {@code tiesD[0] != 0}
- * if there were ties between samples and {@code tiesD[1] = D} of the most extreme path
- * through the ties.
- *
- * @param x First sample (destructively modified by sort).
- * @param y Second sample (destructively modified by sort).
- * @param sign Sign of the statistic (non-zero length).
- * @param tiesD Integral statistic for the most extreme path through any ties (length at least 2).
- * @return integral Kolmogorov-Smirnov statistic
- * @throws IllegalArgumentException if either {@code x} or {@code y} contain NaN values.
- */
- private long computeIntegralKolmogorovSmirnovStatistic(double[] x, double[] y, int[] sign, long[] tiesD) {
- // Sort the sample arrays
- sort(x, SAMPLE_1_NAME);
- sort(y, SAMPLE_2_NAME);
- final int n = x.length;
- final int m = y.length;
- // CDFs range from 0 to 1 using increments of 1/n and 1/m for x and y respectively.
- // Scale by n*m to use increments of m and n for x and y.
- // Find the max difference between cdf_x and cdf_y.
- int i = 0;
- int j = 0;
- long d = 0;
- long plus = 0;
- long minus = 0;
- // Ties: store the D+,D- for most extreme path though tie region(s)
- long tplus = 0;
- long tminus = 0;
- do {
- // No NaNs so compare using < and >
- if (x[i] < y[j]) {
- final double z = x[i];
- do {
- i++;
- d += m;
- } while (i < n && x[i] == z);
- plus = d > plus ? d : plus;
- } else if (x[i] > y[j]) {
- final double z = y[j];
- do {
- j++;
- d -= n;
- } while (j < m && y[j] == z);
- minus = d < minus ? d : minus;
- } else {
- // Traverse to the end of the tied section for d.
- // Also compute the most extreme path through the tied region.
- final double z = x[i];
- final long dd = d;
- int k = i;
- do {
- i++;
- } while (i < n && x[i] == z);
- k = i - k;
- d += k * (long) m;
- // Extreme D+ path
- tplus = d > tplus ? d : tplus;
- k = j;
- do {
- j++;
- } while (j < m && y[j] == z);
- k = j - k;
- d -= k * (long) n;
- // Extreme D- path must start at the original d
- tminus = Math.min(tminus, dd - k * (long) n);
- // End of tied section
- if (d > plus) {
- plus = d;
- } else if (d < minus) {
- minus = d;
- }
- }
- } while (i < n && j < m);
- // The presence of any ties is flagged by a non-zero value for D+ or D-.
- // Note we cannot use the selected tiesD value as in the one-sided case it may be zero
- // and the non-selected D value will be non-zero.
- tiesD[0] = tplus | tminus;
- // For simplicity the correct tiesD is not returned (correct value is commented).
- // The only case that matters is tiesD > D which is evaluated by the caller.
- // Note however that the distance of tiesD < D is a measure of how little the
- // tied region matters.
- if (alternative == AlternativeHypothesis.GREATER_THAN) {
- sign[0] = 1;
- // correct = max(tplus, plus)
- tiesD[1] = tplus;
- return plus;
- } else if (alternative == AlternativeHypothesis.LESS_THAN) {
- sign[0] = -1;
- // correct = -min(tminus, minus)
- tiesD[1] = -tminus;
- return -minus;
- } else {
- // Two sided.
- sign[0] = Double.compare(plus, -minus);
- d = Math.max(plus, -minus);
- // correct = max(d, max(tplus, -tminus))
- tiesD[1] = Math.max(tplus, -tminus);
- return d;
- }
- }
- /**
- * Test if the two-sample integral Kolmogorov-Smirnov statistic is strictly greater
- * than the specified values for D+ and D-. Note that D- should have a negative sign
- * to impose an inclusive lower bound.
- *
- * <p>This method will destructively modify the input arrays (via a sort).
- *
- * <p>For a two-sided alternative hypothesis {@code plus} and {@code minus} should have the
- * same magnitude with opposite signs.
- *
- * <p>For a one-sided alternative hypothesis the value of {@code plus} or {@code minus}
- * should have the expected value of the statistic, and the opposite D should have the maximum
- * or minimum long value. The {@code minus} should be negatively signed:
- *
- * <ul>
- * <li>greater: {@code plus} = D, {@code minus} = {@link Long#MIN_VALUE}
- * <li>greater: {@code minus} = -D, {@code plus} = {@link Long#MAX_VALUE}
- * </ul>
- *
- * <p>Note: This method has not been specialized for the one-sided case. Specialization
- * would eliminate a conditional branch for {@code d > Long.MAX_VALUE} or
- * {@code d < Long.MIN_VALUE}. Since these branches are never possible in the one-sided case
- * this should be efficiently chosen by branch prediction in a processor pipeline.
- *
- * @param x First sample (destructively modified by sort; must not contain NaN).
- * @param y Second sample (destructively modified by sort; must not contain NaN).
- * @param plus Limit on D+ (inclusive upper bound).
- * @param minus Limit on D- (inclusive lower bound).
- * @return true if the D value exceeds the provided limits
- */
- private static boolean testIntegralKolmogorovSmirnovStatistic(double[] x, double[] y, long plus, long minus) {
- // Sort the sample arrays
- Arrays.sort(x);
- Arrays.sort(y);
- final int n = x.length;
- final int m = y.length;
- // CDFs range from 0 to 1 using increments of 1/n and 1/m for x and y respectively.
- // Scale by n*m to use increments of m and n for x and y.
- // Find the any difference that exceeds the specified bounds.
- int i = 0;
- int j = 0;
- long d = 0;
- do {
- // No NaNs so compare using < and >
- if (x[i] < y[j]) {
- final double z = x[i];
- do {
- i++;
- d += m;
- } while (i < n && x[i] == z);
- if (d > plus) {
- return true;
- }
- } else if (x[i] > y[j]) {
- final double z = y[j];
- do {
- j++;
- d -= n;
- } while (j < m && y[j] == z);
- if (d < minus) {
- return true;
- }
- } else {
- // Traverse to the end of the tied section for d.
- final double z = x[i];
- do {
- i++;
- d += m;
- } while (i < n && x[i] == z);
- do {
- j++;
- d -= n;
- } while (j < m && y[j] == z);
- // End of tied section
- if (d > plus || d < minus) {
- return true;
- }
- }
- } while (i < n && j < m);
- // Note: Here d requires returning to zero. This is applicable to the one-sided
- // cases since d may have always been above zero (favours D+) or always below zero
- // (favours D-). This is ignored as the method is not called when dnm=0 is
- // outside the inclusive bounds.
- return false;
- }
- /**
- * Creates a sampler to sample randomly from the combined distribution of the two samples.
- *
- * @param x First sample.
- * @param y Second sample.
- * @param rng Source of randomness.
- * @return the sampler
- */
- private static DoubleSupplier createSampler(double[] x, double[] y,
- UniformRandomProvider rng) {
- return createSampler(x, y, rng, MAX_ARRAY_SIZE);
- }
- /**
- * Creates a sampler to sample randomly from the combined distribution of the two
- * samples. This will copy the input data for the sampler.
- *
- * @param x First sample.
- * @param y Second sample.
- * @param rng Source of randomness.
- * @param maxArraySize Maximum size of a single array.
- * @return the sampler
- */
- static DoubleSupplier createSampler(double[] x, double[] y,
- UniformRandomProvider rng,
- int maxArraySize) {
- final int n = x.length;
- final int m = y.length;
- final int len = n + m;
- // Overflow safe: len > maxArraySize
- if (len - maxArraySize > 0) {
- // Support sampling with maximum length arrays
- // (where a concatenated array is not possible)
- // by choosing one or the other.
- // - generate i in [-n, m)
- // - return i < 0 ? x[n + i] : y[i]
- // The sign condition is a 50-50 branch.
- // Perform branchless by extracting the sign bit to pick the array.
- // Copy the source data.
- final double[] xx = x.clone();
- final double[] yy = y.clone();
- final IntToDoubleFunction nextX = i -> xx[n + i];
- final IntToDoubleFunction nextY = i -> yy[i];
- // Arrange function which accepts the negative index at position [1]
- final IntToDoubleFunction[] next = {nextY, nextX};
- return () -> {
- final int i = rng.nextInt(-n, m);
- return next[i >>> 31].applyAsDouble(i);
- };
- }
- // Concatenate arrays
- final double[] z = new double[len];
- System.arraycopy(x, 0, z, 0, n);
- System.arraycopy(y, 0, z, n, m);
- return () -> z[rng.nextInt(len)];
- }
- /**
- * Compute the D statistic from the integral D value.
- *
- * @param dnm Integral D-statistic value (in [0, n*m]).
- * @param n First sample size.
- * @param m Second sample size.
- * @param gcd Greatest common divisor of n and m.
- * @return D-statistic value (in [0, 1]).
- */
- private static double computeD(long dnm, int n, int m, int gcd) {
- // Note: Integer division using the gcd is intentional
- final long a = dnm / gcd;
- final int b = m / gcd;
- return a / ((double) n * b);
- }
- /**
- * Computes \(P(D_{n,m} > d)\) for the 2-sample Kolmogorov-Smirnov statistic.
- *
- * @param dnm Integral D-statistic value (in [0, n*m]).
- * @param n First sample size.
- * @param m Second sample size.
- * @param gcd Greatest common divisor of n and m.
- * @param d D-statistic value (in [0, 1]).
- * @param exact whether to compute the exact probability; otherwise approximate.
- * @return probability
- * @see #twoSampleExactP(long, int, int, int, boolean, boolean)
- * @see #twoSampleApproximateP(double, int, int, boolean)
- */
- private double twoSampleP(long dnm, int n, int m, int gcd, double d, boolean exact) {
- // Exact computation returns -1 if it cannot compute.
- double p = -1;
- if (exact) {
- p = twoSampleExactP(dnm, n, m, gcd, strictInequality, alternative == AlternativeHypothesis.TWO_SIDED);
- }
- if (p < 0) {
- p = twoSampleApproximateP(d, n, m, alternative == AlternativeHypothesis.TWO_SIDED);
- }
- return p;
- }
- /**
- * Computes \(P(D_{n,m} > d)\) if {@code strict} is {@code true}; otherwise \(P(D_{n,m} \ge
- * d)\), where \(D_{n,m}\) is the 2-sample Kolmogorov-Smirnov statistic, either the two-sided
- * \(D_{n,m}\) or one-sided \(D_{n,m}^+\}. See
- * {@link #statistic(double[], double[])} for the definition of \(D_{n,m}\).
- *
- * <p>The returned probability is exact. If the value cannot be computed this returns -1.
- *
- * <p>Note: This requires the greatest common divisor of n and m. The integral D statistic
- * in the range [0, n*m] is separated by increments of the gcd. The method will only
- * compute p-values for valid values of D by calculating for D/gcd.
- * Strict inquality is performed using the next valid value for D.
- *
- * @param dnm Integral D-statistic value (in [0, n*m]).
- * @param n First sample size.
- * @param m Second sample size.
- * @param gcd Greatest common divisor of n and m.
- * @param strict whether or not the probability to compute is expressed as a strict inequality.
- * @param twoSided whether D refers to D or D+.
- * @return probability that a randomly selected m-n partition of m + n generates D
- * greater than (resp. greater than or equal to) {@code d} (or -1)
- */
- static double twoSampleExactP(long dnm, int n, int m, int gcd, boolean strict, boolean twoSided) {
- // Create the statistic in [0, lcm]
- // For strict inequality D > d the result is the same if we compute for D >= (d+1)
- final long d = dnm / gcd + (strict ? 1 : 0);
- // P-value methods compute for d <= lcm (least common multiple)
- final long lcm = (long) n * (m / gcd);
- if (d > lcm) {
- return 0;
- }
- // Note: Some methods require m >= n, others n >= m
- final int a = Math.min(n, m);
- final int b = Math.max(n, m);
- if (twoSided) {
- // Any two-sided statistic dnm cannot be less than min(n, m) in the absence of ties.
- if (d * gcd <= a) {
- return 1;
- }
- // Here d in [2, lcm]
- if (n == m) {
- return twoSampleTwoSidedPOutsideSquare(d, n);
- }
- return twoSampleTwoSidedPStabilizedInner(d, b, a, gcd);
- }
- // Any one-sided statistic cannot be less than 0
- if (d <= 0) {
- return 1;
- }
- // Here d in [1, lcm]
- if (n == m) {
- return twoSampleOneSidedPOutsideSquare(d, n);
- }
- return twoSampleOneSidedPOutside(d, a, b, gcd);
- }
- /**
- * Computes \(P(D_{n,m} \ge d)\), where \(D_{n,m}\) is the 2-sample Kolmogorov-Smirnov statistic.
- *
- * <p>The returned probability is exact, implemented using the stabilized inner method
- * presented in Viehmann (2021).
- *
- * <p>This is optimized for {@code m <= n}. If {@code m > n} and index-out-of-bounds
- * exception can occur.
- *
- * @param d Integral D-statistic value (in [2, lcm])
- * @param n Larger sample size.
- * @param m Smaller sample size.
- * @param gcd Greatest common divisor of n and m.
- * @return probability that a randomly selected m-n partition of m + n generates \(D_{n,m}\)
- * greater than or equal to {@code d}
- */
- private static double twoSampleTwoSidedPStabilizedInner(long d, int n, int m, int gcd) {
- // Check the computation is possible.
- // Note that the possible paths is binom(m+n, n).
- // However the computation is stable above this limit.
- // Possible d values (requiring a unique p-value) = max(dnm) / gcd = lcm(n, m).
- // Possible terms to compute <= n * size(cij)
- // Simple limit based on the number of possible different p-values
- if ((long) n * (m / gcd) > MAX_LCM_TWO_SAMPLE_EXACT_P) {
- return -1;
- }
- // This could be updated to use d in [1, lcm].
- // Currently it uses d in [gcd, n*m].
- // Largest intermediate value is (dnm + im + n) which is within 2^63
- // if n and m are 2^31-1, i = n, dnm = n*m: (2^31-1)^2 + (2^31-1)^2 + 2^31-1 < 2^63
- final long dnm = d * gcd;
- // Viehmann (2021): Updated for i in [0, n], j in [0, m]
- // C_i,j = 1 if |i/n - j/m| >= d
- // = 0 if |i/n - j/m| < d and (i=0 or j=0)
- // = C_i-1,j * i/(i+j) + C_i,j-1 * j/(i+j) otherwise
- // P2 = C_n,m
- // Note: The python listing in Viehmann used d in [0, 1]. This uses dnm in [0, nm]
- // so updates the scaling to compute the ranges. Also note that the listing uses
- // dist > d or dist < -d where this uses |dist| >= d to compute P(D >= d) (non-strict inequality).
- // The provided listing is explicit in the values for each j in the range.
- // It can be optimized given the known start and end j for each iteration as only
- // j where |i/n - j/m| < d must be processed:
- // startJ where: im - jn < dnm : jn > im - dnm
- // j = floor((im - dnm) / n) + 1 in [0, m]
- // endJ where: jn - im >= dnm
- // j = ceil((dnm + im) / n) in [0, m+1]
- // First iteration with i = 0
- // j = ceil(dnm / n)
- int endJ = Math.min(m + 1, (int) ((dnm + n - 1) / n));
- // Only require 1 array to store C_i-1,j as the startJ only ever increases
- // and we update lower indices using higher ones.
- // The maximum value *written* is j=m or less using j/m <= 2*d : j = ceil(2*d*m)
- // Viehmann uses: size = int(2*m*d + 2) == ceil(2*d*m) + 1
- // The maximum value *read* is j/m <= 2*d. This may be above m. This occurs when
- // j - lastStartJ > m and C_i-1,j = 1. This can be avoided if (startJ - lastStartJ) <= 1
- // which occurs if m <= n, i.e. the window only slides 0 or 1 in j for each increment i
- // and we can maintain Cij as 1 larger than ceil(2*d*m) + 1.
- final double[] cij = new double[Math.min(m + 1, 2 * endJ + 2)];
- // Each iteration fills C_i,j with values and the remaining values are
- // kept as 1 for |i/n - j/m| >= d
- //assert (endJ - 1) * (long) n < dnm : "jn >= dnm for j < endJ";
- for (int j = endJ; j < cij.length; j++) {
- //assert j * (long) n >= dnm : "jn < dnm for j >= endJ";
- cij[j] = 1;
- }
- int startJ = 0;
- int length = endJ;
- double val = -1;
- long im = 0;
- for (int i = 1; i <= n; i++) {
- im += m;
- final int lastStartJ = startJ;
- // Compute C_i,j for startJ <= j < endJ
- // startJ = floor((im - dnm) / n) + 1 in [0, m]
- // endJ = ceil((dnm + im) / n) in [0, m+1]
- startJ = im < dnm ? 0 : Math.min(m, (int) ((im - dnm) / n) + 1);
- endJ = Math.min(m + 1, (int) ((dnm + im + n - 1) / n));
- if (startJ >= endJ) {
- // No possible paths inside the boundary
- return 1;
- }
- //assert startJ - lastStartJ <= 1 : "startJ - lastStartJ > 1";
- // Initialize previous value C_i,j-1
- val = startJ == 0 ? 0 : 1;
- //assert startJ == 0 || Math.abs(im - (startJ - 1) * (long) n) >= dnm : "|im - jn| < dnm for j < startJ";
- //assert endJ > m || Math.abs(im - endJ * (long) n) >= dnm : "|im - jn| < dnm for j >= endJ";
- for (int j = startJ; j < endJ; j++) {
- //assert j == 0 || Math.abs(im - j * (long) n) < dnm : "|im - jn| >= dnm for startJ <= j < endJ";
- // C_i,j = C_i-1,j * i/(i+j) + C_i,j-1 * j/(i+j)
- // Note: if (j - lastStartJ) >= cij.length this creates an IOOB exception.
- // In this case cij[j - lastStartJ] == 1. Only happens when m >= n.
- // Fixed using c_i-1,j = (j - lastStartJ >= cij.length ? 1 : cij[j - lastStartJ]
- val = (cij[j - lastStartJ] * i + val * j) / ((double) i + j);
- cij[j - startJ] = val;
- }
- // Must keep the remaining values in C_i,j as 1 to allow
- // cij[j - lastStartJ] * i == i when (j - lastStartJ) > lastLength
- final int lastLength = length;
- length = endJ - startJ;
- for (int j = lastLength - length - 1; j >= 0; j--) {
- cij[length + j] = 1;
- }
- }
- // Return the most recently written value: C_n,m
- return val;
- }
- /**
- * Computes \(P(D_{n,m}^+ \ge d)\), where \(D_{n,m}^+\) is the 2-sample one-sided
- * Kolmogorov-Smirnov statistic.
- *
- * <p>The returned probability is exact, implemented using the outer method
- * presented in Hodges (1958).
- *
- * <p>This method will fail-fast and return -1 if the computation of the
- * numbers of paths overflows.
- *
- * @param d Integral D-statistic value (in [0, lcm])
- * @param n First sample size.
- * @param m Second sample size.
- * @param gcd Greatest common divisor of n and m.
- * @return probability that a randomly selected m-n partition of m + n generates \(D_{n,m}\)
- * greater than or equal to {@code d}
- */
- private static double twoSampleOneSidedPOutside(long d, int n, int m, int gcd) {
- // Hodges, Fig.2
- // Lower boundary: (nx - my)/nm >= d : (nx - my) >= dnm
- // B(x, y) is the number of ways from (0, 0) to (x, y) without previously
- // reaching the boundary.
- // B(x, y) = binom(x+y, y) - [number of ways which previously reached the boundary]
- // Total paths:
- // sum_y { B(x, y) binom(m+n-x-y, n-y) }
- // Normalized by binom(m+n, n). Check this is possible.
- final long lm = m;
- if (n + lm > Integer.MAX_VALUE) {
- return -1;
- }
- final double binom = binom(m + n, n);
- if (binom == Double.POSITIVE_INFINITY) {
- return -1;
- }
- // This could be updated to use d in [1, lcm].
- // Currently it uses d in [gcd, n*m].
- final long dnm = d * gcd;
- // Visit all x in [0, m] where (nx - my) >= d for each increasing y in [0, n].
- // x = ceil( (d + my) / n ) = (d + my + n - 1) / n
- // y = ceil( (nx - d) / m ) = (nx - d + m - 1) / m
- // Note: n m integer, d in [0, nm], the intermediate cannot overflow a long.
- // x | y=0 = (d + n - 1) / n
- final int x0 = (int) ((dnm + n - 1) / n);
- if (x0 >= m) {
- return 1 / binom;
- }
- // The y above is the y *on* the boundary. Set the limit as the next y above:
- // y | x=m = 1 + floor( (nx - d) / m ) = 1 + (nm - d) / m
- final int maxy = (int) ((n * lm - dnm + m) / m);
- // Compute x and B(x, y) for visited B(x,y)
- final int[] xy = new int[maxy];
- final double[] bxy = new double[maxy];
- xy[0] = x0;
- bxy[0] = 1;
- for (int y = 1; y < maxy; y++) {
- final int x = (int) ((dnm + lm * y + n - 1) / n);
- // B(x, y) = binom(x+y, y) - [number of ways which previously reached the boundary]
- // Add the terms to subtract as a negative sum.
- final Sum b = Sum.create();
- for (int yy = 0; yy < y; yy++) {
- // Here: previousX = x - xy[yy] : previousY = y - yy
- // bxy[yy] is the paths to (previousX, previousY)
- // binom represent the paths from (previousX, previousY) to (x, y)
- b.addProduct(bxy[yy], -binom(x - xy[yy] + y - yy, y - yy));
- }
- b.add(binom(x + y, y));
- xy[y] = x;
- bxy[y] = b.getAsDouble();
- }
- // sum_y { B(x, y) binom(m+n-x-y, n-y) }
- final Sum sum = Sum.create();
- for (int y = 0; y < maxy; y++) {
- sum.addProduct(bxy[y], binom(m + n - xy[y] - y, n - y));
- }
- // No individual term should have overflowed since binom is finite.
- // Any sum above 1 is floating-point error.
- return KolmogorovSmirnovDistribution.clipProbability(sum.getAsDouble() / binom);
- }
- /**
- * Computes \(P(D_{n,n}^+ \ge d)\), where \(D_{n,n}^+\) is the 2-sample one-sided
- * Kolmogorov-Smirnov statistic.
- *
- * <p>The returned probability is exact, implemented using the outer method
- * presented in Hodges (1958).
- *
- * @param d Integral D-statistic value (in [1, lcm])
- * @param n Sample size.
- * @return probability that a randomly selected m-n partition of m + n generates \(D_{n,m}\)
- * greater than or equal to {@code d}
- */
- private static double twoSampleOneSidedPOutsideSquare(long d, int n) {
- // Hodges (1958) Eq. 2.3:
- // p = binom(2n, n-a) / binom(2n, n)
- // a in [1, n] == d * n == dnm / n
- final int a = (int) d;
- // Rearrange:
- // p = ( 2n! / ((n-a)! (n+a)!) ) / ( 2n! / (n! n!) )
- // = n! n! / ( (n-a)! (n+a)! )
- // Perform using pre-computed factorials if possible.
- if (n + a <= MAX_FACTORIAL) {
- final double x = Factorial.doubleValue(n);
- final double y = Factorial.doubleValue(n - a);
- final double z = Factorial.doubleValue(n + a);
- return (x / y) * (x / z);
- }
- // p = n! / (n-a)! * n! / (n+a)!
- // n * (n-1) * ... * (n-a+1)
- // = -----------------------------
- // (n+a) * (n+a-1) * ... * (n+1)
- double p = 1;
- for (int i = 0; i < a && p != 0; i++) {
- p *= (n - i) / (1.0 + n + i);
- }
- return p;
- }
- /**
- * Computes \(P(D_{n,n}^+ \ge d)\), where \(D_{n,n}^+\) is the 2-sample two-sided
- * Kolmogorov-Smirnov statistic.
- *
- * <p>The returned probability is exact, implemented using the outer method
- * presented in Hodges (1958).
- *
- * @param d Integral D-statistic value (in [1, n])
- * @param n Sample size.
- * @return probability that a randomly selected m-n partition of n + n generates \(D_{n,n}\)
- * greater than or equal to {@code d}
- */
- private static double twoSampleTwoSidedPOutsideSquare(long d, int n) {
- // Hodges (1958) Eq. 2.4:
- // p = 2 [ binom(2n, n-a) - binom(2n, n-2a) + binom(2n, n-3a) - ... ] / binom(2n, n)
- // a in [1, n] == d * n == dnm / n
- // As per twoSampleOneSidedPOutsideSquare, divide by binom(2n, n) and each term
- // can be expressed as a product:
- // ( n - i n - i n - i )
- // p = 2 * ( prod_i=0^a --------- - prod_i=0^2a --------- + prod_i=0^3a --------- + ... )
- // ( 1 + n + i 1 + n + i 1 + n + i )
- // for ja in [1, ..., n/a]
- // Avoid repeat computation of terms by extracting common products:
- // p = 2 * ( p0a * (1 - p1a * (1 - p2a * (1 - ... ))) )
- // where each term pja is prod_i={ja}^{ja+a} for all j in [1, n / a]
- // The first term is the one-sided p.
- final double p0a = twoSampleOneSidedPOutsideSquare(d, n);
- if (p0a == 0) {
- // Underflow - nothing more to do
- return 0;
- }
- // Compute the inner-terms from small to big.
- // j = n / (d/n) ~ n*n / d
- // j is a measure of how extreme the d value is (small j is extreme d).
- // When j is above 0 a path may traverse from the lower boundary to the upper boundary.
- final int a = (int) d;
- double p = 0;
- for (int j = n / a; j > 0; j--) {
- double pja = 1;
- final int jaa = j * a + a;
- // Since p0a did not underflow we avoid the check for pj != 0
- for (int i = j * a; i < jaa; i++) {
- pja *= (n - i) / (1.0 + n + i);
- }
- p = pja * (1 - p);
- }
- p = p0a * (1 - p);
- return Math.min(1, 2 * p);
- }
- /**
- * Compute the binomial coefficient binom(n, k).
- *
- * @param n N.
- * @param k K.
- * @return binom(n, k)
- */
- private static double binom(int n, int k) {
- return BinomialCoefficientDouble.value(n, k);
- }
- /**
- * Uses the Kolmogorov-Smirnov distribution to approximate \(P(D_{n,m} > d)\) where \(D_{n,m}\)
- * is the 2-sample Kolmogorov-Smirnov statistic. See
- * {@link #statistic(double[], double[])} for the definition of \(D_{n,m}\).
- *
- * <p>Specifically, what is returned is \(1 - CDF(d, \sqrt{mn / (m + n)})\) where CDF
- * is the cumulative density function of the two-sided one-sample Kolmogorov-Smirnov
- * distribution.
- *
- * @param d D-statistic value.
- * @param n First sample size.
- * @param m Second sample size.
- * @param twoSided True to compute the two-sided p-value; else one-sided.
- * @return approximate probability that a randomly selected m-n partition of m + n generates
- * \(D_{n,m}\) greater than {@code d}
- */
- static double twoSampleApproximateP(double d, int n, int m, boolean twoSided) {
- final double nn = Math.min(n, m);
- final double mm = Math.max(n, m);
- if (twoSided) {
- // Smirnov's asymptotic formula:
- // P(sqrt(N) D_n > x)
- // N = m*n/(m+n)
- return KolmogorovSmirnovDistribution.Two.sf(d, (int) Math.round(mm * nn / (mm + nn)));
- }
- // one-sided
- // Use Hodges Eq 5.3. Requires m >= n
- // Correct for m=n, m an integral multiple of n, and 'on the average' for m nearly equal to n
- final double z = d * Math.sqrt(nn * mm / (nn + mm));
- return Math.exp(-2 * z * z - 2 * z * (mm + 2 * nn) / Math.sqrt(mm * nn * (mm + nn)) / 3);
- }
- /**
- * Verifies that {@code array} has length at least 2.
- *
- * @param array Array to test.
- * @return the length
- * @throws IllegalArgumentException if array is too short
- */
- private static int checkArrayLength(double[] array) {
- final int n = array.length;
- if (n <= 1) {
- throw new InferenceException(InferenceException.TWO_VALUES_REQUIRED, n);
- }
- return n;
- }
- /**
- * Sort the input array. Throws an exception if NaN values are
- * present. It is assumed the array is non-zero length.
- *
- * @param x Input array.
- * @param name Name of the array.
- * @return a reference to the input (sorted) array
- * @throws IllegalArgumentException if {@code x} contains NaN values.
- */
- private static double[] sort(double[] x, String name) {
- Arrays.sort(x);
- // NaN will be at the end
- if (Double.isNaN(x[x.length - 1])) {
- throw new InferenceException(name + " contains NaN");
- }
- return x;
- }
- }