MannWhitneyUTest.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.statistics.inference;
- import java.lang.ref.SoftReference;
- import java.util.Arrays;
- import java.util.EnumSet;
- import java.util.Objects;
- import java.util.stream.IntStream;
- import org.apache.commons.numbers.combinatorics.BinomialCoefficientDouble;
- import org.apache.commons.statistics.distribution.NormalDistribution;
- import org.apache.commons.statistics.ranking.NaNStrategy;
- import org.apache.commons.statistics.ranking.NaturalRanking;
- import org.apache.commons.statistics.ranking.RankingAlgorithm;
- import org.apache.commons.statistics.ranking.TiesStrategy;
- /**
- * Implements the Mann-Whitney U test (also called Wilcoxon rank-sum test).
- *
- * @see <a href="https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test">
- * Mann-Whitney U test (Wikipedia)</a>
- * @since 1.1
- */
- public final class MannWhitneyUTest {
- /** Limit on sample size for the exact p-value computation for the auto mode. */
- private static final int AUTO_LIMIT = 50;
- /** Ranking instance. */
- private static final RankingAlgorithm RANKING = new NaturalRanking(NaNStrategy.FAILED, TiesStrategy.AVERAGE);
- /** Value for an unset f computation. */
- private static final double UNSET = -1;
- /** An object to use for synchonization when accessing the cache of F. */
- private static final Object LOCK = new Object();
- /** A reference to a previously computed storage for f.
- * Use of a SoftReference ensures this is garbage collected before an OutOfMemoryError.
- * The value should only be accessed, checked for size and optionally
- * modified when holding the lock. When the storage is determined to be the correct
- * size it can be returned for read/write to the array when not holding the lock. */
- private static SoftReference<double[][][]> cacheF = new SoftReference<>(null);
- /** Default instance. */
- private static final MannWhitneyUTest DEFAULT = new MannWhitneyUTest(
- AlternativeHypothesis.TWO_SIDED, PValueMethod.AUTO, true, 0);
- /** Alternative hypothesis. */
- private final AlternativeHypothesis alternative;
- /** Method to compute the p-value. */
- private final PValueMethod pValueMethod;
- /** Perform continuity correction. */
- private final boolean continuityCorrection;
- /** Expected location shift. */
- private final double mu;
- /**
- * Result for the Mann-Whitney U test.
- *
- * <p>This class is immutable.
- *
- * @since 1.1
- */
- public static final class Result extends BaseSignificanceResult {
- /** Flag indicating the data has tied values. */
- private final boolean tiedValues;
- /**
- * Create an instance.
- *
- * @param statistic Test statistic.
- * @param tiedValues Flag indicating the data has tied values.
- * @param p Result p-value.
- */
- Result(double statistic, boolean tiedValues, double p) {
- super(statistic, p);
- this.tiedValues = tiedValues;
- }
- /**
- * {@inheritDoc}
- *
- * <p>This is the U<sub>1</sub> statistic. Compute the U<sub>2</sub> statistic using
- * the original sample lengths {@code n} and {@code m} using:
- * <pre>
- * u2 = (long) n * m - u1;
- * </pre>
- */
- @Override
- public double getStatistic() {
- // Note: This method is here for documentation
- return super.getStatistic();
- }
- /**
- * Return {@code true} if the data had tied values.
- *
- * <p>Note: The exact computation cannot be used when there are tied values.
- *
- * @return {@code true} if there were tied values
- */
- public boolean hasTiedValues() {
- return tiedValues;
- }
- }
- /**
- * @param alternative Alternative hypothesis.
- * @param method P-value method.
- * @param continuityCorrection true to perform continuity correction.
- * @param mu Expected location shift.
- */
- private MannWhitneyUTest(AlternativeHypothesis alternative, PValueMethod method,
- boolean continuityCorrection, double mu) {
- this.alternative = alternative;
- this.pValueMethod = method;
- this.continuityCorrection = continuityCorrection;
- this.mu = mu;
- }
- /**
- * Return an instance using the default options.
- *
- * <ul>
- * <li>{@link AlternativeHypothesis#TWO_SIDED}
- * <li>{@link PValueMethod#AUTO}
- * <li>{@link ContinuityCorrection#ENABLED}
- * <li>{@linkplain #withMu(double) mu = 0}
- * </ul>
- *
- * @return default instance
- */
- public static MannWhitneyUTest withDefaults() {
- return DEFAULT;
- }
- /**
- * Return an instance with the configured alternative hypothesis.
- *
- * @param v Value.
- * @return an instance
- */
- public MannWhitneyUTest with(AlternativeHypothesis v) {
- return new MannWhitneyUTest(Objects.requireNonNull(v), pValueMethod, continuityCorrection, mu);
- }
- /**
- * Return an instance with the configured p-value method.
- *
- * @param v Value.
- * @return an instance
- * @throws IllegalArgumentException if the value is not in the allowed options or is null
- */
- public MannWhitneyUTest with(PValueMethod v) {
- return new MannWhitneyUTest(alternative,
- Arguments.checkOption(v, EnumSet.of(PValueMethod.AUTO, PValueMethod.EXACT, PValueMethod.ASYMPTOTIC)),
- continuityCorrection, mu);
- }
- /**
- * Return an instance with the configured continuity correction.
- *
- * <p>If {@link ContinuityCorrection#ENABLED ENABLED}, adjust the U rank statistic by
- * 0.5 towards the mean value when computing the z-statistic if a normal approximation is used
- * to compute the p-value.
- *
- * @param v Value.
- * @return an instance
- */
- public MannWhitneyUTest with(ContinuityCorrection v) {
- return new MannWhitneyUTest(alternative, pValueMethod,
- Objects.requireNonNull(v) == ContinuityCorrection.ENABLED, mu);
- }
- /**
- * Return an instance with the configured location shift {@code mu}.
- *
- * @param v Value.
- * @return an instance
- * @throws IllegalArgumentException if the value is not finite
- */
- public MannWhitneyUTest withMu(double v) {
- return new MannWhitneyUTest(alternative, pValueMethod, continuityCorrection, Arguments.checkFinite(v));
- }
- /**
- * Computes the Mann-Whitney U statistic comparing two independent
- * samples possibly of different length.
- *
- * <p>This statistic can be used to perform a Mann-Whitney U test evaluating the
- * null hypothesis that the two independent samples differ by a location shift of {@code mu}.
- *
- * <p>This returns the U<sub>1</sub> statistic. Compute the U<sub>2</sub> statistic using:
- * <pre>
- * u2 = (long) x.length * y.length - u1;
- * </pre>
- *
- * @param x First sample values.
- * @param y Second sample values.
- * @return Mann-Whitney U<sub>1</sub> statistic
- * @throws IllegalArgumentException if {@code x} or {@code y} are zero-length; or contain
- * NaN values.
- * @see #withMu(double)
- */
- public double statistic(double[] x, double[] y) {
- checkSamples(x, y);
- final double[] z = concatenateSamples(mu, x, y);
- final double[] ranks = RANKING.apply(z);
- // The ranks for x is in the first x.length entries in ranks because x
- // is in the first x.length entries in z
- final double sumRankX = Arrays.stream(ranks).limit(x.length).sum();
- // U1 = R1 - (n1 * (n1 + 1)) / 2 where R1 is sum of ranks for sample 1,
- // e.g. x, n1 is the number of observations in sample 1.
- return sumRankX - ((long) x.length * (x.length + 1)) * 0.5;
- }
- /**
- * Performs a Mann-Whitney U test comparing the location for two independent
- * samples. The location is specified using {@link #withMu(double) mu}.
- *
- * <p>The test is defined by the {@link AlternativeHypothesis}.
- * <ul>
- * <li>'two-sided': the distribution underlying {@code (x - mu)} is not equal to the
- * distribution underlying {@code y}.
- * <li>'greater': the distribution underlying {@code (x - mu)} is stochastically greater than
- * the distribution underlying {@code y}.
- * <li>'less': the distribution underlying {@code (x - mu)} is stochastically less than
- * the distribution underlying {@code y}.
- * </ul>
- *
- * <p>If the p-value method is {@linkplain PValueMethod#AUTO auto} an exact p-value is
- * computed if the samples contain less than 50 values; otherwise a normal
- * approximation is used.
- *
- * <p>Computation of the exact p-value is only valid if there are no tied
- * ranks in the data; otherwise the p-value resorts to the asymptotic
- * approximation using a tie correction and an optional continuity correction.
- *
- * <p><strong>Note: </strong>
- * Exact computation requires tabulation of values not exceeding size
- * {@code (n+1)*(m+1)*(u+1)} where {@code u} is the minimum of the U<sub>1</sub> and
- * U<sub>2</sub> statistics and {@code n} and {@code m} are the sample sizes.
- * This may use a very large amount of memory and result in an {@link OutOfMemoryError}.
- * Exact computation requires a finite binomial coefficient {@code binom(n+m, m)}
- * which is limited to {@code n+m <= 1029} for any {@code n} and {@code m},
- * or {@code min(n, m) <= 37} for any {@code max(n, m)}.
- * An {@link OutOfMemoryError} is not expected using the
- * limits configured for the {@linkplain PValueMethod#AUTO auto} p-value computation
- * as the maximum required memory is approximately 23 MiB.
- *
- * @param x First sample values.
- * @param y Second sample values.
- * @return test result
- * @throws IllegalArgumentException if {@code x} or {@code y} are zero-length; or contain
- * NaN values.
- * @throws OutOfMemoryError if the exact computation is <em>user-requested</em> for
- * large samples and there is not enough memory.
- * @see #statistic(double[], double[])
- * @see #withMu(double)
- * @see #with(AlternativeHypothesis)
- * @see #with(ContinuityCorrection)
- */
- public Result test(double[] x, double[] y) {
- // Computation as above. The ranks are required for tie correction.
- checkSamples(x, y);
- final double[] z = concatenateSamples(mu, x, y);
- final double[] ranks = RANKING.apply(z);
- final double sumRankX = Arrays.stream(ranks).limit(x.length).sum();
- final double u1 = sumRankX - ((long) x.length * (x.length + 1)) * 0.5;
- final double c = WilcoxonSignedRankTest.calculateTieCorrection(ranks);
- final boolean tiedValues = c != 0;
- PValueMethod method = pValueMethod;
- final int n = x.length;
- final int m = y.length;
- if (method == PValueMethod.AUTO && Math.max(n, m) < AUTO_LIMIT) {
- method = PValueMethod.EXACT;
- }
- // Exact p requires no ties.
- // The method will fail-fast if the computation is not possible due
- // to the size of the data.
- double p = method == PValueMethod.EXACT && !tiedValues ?
- calculateExactPValue(u1, n, m, alternative) : -1;
- if (p < 0) {
- p = calculateAsymptoticPValue(u1, n, m, c);
- }
- return new Result(u1, tiedValues, p);
- }
- /**
- * Ensures that the provided arrays fulfil the assumptions.
- *
- * @param x First sample values.
- * @param y Second sample values.
- * @throws IllegalArgumentException if {@code x} or {@code y} are zero-length.
- */
- private static void checkSamples(double[] x, double[] y) {
- Arguments.checkValuesRequiredSize(x.length, 1);
- Arguments.checkValuesRequiredSize(y.length, 1);
- }
- /**
- * Concatenate the samples into one array. Subtract {@code mu} from the first sample.
- *
- * @param mu Expected difference between means.
- * @param x First sample values.
- * @param y Second sample values.
- * @return concatenated array
- */
- private static double[] concatenateSamples(double mu, double[] x, double[] y) {
- final double[] z = new double[x.length + y.length];
- System.arraycopy(x, 0, z, 0, x.length);
- System.arraycopy(y, 0, z, x.length, y.length);
- if (mu != 0) {
- for (int i = 0; i < x.length; i++) {
- z[i] -= mu;
- }
- }
- return z;
- }
- /**
- * Calculate the asymptotic p-value using a Normal approximation.
- *
- * @param u Mann-Whitney U value.
- * @param n1 Number of subjects in first sample.
- * @param n2 Number of subjects in second sample.
- * @param c Tie-correction
- * @return two-sided asymptotic p-value
- */
- private double calculateAsymptoticPValue(double u, int n1, int n2, double c) {
- // Use long to avoid overflow
- final long n1n2 = (long) n1 * n2;
- final long n = (long) n1 + n2;
- // https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test#Normal_approximation_and_tie_correction
- final double e = n1n2 * 0.5;
- final double variance = (n1n2 / 12.0) * ((n + 1.0) - c / n / (n - 1));
- double z = u - e;
- if (continuityCorrection) {
- // +/- 0.5 is a continuity correction towards the expected.
- if (alternative == AlternativeHypothesis.GREATER_THAN) {
- z -= 0.5;
- } else if (alternative == AlternativeHypothesis.LESS_THAN) {
- z += 0.5;
- } else {
- // two-sided. Shift towards the expected of zero.
- // Use of signum ignores x==0 (i.e. not copySign(0.5, z))
- z -= Math.signum(z) * 0.5;
- }
- }
- z /= Math.sqrt(variance);
- final NormalDistribution standardNormal = NormalDistribution.of(0, 1);
- if (alternative == AlternativeHypothesis.GREATER_THAN) {
- return standardNormal.survivalProbability(z);
- }
- if (alternative == AlternativeHypothesis.LESS_THAN) {
- return standardNormal.cumulativeProbability(z);
- }
- // two-sided
- return 2 * standardNormal.survivalProbability(Math.abs(z));
- }
- /**
- * Calculate the exact p-value. If the value cannot be computed this returns -1.
- *
- * <p>Note: Computation may run out of memory during array allocation, or method
- * recursion.
- *
- * @param u Mann-Whitney U value.
- * @param m Number of subjects in first sample.
- * @param n Number of subjects in second sample.
- * @param alternative Alternative hypothesis.
- * @return exact p-value (or -1) (two-sided, greater, or less using the options)
- */
- // package-private for testing
- static double calculateExactPValue(double u, int m, int n, AlternativeHypothesis alternative) {
- // Check the computation can be attempted.
- // u must be an integer
- if ((int) u != u) {
- return -1;
- }
- // Note: n+m will not overflow as we concatenated the samples to a single array.
- final double binom = BinomialCoefficientDouble.value(n + m, m);
- if (binom == Double.POSITIVE_INFINITY) {
- return -1;
- }
- // Use u_min for the CDF.
- final int u1 = (int) u;
- final int u2 = (int) ((long) m * n - u1);
- // Use m < n to support symmetry.
- final int n1 = Math.min(m, n);
- final int n2 = Math.max(m, n);
- // Return the correct side:
- if (alternative == AlternativeHypothesis.GREATER_THAN) {
- // sf(u1 - 1)
- return sf(u1 - 1, u2 + 1, n1, n2, binom);
- }
- if (alternative == AlternativeHypothesis.LESS_THAN) {
- // cdf(u1)
- return cdf(u1, u2, n1, n2, binom);
- }
- // two-sided: 2 * sf(max(u1, u2) - 1) or 2 * cdf(min(u1, u2))
- final double p = 2 * computeCdf(Math.min(u1, u2), n1, n2, binom);
- // Clip to range: [0, 1]
- return Math.min(1, p);
- }
- /**
- * Compute the cumulative density function of the Mann-Whitney U1 statistic.
- * The U2 statistic is passed for convenience to exploit symmetry in the distribution.
- *
- * @param u1 Mann-Whitney U1 statistic
- * @param u2 Mann-Whitney U2 statistic
- * @param m First sample size.
- * @param n Second sample size.
- * @param binom binom(n+m, m) (must be finite)
- * @return {@code Pr(X <= k)}
- */
- private static double cdf(int u1, int u2, int m, int n, double binom) {
- // Exploit symmetry. Note the distribution is discrete thus requiring (u2 - 1).
- return u2 > u1 ?
- computeCdf(u1, m, n, binom) :
- 1 - computeCdf(u2 - 1, m, n, binom);
- }
- /**
- * Compute the survival function of the Mann-Whitney U1 statistic.
- * The U2 statistic is passed for convenience to exploit symmetry in the distribution.
- *
- * @param u1 Mann-Whitney U1 statistic
- * @param u2 Mann-Whitney U2 statistic
- * @param m First sample size.
- * @param n Second sample size.
- * @param binom binom(n+m, m) (must be finite)
- * @return {@code Pr(X > k)}
- */
- private static double sf(int u1, int u2, int m, int n, double binom) {
- // Opposite of the CDF
- return u2 > u1 ?
- 1 - computeCdf(u1, m, n, binom) :
- computeCdf(u2 - 1, m, n, binom);
- }
- /**
- * Compute the cumulative density function of the Mann-Whitney U statistic.
- *
- * <p>This should be called with the lower of U1 or U2 for computational efficiency.
- *
- * <p>Uses the recursive formula provided in Bucchianico, A.D, (1999)
- * Combinatorics, computer algebra and the Wilcoxon-Mann-Whitney test, Journal
- * of Statistical Planning and Inference, Volume 79, Issue 2, 349-364.
- *
- * @param k Mann-Whitney U statistic
- * @param m First sample size.
- * @param n Second sample size.
- * @param binom binom(n+m, m) (must be finite)
- * @return {@code Pr(X <= k)}
- */
- private static double computeCdf(int k, int m, int n, double binom) {
- // Theorem 2.5:
- // f(m, n, k) = 0 if k < 0, m < 0, n < 0, k > nm
- if (k < 0) {
- return 0;
- }
- // Recursively compute f(m, n, k)
- final double[][][] f = getF(m, n, k);
- // P(X=k) = f(m, n, k) / binom(m+n, m)
- // P(X<=k) = sum_0^k (P(X=i))
- // Called with k = min(u1, u2) : max(p) ~ 0.5 so no need to clip to [0, 1]
- return IntStream.rangeClosed(0, k).mapToDouble(i -> fmnk(f, m, n, i)).sum() / binom;
- }
- /**
- * Gets the storage for f(m, n, k).
- *
- * <p>This may be cached for performance.
- *
- * @param m M.
- * @param n N.
- * @param k K.
- * @return the storage for f
- */
- private static double[][][] getF(int m, int n, int k) {
- // Obtain any previous computation of f and expand it if required.
- // F is only modified within this synchronized block.
- // Any concurrent threads using a reference returned by this method
- // will not receive an index out-of-bounds as f is only ever expanded.
- synchronized (LOCK) {
- // Note: f(x<m, y<n, z<k) is always the same.
- // Cache the array and re-use any previous computation.
- double[][][] f = cacheF.get();
- // Require:
- // f = new double[m + 1][n + 1][k + 1]
- // f(m, n, 0) == 1; otherwise -1 if not computed
- // m+n <= 1029 for any m,n; k < mn/2 (due to symmetry using min(u1, u2))
- // Size m=n=515: approximately 516^2 * 515^2/2 = 398868 doubles ~ 3.04 GiB
- if (f == null) {
- f = new double[m + 1][n + 1][k + 1];
- for (final double[][] a : f) {
- for (final double[] b : a) {
- initialize(b);
- }
- }
- // Cache for reuse.
- cacheF = new SoftReference<>(f);
- return f;
- }
- // Grow if required: m1 < m+1 => m1-(m+1) < 0 => m1 - m < 1
- final int m1 = f.length;
- final int n1 = f[0].length;
- final int k1 = f[0][0].length;
- final boolean growM = m1 - m < 1;
- final boolean growN = n1 - n < 1;
- final boolean growK = k1 - k < 1;
- if (growM | growN | growK) {
- // Some part of the previous f is too small.
- // Atomically grow without destroying the previous computation.
- // Any other thread using the previous f will not go out of bounds
- // by keeping the new f dimensions at least as large.
- // Note: Doing this in-place allows the memory to be gradually
- // increased rather than allocating a new [m + 1][n + 1][k + 1]
- // and copying all old values.
- final int sn = Math.max(n1, n + 1);
- final int sk = Math.max(k1, k + 1);
- if (growM) {
- // Entirely new region
- f = Arrays.copyOf(f, m + 1);
- for (int x = m1; x <= m; x++) {
- f[x] = new double[sn][sk];
- for (final double[] b : f[x]) {
- initialize(b);
- }
- }
- }
- // Expand previous in place if required
- if (growN) {
- for (int x = 0; x < m1; x++) {
- f[x] = Arrays.copyOf(f[x], sn);
- for (int y = n1; y < sn; y++) {
- final double[] b = f[x][y] = new double[sk];
- initialize(b);
- }
- }
- }
- if (growK) {
- for (int x = 0; x < m1; x++) {
- for (int y = 0; y < n1; y++) {
- final double[] b = f[x][y] = Arrays.copyOf(f[x][y], sk);
- for (int z = k1; z < sk; z++) {
- b[z] = UNSET;
- }
- }
- }
- }
- // Avoided an OutOfMemoryError. Cache for reuse.
- cacheF = new SoftReference<>(f);
- }
- return f;
- }
- }
- /**
- * Initialize the array for f(m, n, x).
- * Set value to 1 for x=0; otherwise {@link #UNSET}.
- *
- * @param fmn Array.
- */
- private static void initialize(double[] fmn) {
- Arrays.fill(fmn, UNSET);
- // f(m, n, 0) == 1 if m >= 0, n >= 0
- fmn[0] = 1;
- }
- /**
- * Compute f(m; n; k), the number of subsets of {0; 1; ...; n} with m elements such
- * that the elements of this subset add up to k.
- *
- * <p>The function is computed recursively.
- *
- * @param f Tabulated values of f[m][n][k].
- * @param m M
- * @param n N
- * @param k K
- * @return f(m; n; k)
- */
- private static double fmnk(double[][][] f, int m, int n, int k) {
- // Theorem 2.5:
- // Omit conditions that will not be met: k > mn
- // f(m, n, k) = 0 if k < 0, m < 0, n < 0
- if ((k | m | n) < 0) {
- return 0;
- }
- // Compute on demand
- double fmnk = f[m][n][k];
- if (fmnk < 0) {
- // f(m, n, 0) == 1 if m >= 0, n >= 0
- // This is already computed.
- // Recursion from formula (3):
- // f(m, n, k) = f(m-1, n, k-n) + f(m, n-1, k)
- f[m][n][k] = fmnk = fmnk(f, m - 1, n, k - n) + fmnk(f, m, n - 1, k);
- }
- return fmnk;
- }
- }