001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * https://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.text.similarity; 018 019/** 020 * An algorithm for measuring the difference between two character sequences using the 021 * <a href="https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance">Damerau-Levenshtein Distance</a>. 022 * 023 * <p> 024 * This is the number of changes needed to change one sequence into another, where each change is a single character 025 * modification (deletion, insertion, substitution, or transposition of two adjacent characters). 026 * </p> 027 * 028 * @see <a href="https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance">Damerau-Levenshtein Distance on Wikipedia</a> 029 * @since 1.15.0 030 */ 031public class DamerauLevenshteinDistance implements EditDistance<Integer> { 032 033 /** 034 * Utility function to ensure distance is valid according to threshold. 035 * 036 * @param distance The distance value. 037 * @param threshold The threshold value. 038 * @return The distance value, or {@code -1} if distance is greater than threshold. 039 */ 040 private static int clampDistance(final int distance, final int threshold) { 041 return distance > threshold ? -1 : distance; 042 } 043 044 /** 045 * Finds the Damerau-Levenshtein distance between two CharSequences if it's less than or equal to a given threshold. 046 * 047 * @param left the first SimilarityInput, must not be null. 048 * @param right the second SimilarityInput, must not be null. 049 * @param threshold the target threshold, must not be negative. 050 * @return result distance, or -1 if distance exceeds threshold. 051 */ 052 private static <E> int limitedCompare(SimilarityInput<E> left, SimilarityInput<E> right, final int threshold) { 053 if (left == null || right == null) { 054 throw new IllegalArgumentException("Left/right inputs must not be null"); 055 } 056 057 // Implementation based on https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance#Optimal_string_alignment_distance 058 059 int leftLength = left.length(); 060 int rightLength = right.length(); 061 062 if (leftLength == 0) { 063 return clampDistance(rightLength, threshold); 064 } 065 066 if (rightLength == 0) { 067 return clampDistance(leftLength, threshold); 068 } 069 070 // Inspired by LevenshteinDistance impl; swap the input strings to consume less memory 071 if (rightLength > leftLength) { 072 final SimilarityInput<E> tmp = left; 073 left = right; 074 right = tmp; 075 leftLength = rightLength; 076 rightLength = right.length(); 077 } 078 079 // If the difference between the lengths of the strings is greater than the threshold, we must at least do 080 // threshold operations so we can return early 081 if (leftLength - rightLength > threshold) { 082 return -1; 083 } 084 085 // Use three arrays of minimum possible size to reduce memory usage. This avoids having to create a 2D 086 // array of size leftLength * rightLength 087 int[] curr = new int[rightLength + 1]; 088 int[] prev = new int[rightLength + 1]; 089 int[] prevPrev = new int[rightLength + 1]; 090 int[] temp; // Temp variable use to shuffle arrays at the end of each iteration 091 092 int rightIndex, leftIndex, cost, minCost; 093 094 // Changing empty sequence to [0..i] requires i insertions 095 for (rightIndex = 0; rightIndex <= rightLength; rightIndex++) { 096 prev[rightIndex] = rightIndex; 097 } 098 099 // Calculate how many operations it takes to change right[0..rightIndex] into left[0..leftIndex] 100 // For each iteration 101 // - curr[i] contains the cost of changing right[0..i] into left[0..leftIndex] 102 // (computed in current iteration) 103 // - prev[i] contains the cost of changing right[0..i] into left[0..leftIndex - 1] 104 // (computed in previous iteration) 105 // - prevPrev[i] contains the cost of changing right[0..i] into left[0..leftIndex - 2] 106 // (computed in iteration before previous) 107 for (leftIndex = 1; leftIndex <= leftLength; leftIndex++) { 108 // For right[0..0] we must insert leftIndex characters, which means the cost is always leftIndex 109 curr[0] = leftIndex; 110 111 minCost = Integer.MAX_VALUE; 112 113 for (rightIndex = 1; rightIndex <= rightLength; rightIndex++) { 114 cost = left.at(leftIndex - 1) == right.at(rightIndex - 1) ? 0 : 1; 115 116 // Select cheapest operation 117 curr[rightIndex] = Math.min( 118 Math.min( 119 prev[rightIndex] + 1, // Delete current character 120 curr[rightIndex - 1] + 1 // Insert current character 121 ), 122 prev[rightIndex - 1] + cost // Replace (or no cost if same character) 123 ); 124 125 // Check if adjacent characters are the same -> transpose if cheaper 126 if (leftIndex > 1 127 && rightIndex > 1 128 && left.at(leftIndex - 1) == right.at(rightIndex - 2) 129 && left.at(leftIndex - 2) == right.at(rightIndex - 1)) { 130 // Use cost here, to properly handle two subsequent equal letters 131 curr[rightIndex] = Math.min(curr[rightIndex], prevPrev[rightIndex - 2] + cost); 132 } 133 134 minCost = Math.min(curr[rightIndex], minCost); 135 } 136 137 // If there was no total cost for this entire iteration to transform right to left[0..leftIndex], there 138 // can not be a way to do it below threshold. This is because we have no way to reduce the overall cost 139 // in later operations. 140 if (minCost > threshold) { 141 return -1; 142 } 143 144 // Rotate arrays for next iteration 145 temp = prevPrev; 146 prevPrev = prev; 147 prev = curr; 148 curr = temp; 149 } 150 151 // Prev contains the value computed in the latest iteration 152 return clampDistance(prev[rightLength], threshold); 153 } 154 155 /** 156 * Finds the Damerau-Levenshtein distance between two inputs using optimal string alignment. 157 * 158 * @param left the first CharSequence, must not be null. 159 * @param right the second CharSequence, must not be null. 160 * @return result distance. 161 * @throws IllegalArgumentException if either CharSequence input is {@code null}. 162 */ 163 private static <E> int unlimitedCompare(SimilarityInput<E> left, SimilarityInput<E> right) { 164 if (left == null || right == null) { 165 throw new IllegalArgumentException("Left/right inputs must not be null"); 166 } 167 168 /* 169 * Implementation based on https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance#Optimal_string_alignment_distance 170 */ 171 172 int leftLength = left.length(); 173 int rightLength = right.length(); 174 175 if (leftLength == 0) { 176 return rightLength; 177 } 178 179 if (rightLength == 0) { 180 return leftLength; 181 } 182 183 // Inspired by LevenshteinDistance impl; swap the input strings to consume less memory 184 if (rightLength > leftLength) { 185 final SimilarityInput<E> tmp = left; 186 left = right; 187 right = tmp; 188 leftLength = rightLength; 189 rightLength = right.length(); 190 } 191 192 // Use three arrays of minimum possible size to reduce memory usage. This avoids having to create a 2D 193 // array of size leftLength * rightLength 194 int[] curr = new int[rightLength + 1]; 195 int[] prev = new int[rightLength + 1]; 196 int[] prevPrev = new int[rightLength + 1]; 197 int[] temp; // Temp variable use to shuffle arrays at the end of each iteration 198 199 int rightIndex, leftIndex, cost; 200 201 // Changing empty sequence to [0..i] requires i insertions 202 for (rightIndex = 0; rightIndex <= rightLength; rightIndex++) { 203 prev[rightIndex] = rightIndex; 204 } 205 206 // Calculate how many operations it takes to change right[0..rightIndex] into left[0..leftIndex] 207 // For each iteration 208 // - curr[i] contains the cost of changing right[0..i] into left[0..leftIndex] 209 // (computed in current iteration) 210 // - prev[i] contains the cost of changing right[0..i] into left[0..leftIndex - 1] 211 // (computed in previous iteration) 212 // - prevPrev[i] contains the cost of changing right[0..i] into left[0..leftIndex - 2] 213 // (computed in iteration before previous) 214 for (leftIndex = 1; leftIndex <= leftLength; leftIndex++) { 215 // For right[0..0] we must insert leftIndex characters, which means the cost is always leftIndex 216 curr[0] = leftIndex; 217 218 for (rightIndex = 1; rightIndex <= rightLength; rightIndex++) { 219 cost = left.at(leftIndex - 1) == right.at(rightIndex - 1) ? 0 : 1; 220 221 // Select cheapest operation 222 curr[rightIndex] = Math.min( 223 Math.min( 224 prev[rightIndex] + 1, // Delete current character 225 curr[rightIndex - 1] + 1 // Insert current character 226 ), 227 prev[rightIndex - 1] + cost // Replace (or no cost if same character) 228 ); 229 230 // Check if adjacent characters are the same -> transpose if cheaper 231 if (leftIndex > 1 232 && rightIndex > 1 233 && left.at(leftIndex - 1) == right.at(rightIndex - 2) 234 && left.at(leftIndex - 2) == right.at(rightIndex - 1)) { 235 // Use cost here, to properly handle two subsequent equal letters 236 curr[rightIndex] = Math.min(curr[rightIndex], prevPrev[rightIndex - 2] + cost); 237 } 238 } 239 240 // Rotate arrays for next iteration 241 temp = prevPrev; 242 prevPrev = prev; 243 prev = curr; 244 curr = temp; 245 } 246 247 // Prev contains the value computed in the latest iteration 248 return prev[rightLength]; 249 } 250 251 /** 252 * Threshold. 253 */ 254 private final Integer threshold; 255 256 /** 257 * Constructs a default instance that uses a version of the algorithm that does not use a threshold parameter. 258 */ 259 public DamerauLevenshteinDistance() { 260 this(null); 261 } 262 263 /** 264 * Constructs a new instance. If the threshold is not null, distance calculations will be limited to a maximum length. 265 * If the threshold is null, the unlimited version of the algorithm will be used. 266 * 267 * @param threshold If this is null then distances calculations will not be limited. This may not be negative. 268 */ 269 public DamerauLevenshteinDistance(final Integer threshold) { 270 if (threshold != null && threshold < 0) { 271 throw new IllegalArgumentException("Threshold must not be negative"); 272 } 273 this.threshold = threshold; 274 } 275 276 /** 277 * Computes the Damerau-Levenshtein distance between two Strings. 278 * 279 * <p> 280 * A higher score indicates a greater distance. 281 * </p> 282 * 283 * @param left the first input, must not be null. 284 * @param right the second input, must not be null. 285 * @return result distance, or -1 if threshold is exceeded. 286 * @throws IllegalArgumentException if either String input {@code null}. 287 */ 288 @Override 289 public Integer apply(final CharSequence left, final CharSequence right) { 290 return apply(SimilarityInput.input(left), SimilarityInput.input(right)); 291 } 292 293 /** 294 * Computes the Damerau-Levenshtein distance between two inputs. 295 * 296 * <p> 297 * A higher score indicates a greater distance. 298 * </p> 299 * 300 * @param <E> The type of similarity score unit. 301 * @param left the first input, must not be null. 302 * @param right the second input, must not be null. 303 * @return result distance, or -1 if threshold is exceeded. 304 * @throws IllegalArgumentException if either String input {@code null}. 305 * @since 1.13.0 306 */ 307 public <E> Integer apply(final SimilarityInput<E> left, final SimilarityInput<E> right) { 308 if (threshold != null) { 309 return limitedCompare(left, right, threshold); 310 } 311 return unlimitedCompare(left, right); 312 } 313 314 /** 315 * Gets the distance threshold. 316 * 317 * @return The distance threshold. 318 */ 319 public Integer getThreshold() { 320 return threshold; 321 } 322}