001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      https://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.text.similarity;
018
019import java.util.Arrays;
020
021/**
022 * An algorithm for measuring the difference between two character sequences using the <a href="https://en.wikipedia.org/wiki/Levenshtein_distance">Levenshtein
023 * Distance</a>.
024 *
025 * <p>
026 * This is the number of changes needed to change one sequence into another, where each change is a single character modification (deletion, insertion or
027 * substitution).
028 * </p>
029 * <p>
030 * This code has been adapted from Apache Commons Lang 3.3.
031 * </p>
032 *
033 * @since 1.0
034 * @see <a href="https://en.wikipedia.org/wiki/Levenshtein_distance">Levenshtein Distance on Wikipedia</a>
035 * @see <a href="https://xlinux.nist.gov/dads/HTML/Levenshtein.html">Levenshtein Distance on NIST</a>
036 */
037public class LevenshteinDistance implements EditDistance<Integer> {
038
039    /**
040     * The singleton instance.
041     */
042    private static final LevenshteinDistance INSTANCE = new LevenshteinDistance();
043
044    /**
045     * Gets the default instance.
046     *
047     * @return The default instance.
048     */
049    public static LevenshteinDistance getDefaultInstance() {
050        return INSTANCE;
051    }
052
053    /**
054     * Finds the Levenshtein distance between two CharSequences if it's less than or equal to a given threshold.
055     *
056     * <p>
057     * This implementation follows from Algorithms on Strings, Trees and Sequences by Dan Gusfield and Chas Emerick's implementation of the Levenshtein distance
058     * algorithm from <a href="http://www.merriampark.com/ld.htm">http://www.merriampark.com/ld.htm</a>
059     * </p>
060     *
061     * <pre>
062     * limitedCompare(null, *, *)             = IllegalArgumentException
063     * limitedCompare(*, null, *)             = IllegalArgumentException
064     * limitedCompare(*, *, -1)               = IllegalArgumentException
065     * limitedCompare("","", 0)               = 0
066     * limitedCompare("aaapppp", "", 8)       = 7
067     * limitedCompare("aaapppp", "", 7)       = 7
068     * limitedCompare("aaapppp", "", 6))      = -1
069     * limitedCompare("elephant", "hippo", 7) = 7
070     * limitedCompare("elephant", "hippo", 6) = -1
071     * limitedCompare("hippo", "elephant", 7) = 7
072     * limitedCompare("hippo", "elephant", 6) = -1
073     * </pre>
074     *
075     * @param left      the first SimilarityInput, must not be null.
076     * @param right     the second SimilarityInput, must not be null.
077     * @param threshold the target threshold, must not be negative.
078     * @return result distance, or -1
079     */
080    private static <E> int limitedCompare(SimilarityInput<E> left, SimilarityInput<E> right, final int threshold) { // NOPMD
081        if (left == null || right == null) {
082            throw new IllegalArgumentException("CharSequences must not be null");
083        }
084        if (threshold < 0) {
085            throw new IllegalArgumentException("Threshold must not be negative");
086        }
087
088        /*
089         * This implementation only computes the distance if it's less than or equal to the threshold value, returning -1 if it's greater. The advantage is
090         * performance: unbounded distance is O(nm), but a bound of k allows us to reduce it to O(km) time by only computing a diagonal stripe of width 2k + 1
091         * of the cost table. It is also possible to use this to compute the unbounded Levenshtein distance by starting the threshold at 1 and doubling each
092         * time until the distance is found; this is O(dm), where d is the distance.
093         *
094         * One subtlety comes from needing to ignore entries on the border of our stripe eg. p[] = |#|#|#|* d[] = *|#|#|#| We must ignore the entry to the left
095         * of the leftmost member We must ignore the entry above the rightmost member
096         *
097         * Another subtlety comes from our stripe running off the matrix if the strings aren't of the same size. Since string s is always swapped to be the
098         * shorter of the two, the stripe will always run off to the upper right instead of the lower left of the matrix.
099         *
100         * As a concrete example, suppose s is of length 5, t is of length 7, and our threshold is 1. In this case we're going to walk a stripe of length 3. The
101         * matrix would look like so:
102         *
103         * <pre> 1 2 3 4 5 1 |#|#| | | | 2 |#|#|#| | | 3 | |#|#|#| | 4 | | |#|#|#| 5 | | | |#|#| 6 | | | | |#| 7 | | | | | | </pre>
104         *
105         * Note how the stripe leads off the table as there is no possible way to turn a string of length 5 into one of length 7 in edit distance of 1.
106         *
107         * Additionally, this implementation decreases memory usage by using two single-dimensional arrays and swapping them back and forth instead of
108         * allocating an entire n by m matrix. This requires a few minor changes, such as immediately returning when it's detected that the stripe has run off
109         * the matrix and initially filling the arrays with large values so that entries we don't compute are ignored.
110         *
111         * See Algorithms on Strings, Trees and Sequences by Dan Gusfield for some discussion.
112         */
113
114        int n = left.length(); // length of left
115        int m = right.length(); // length of right
116
117        // if one string is empty, the edit distance is necessarily the length
118        // of the other
119        if (n == 0) {
120            return m <= threshold ? m : -1;
121        }
122        if (m == 0) {
123            return n <= threshold ? n : -1;
124        }
125
126        if (n > m) {
127            // swap the two strings to consume less memory
128            final SimilarityInput<E> tmp = left;
129            left = right;
130            right = tmp;
131            n = m;
132            m = right.length();
133        }
134
135        // the edit distance cannot be less than the length difference
136        if (m - n > threshold) {
137            return -1;
138        }
139
140        int[] p = new int[n + 1]; // 'previous' cost array, horizontally
141        int[] d = new int[n + 1]; // cost array, horizontally
142        int[] tempD; // placeholder to assist in swapping p and d
143
144        // fill in starting table values
145        final int boundary = Math.min(n, threshold) + 1;
146        for (int i = 0; i < boundary; i++) {
147            p[i] = i;
148        }
149        // these fills ensure that the value above the rightmost entry of our
150        // stripe will be ignored in following loop iterations
151        Arrays.fill(p, boundary, p.length, Integer.MAX_VALUE);
152        Arrays.fill(d, Integer.MAX_VALUE);
153
154        // iterates through t
155        for (int j = 1; j <= m; j++) {
156            final E rightJ = right.at(j - 1); // jth character of right
157            d[0] = j;
158
159            // compute stripe indices, constrain to array size
160            final int min = Math.max(1, j - threshold);
161            final int max = j > Integer.MAX_VALUE - threshold ? n : Math.min(n, j + threshold);
162
163            // ignore entry left of leftmost
164            if (min > 1) {
165                d[min - 1] = Integer.MAX_VALUE;
166            }
167
168            int lowerBound = Integer.MAX_VALUE;
169            // iterates through [min, max] in s
170            for (int i = min; i <= max; i++) {
171                if (left.at(i - 1).equals(rightJ)) {
172                    // diagonally left and up
173                    d[i] = p[i - 1];
174                } else {
175                    // 1 + minimum of cell to the left, to the top, diagonally
176                    // left and up
177                    d[i] = 1 + Math.min(Math.min(d[i - 1], p[i]), p[i - 1]);
178                }
179                lowerBound = Math.min(lowerBound, d[i]);
180            }
181            // if the lower bound is greater than the threshold, then exit early
182            if (lowerBound > threshold) {
183                return -1;
184            }
185
186            // copy current distance counts to 'previous row' distance counts
187            tempD = p;
188            p = d;
189            d = tempD;
190        }
191
192        // if p[n] is greater than the threshold, there's no guarantee on it
193        // being the correct
194        // distance
195        if (p[n] <= threshold) {
196            return p[n];
197        }
198        return -1;
199    }
200
201    /**
202     * Finds the Levenshtein distance between two Strings.
203     *
204     * <p>
205     * A higher score indicates a greater distance.
206     * </p>
207     *
208     * <p>
209     * The previous implementation of the Levenshtein distance algorithm was from
210     * <a href="https://web.archive.org/web/20120526085419/http://www.merriampark.com/ldjava.htm">
211     * https://web.archive.org/web/20120526085419/http://www.merriampark.com/ldjava.htm</a>
212     * </p>
213     *
214     * <p>
215     * This implementation only need one single-dimensional arrays of length s.length() + 1
216     * </p>
217     *
218     * <pre>
219     * unlimitedCompare(null, *)             = IllegalArgumentException
220     * unlimitedCompare(*, null)             = IllegalArgumentException
221     * unlimitedCompare("","")               = 0
222     * unlimitedCompare("","a")              = 1
223     * unlimitedCompare("aaapppp", "")       = 7
224     * unlimitedCompare("frog", "fog")       = 1
225     * unlimitedCompare("fly", "ant")        = 3
226     * unlimitedCompare("elephant", "hippo") = 7
227     * unlimitedCompare("hippo", "elephant") = 7
228     * unlimitedCompare("hippo", "zzzzzzzz") = 8
229     * unlimitedCompare("hello", "hallo")    = 1
230     * </pre>
231     *
232     * @param left  the first CharSequence, must not be null.
233     * @param right the second CharSequence, must not be null.
234     * @return result distance, or -1.
235     * @throws IllegalArgumentException if either CharSequence input is {@code null}.
236     */
237    private static <E> int unlimitedCompare(SimilarityInput<E> left, SimilarityInput<E> right) {
238        if (left == null || right == null) {
239            throw new IllegalArgumentException("CharSequences must not be null");
240        }
241        /*
242         * This implementation use two variable to record the previous cost counts, So this implementation use less memory than previous impl.
243         */
244        int n = left.length(); // length of left
245        int m = right.length(); // length of right
246
247        if (n == 0) {
248            return m;
249        }
250        if (m == 0) {
251            return n;
252        }
253        if (n > m) {
254            // swap the input strings to consume less memory
255            final SimilarityInput<E> tmp = left;
256            left = right;
257            right = tmp;
258            n = m;
259            m = right.length();
260        }
261        final int[] p = new int[n + 1];
262        // indexes into strings left and right
263        int i; // iterates through left
264        int j; // iterates through right
265        int upperLeft;
266        int upper;
267        E rightJ; // jth character of right
268        int cost; // cost
269        for (i = 0; i <= n; i++) {
270            p[i] = i;
271        }
272        for (j = 1; j <= m; j++) {
273            upperLeft = p[0];
274            rightJ = right.at(j - 1);
275            p[0] = j;
276
277            for (i = 1; i <= n; i++) {
278                upper = p[i];
279                cost = left.at(i - 1).equals(rightJ) ? 0 : 1;
280                // minimum of cell to the left+1, to the top+1, diagonally left and up +cost
281                p[i] = Math.min(Math.min(p[i - 1] + 1, p[i] + 1), upperLeft + cost);
282                upperLeft = upper;
283            }
284        }
285        return p[n];
286    }
287
288    /**
289     * Threshold.
290     */
291    private final Integer threshold;
292
293    /**
294     * Constructs a default instance that uses a version of the algorithm that does not use a threshold parameter.
295     *
296     * @see LevenshteinDistance#getDefaultInstance()
297     * @deprecated Use {@link #getDefaultInstance()}.
298     */
299    @Deprecated
300    public LevenshteinDistance() {
301        this(null);
302    }
303
304    /**
305     * Constructs a new instance. If the threshold is not null, distance calculations will be limited to a maximum length. If the threshold is null, the
306     * unlimited version of the algorithm will be used.
307     *
308     * @param threshold If this is null then distances calculations will not be limited. This may not be negative.
309     */
310    public LevenshteinDistance(final Integer threshold) {
311        if (threshold != null && threshold < 0) {
312            throw new IllegalArgumentException("Threshold must not be negative");
313        }
314        this.threshold = threshold;
315    }
316
317    /**
318     * Computes the Levenshtein distance between two Strings.
319     *
320     * <p>
321     * A higher score indicates a greater distance.
322     * </p>
323     *
324     * <p>
325     * The previous implementation of the Levenshtein distance algorithm was from
326     * <a href="http://www.merriampark.com/ld.htm">http://www.merriampark.com/ld.htm</a>
327     * </p>
328     *
329     * <p>
330     * Chas Emerick has written an implementation in Java, which avoids an OutOfMemoryError which can occur when my Java implementation is used with very large
331     * strings.<br>
332     * This implementation of the Levenshtein distance algorithm is from
333     * <a href="http://www.merriampark.com/ldjava.htm">http://www.merriampark.com/ldjava.htm</a>
334     * </p>
335     *
336     * <pre>
337     * distance.apply(null, *)             = IllegalArgumentException
338     * distance.apply(*, null)             = IllegalArgumentException
339     * distance.apply("","")               = 0
340     * distance.apply("","a")              = 1
341     * distance.apply("aaapppp", "")       = 7
342     * distance.apply("frog", "fog")       = 1
343     * distance.apply("fly", "ant")        = 3
344     * distance.apply("elephant", "hippo") = 7
345     * distance.apply("hippo", "elephant") = 7
346     * distance.apply("hippo", "zzzzzzzz") = 8
347     * distance.apply("hello", "hallo")    = 1
348     * </pre>
349     *
350     * @param left  the first input, must not be null.
351     * @param right the second input, must not be null.
352     * @return result distance, or -1.
353     * @throws IllegalArgumentException if either String input {@code null}.
354     */
355    @Override
356    public Integer apply(final CharSequence left, final CharSequence right) {
357        return apply(SimilarityInput.input(left), SimilarityInput.input(right));
358    }
359
360    /**
361     * Computes the Levenshtein distance between two inputs.
362     *
363     * <p>
364     * A higher score indicates a greater distance.
365     * </p>
366     *
367     * <pre>
368     * distance.apply(null, *)             = IllegalArgumentException
369     * distance.apply(*, null)             = IllegalArgumentException
370     * distance.apply("","")               = 0
371     * distance.apply("","a")              = 1
372     * distance.apply("aaapppp", "")       = 7
373     * distance.apply("frog", "fog")       = 1
374     * distance.apply("fly", "ant")        = 3
375     * distance.apply("elephant", "hippo") = 7
376     * distance.apply("hippo", "elephant") = 7
377     * distance.apply("hippo", "zzzzzzzz") = 8
378     * distance.apply("hello", "hallo")    = 1
379     * </pre>
380     *
381     * @param <E>   The type of similarity score unit.
382     * @param left  the first input, must not be null.
383     * @param right the second input, must not be null.
384     * @return result distance, or -1.
385     * @throws IllegalArgumentException if either String input {@code null}.
386     * @since 1.13.0
387     */
388    public <E> Integer apply(final SimilarityInput<E> left, final SimilarityInput<E> right) {
389        if (threshold != null) {
390            return limitedCompare(left, right, threshold);
391        }
392        return unlimitedCompare(left, right);
393    }
394
395    /**
396     * Gets the distance threshold.
397     *
398     * @return The distance threshold.
399     */
400    public Integer getThreshold() {
401        return threshold;
402    }
403
404}