LevenshteinDetailedDistance.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.text.similarity;
- import java.util.Arrays;
- /**
- * An algorithm for measuring the difference between two character sequences.
- *
- * <p>
- * This is the number of changes needed to change one sequence into another,
- * where each change is a single character modification (deletion, insertion
- * or substitution).
- * </p>
- *
- * @since 1.0
- */
- public class LevenshteinDetailedDistance implements EditDistance<LevenshteinResults> {
- /**
- * Default instance.
- */
- private static final LevenshteinDetailedDistance DEFAULT_INSTANCE = new LevenshteinDetailedDistance();
- /**
- * Threshold.
- */
- private final Integer threshold;
- /**
- * <p>
- * This returns the default instance that uses a version
- * of the algorithm that does not use a threshold parameter.
- * </p>
- *
- * @see LevenshteinDetailedDistance#getDefaultInstance()
- */
- public LevenshteinDetailedDistance() {
- this(null);
- }
- /**
- * If the threshold is not null, distance calculations will be limited to a maximum length.
- *
- * <p>If the threshold is null, the unlimited version of the algorithm will be used.</p>
- *
- * @param threshold If this is null then distances calculations will not be limited. This may not be negative.
- */
- public LevenshteinDetailedDistance(final Integer threshold) {
- if (threshold != null && threshold < 0) {
- throw new IllegalArgumentException("Threshold must not be negative");
- }
- this.threshold = threshold;
- }
- /**
- * <p>Find the Levenshtein distance between two Strings.</p>
- *
- * <p>A higher score indicates a greater distance.</p>
- *
- * <p>The previous implementation of the Levenshtein distance algorithm
- * was from <a href="http://www.merriampark.com/ld.htm">http://www.merriampark.com/ld.htm</a></p>
- *
- * <p>Chas Emerick has written an implementation in Java, which avoids an OutOfMemoryError
- * which can occur when my Java implementation is used with very large strings.<br>
- * This implementation of the Levenshtein distance algorithm
- * is from <a href="http://www.merriampark.com/ldjava.htm">http://www.merriampark.com/ldjava.htm</a></p>
- *
- * <pre>
- * distance.apply(null, *) = IllegalArgumentException
- * distance.apply(*, null) = IllegalArgumentException
- * distance.apply("","") = 0
- * distance.apply("","a") = 1
- * distance.apply("aaapppp", "") = 7
- * distance.apply("frog", "fog") = 1
- * distance.apply("fly", "ant") = 3
- * distance.apply("elephant", "hippo") = 7
- * distance.apply("hippo", "elephant") = 7
- * distance.apply("hippo", "zzzzzzzz") = 8
- * distance.apply("hello", "hallo") = 1
- * </pre>
- *
- * @param left the first string, must not be null
- * @param right the second string, must not be null
- * @return result distance, or -1
- * @throws IllegalArgumentException if either String input {@code null}
- */
- @Override
- public LevenshteinResults apply(final CharSequence left, final CharSequence right) {
- if (threshold != null) {
- return limitedCompare(left, right, threshold);
- }
- return unlimitedCompare(left, right);
- }
- /**
- * Gets the default instance.
- *
- * @return the default instace
- */
- public static LevenshteinDetailedDistance getDefaultInstance() {
- return DEFAULT_INSTANCE;
- }
- /**
- * Gets the distance threshold.
- *
- * @return the distance threshold
- */
- public Integer getThreshold() {
- return threshold;
- }
- /**
- * Find the Levenshtein distance between two CharSequences if it's less than or
- * equal to a given threshold.
- *
- * <p>
- * This implementation follows from Algorithms on Strings, Trees and
- * Sequences by Dan Gusfield and Chas Emerick's implementation of the
- * Levenshtein distance algorithm from <a
- * href="http://www.merriampark.com/ld.htm"
- * >http://www.merriampark.com/ld.htm</a>
- * </p>
- *
- * <pre>
- * limitedCompare(null, *, *) = IllegalArgumentException
- * limitedCompare(*, null, *) = IllegalArgumentException
- * limitedCompare(*, *, -1) = IllegalArgumentException
- * limitedCompare("","", 0) = 0
- * limitedCompare("aaapppp", "", 8) = 7
- * limitedCompare("aaapppp", "", 7) = 7
- * limitedCompare("aaapppp", "", 6)) = -1
- * limitedCompare("elephant", "hippo", 7) = 7
- * limitedCompare("elephant", "hippo", 6) = -1
- * limitedCompare("hippo", "elephant", 7) = 7
- * limitedCompare("hippo", "elephant", 6) = -1
- * </pre>
- *
- * @param left the first string, must not be null
- * @param right the second string, must not be null
- * @param threshold the target threshold, must not be negative
- * @return result distance, or -1
- */
- private static LevenshteinResults limitedCompare(CharSequence left, CharSequence right, final int threshold) { //NOPMD
- if (left == null || right == null) {
- throw new IllegalArgumentException("Strings must not be null");
- }
- if (threshold < 0) {
- throw new IllegalArgumentException("Threshold must not be negative");
- }
- /*
- * This implementation only computes the distance if it's less than or
- * equal to the threshold value, returning -1 if it's greater. The
- * advantage is performance: unbounded distance is O(nm), but a bound of
- * k allows us to reduce it to O(km) time by only computing a diagonal
- * stripe of width 2k + 1 of the cost table. It is also possible to use
- * this to compute the unbounded Levenshtein distance by starting the
- * threshold at 1 and doubling each time until the distance is found;
- * this is O(dm), where d is the distance.
- *
- * One subtlety comes from needing to ignore entries on the border of
- * our stripe eg. p[] = |#|#|#|* d[] = *|#|#|#| We must ignore the entry
- * to the left of the leftmost member We must ignore the entry above the
- * rightmost member
- *
- * Another subtlety comes from our stripe running off the matrix if the
- * strings aren't of the same size. Since string s is always swapped to
- * be the shorter of the two, the stripe will always run off to the
- * upper right instead of the lower left of the matrix.
- *
- * As a concrete example, suppose s is of length 5, t is of length 7,
- * and our threshold is 1. In this case we're going to walk a stripe of
- * length 3. The matrix would look like so:
- *
- * <pre>
- * 1 2 3 4 5
- * 1 |#|#| | | |
- * 2 |#|#|#| | |
- * 3 | |#|#|#| |
- * 4 | | |#|#|#|
- * 5 | | | |#|#|
- * 6 | | | | |#|
- * 7 | | | | | |
- * </pre>
- *
- * Note how the stripe leads off the table as there is no possible way
- * to turn a string of length 5 into one of length 7 in edit distance of
- * 1.
- *
- * Additionally, this implementation decreases memory usage by using two
- * single-dimensional arrays and swapping them back and forth instead of
- * allocating an entire n by m matrix. This requires a few minor
- * changes, such as immediately returning when it's detected that the
- * stripe has run off the matrix and initially filling the arrays with
- * large values so that entries we don't compute are ignored.
- *
- * See Algorithms on Strings, Trees and Sequences by Dan Gusfield for
- * some discussion.
- */
- int n = left.length(); // length of left
- int m = right.length(); // length of right
- // if one string is empty, the edit distance is necessarily the length of the other
- if (n == 0) {
- return m <= threshold ? new LevenshteinResults(m, m, 0, 0) : new LevenshteinResults(-1, 0, 0, 0);
- } else if (m == 0) {
- return n <= threshold ? new LevenshteinResults(n, 0, n, 0) : new LevenshteinResults(-1, 0, 0, 0);
- }
- boolean swapped = false;
- if (n > m) {
- // swap the two strings to consume less memory
- final CharSequence tmp = left;
- left = right;
- right = tmp;
- n = m;
- m = right.length();
- swapped = true;
- }
- int[] p = new int[n + 1]; // 'previous' cost array, horizontally
- int[] d = new int[n + 1]; // cost array, horizontally
- int[] tempD; // placeholder to assist in swapping p and d
- final int[][] matrix = new int[m + 1][n + 1];
- //filling the first row and first column values in the matrix
- for (int index = 0; index <= n; index++) {
- matrix[0][index] = index;
- }
- for (int index = 0; index <= m; index++) {
- matrix[index][0] = index;
- }
- // fill in starting table values
- final int boundary = Math.min(n, threshold) + 1;
- for (int i = 0; i < boundary; i++) {
- p[i] = i;
- }
- // these fills ensure that the value above the rightmost entry of our
- // stripe will be ignored in following loop iterations
- Arrays.fill(p, boundary, p.length, Integer.MAX_VALUE);
- Arrays.fill(d, Integer.MAX_VALUE);
- // iterates through t
- for (int j = 1; j <= m; j++) {
- final char rightJ = right.charAt(j - 1); // jth character of right
- d[0] = j;
- // compute stripe indices, constrain to array size
- final int min = Math.max(1, j - threshold);
- final int max = j > Integer.MAX_VALUE - threshold ? n : Math.min(
- n, j + threshold);
- // the stripe may lead off of the table if s and t are of different sizes
- if (min > max) {
- return new LevenshteinResults(-1, 0, 0, 0);
- }
- // ignore entry left of leftmost
- if (min > 1) {
- d[min - 1] = Integer.MAX_VALUE;
- }
- // iterates through [min, max] in s
- for (int i = min; i <= max; i++) {
- if (left.charAt(i - 1) == rightJ) {
- // diagonally left and up
- d[i] = p[i - 1];
- } else {
- // 1 + minimum of cell to the left, to the top, diagonally left and up
- d[i] = 1 + Math.min(Math.min(d[i - 1], p[i]), p[i - 1]);
- }
- matrix[j][i] = d[i];
- }
- // copy current distance counts to 'previous row' distance counts
- tempD = p;
- p = d;
- d = tempD;
- }
- // if p[n] is greater than the threshold, there's no guarantee on it being the correct distance
- if (p[n] <= threshold) {
- return findDetailedResults(left, right, matrix, swapped);
- }
- return new LevenshteinResults(-1, 0, 0, 0);
- }
- /**
- * <p>Find the Levenshtein distance between two Strings.</p>
- *
- * <p>A higher score indicates a greater distance.</p>
- *
- * <p>The previous implementation of the Levenshtein distance algorithm
- * was from <a href="http://www.merriampark.com/ld.htm">http://www.merriampark.com/ld.htm</a></p>
- *
- * <p>Chas Emerick has written an implementation in Java, which avoids an OutOfMemoryError
- * which can occur when my Java implementation is used with very large strings.<br>
- * This implementation of the Levenshtein distance algorithm
- * is from <a href="http://www.merriampark.com/ldjava.htm">http://www.merriampark.com/ldjava.htm</a></p>
- *
- * <pre>
- * unlimitedCompare(null, *) = IllegalArgumentException
- * unlimitedCompare(*, null) = IllegalArgumentException
- * unlimitedCompare("","") = 0
- * unlimitedCompare("","a") = 1
- * unlimitedCompare("aaapppp", "") = 7
- * unlimitedCompare("frog", "fog") = 1
- * unlimitedCompare("fly", "ant") = 3
- * unlimitedCompare("elephant", "hippo") = 7
- * unlimitedCompare("hippo", "elephant") = 7
- * unlimitedCompare("hippo", "zzzzzzzz") = 8
- * unlimitedCompare("hello", "hallo") = 1
- * </pre>
- *
- * @param left the first String, must not be null
- * @param right the second String, must not be null
- * @return result distance, or -1
- * @throws IllegalArgumentException if either String input {@code null}
- */
- private static LevenshteinResults unlimitedCompare(CharSequence left, CharSequence right) {
- if (left == null || right == null) {
- throw new IllegalArgumentException("Strings must not be null");
- }
- /*
- The difference between this impl. and the previous is that, rather
- than creating and retaining a matrix of size s.length() + 1 by t.length() + 1,
- we maintain two single-dimensional arrays of length s.length() + 1. The first, d,
- is the 'current working' distance array that maintains the newest distance cost
- counts as we iterate through the characters of String s. Each time we increment
- the index of String t we are comparing, d is copied to p, the second int[]. Doing so
- allows us to retain the previous cost counts as required by the algorithm (taking
- the minimum of the cost count to the left, up one, and diagonally up and to the left
- of the current cost count being calculated). (Note that the arrays aren't really
- copied anymore, just switched...this is clearly much better than cloning an array
- or doing a System.arraycopy() each time through the outer loop.)
- Effectively, the difference between the two implementations is this one does not
- cause an out of memory condition when calculating the LD over two very large strings.
- */
- int n = left.length(); // length of left
- int m = right.length(); // length of right
- if (n == 0) {
- return new LevenshteinResults(m, m, 0, 0);
- } else if (m == 0) {
- return new LevenshteinResults(n, 0, n, 0);
- }
- boolean swapped = false;
- if (n > m) {
- // swap the input strings to consume less memory
- final CharSequence tmp = left;
- left = right;
- right = tmp;
- n = m;
- m = right.length();
- swapped = true;
- }
- int[] p = new int[n + 1]; // 'previous' cost array, horizontally
- int[] d = new int[n + 1]; // cost array, horizontally
- int[] tempD; //placeholder to assist in swapping p and d
- final int[][] matrix = new int[m + 1][n + 1];
- // filling the first row and first column values in the matrix
- for (int index = 0; index <= n; index++) {
- matrix[0][index] = index;
- }
- for (int index = 0; index <= m; index++) {
- matrix[index][0] = index;
- }
- // indexes into strings left and right
- int i; // iterates through left
- int j; // iterates through right
- char rightJ; // jth character of right
- int cost; // cost
- for (i = 0; i <= n; i++) {
- p[i] = i;
- }
- for (j = 1; j <= m; j++) {
- rightJ = right.charAt(j - 1);
- d[0] = j;
- for (i = 1; i <= n; i++) {
- cost = left.charAt(i - 1) == rightJ ? 0 : 1;
- // minimum of cell to the left+1, to the top+1, diagonally left and up +cost
- d[i] = Math.min(Math.min(d[i - 1] + 1, p[i] + 1), p[i - 1] + cost);
- //filling the matrix
- matrix[j][i] = d[i];
- }
- // copy current distance counts to 'previous row' distance counts
- tempD = p;
- p = d;
- d = tempD;
- }
- return findDetailedResults(left, right, matrix, swapped);
- }
- /**
- * Finds count for each of the three [insert, delete, substitute] operations
- * needed. This is based on the matrix formed based on the two character
- * sequence.
- *
- * @param left character sequence which need to be converted from
- * @param right character sequence which need to be converted to
- * @param matrix two dimensional array containing
- * @param swapped tells whether the value for left character sequence and right
- * character sequence were swapped to save memory
- * @return result object containing the count of insert, delete and substitute and total count needed
- */
- private static LevenshteinResults findDetailedResults(final CharSequence left, final CharSequence right, final int[][] matrix,
- final boolean swapped) {
- int delCount = 0;
- int addCount = 0;
- int subCount = 0;
- int rowIndex = right.length();
- int columnIndex = left.length();
- int dataAtLeft = 0;
- int dataAtTop = 0;
- int dataAtDiagonal = 0;
- int data = 0;
- boolean deleted = false;
- boolean added = false;
- while (rowIndex >= 0 && columnIndex >= 0) {
- if (columnIndex == 0) {
- dataAtLeft = -1;
- } else {
- dataAtLeft = matrix[rowIndex][columnIndex - 1];
- }
- if (rowIndex == 0) {
- dataAtTop = -1;
- } else {
- dataAtTop = matrix[rowIndex - 1][columnIndex];
- }
- if (rowIndex > 0 && columnIndex > 0) {
- dataAtDiagonal = matrix[rowIndex - 1][columnIndex - 1];
- } else {
- dataAtDiagonal = -1;
- }
- if (dataAtLeft == -1 && dataAtTop == -1 && dataAtDiagonal == -1) {
- break;
- }
- data = matrix[rowIndex][columnIndex];
- // case in which the character at left and right are the same,
- // in this case none of the counters will be incremented.
- if (columnIndex > 0 && rowIndex > 0 && left.charAt(columnIndex - 1) == right.charAt(rowIndex - 1)) {
- columnIndex--;
- rowIndex--;
- continue;
- }
- // handling insert and delete cases.
- deleted = false;
- added = false;
- if (data - 1 == dataAtLeft && (data <= dataAtDiagonal && data <= dataAtTop)
- || (dataAtDiagonal == -1 && dataAtTop == -1)) { // NOPMD
- columnIndex--;
- if (swapped) {
- addCount++;
- added = true;
- } else {
- delCount++;
- deleted = true;
- }
- } else if (data - 1 == dataAtTop && (data <= dataAtDiagonal && data <= dataAtLeft)
- || (dataAtDiagonal == -1 && dataAtLeft == -1)) { // NOPMD
- rowIndex--;
- if (swapped) {
- delCount++;
- deleted = true;
- } else {
- addCount++;
- added = true;
- }
- }
- // substituted case
- if (!added && !deleted) {
- subCount++;
- columnIndex--;
- rowIndex--;
- }
- }
- return new LevenshteinResults(addCount + delCount + subCount, addCount, delCount, subCount);
- }
- }