View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.math4.legacy.ode;
18  
19  import java.util.ArrayList;
20  import java.util.List;
21  
22  import org.apache.commons.math4.legacy.core.RealFieldElement;
23  import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
24  import org.apache.commons.math4.legacy.exception.MaxCountExceededException;
25  import org.apache.commons.math4.legacy.core.MathArrays;
26  
27  
28  /**
29   * This class represents a combined set of first order differential equations,
30   * with at least a primary set of equations expandable by some sets of secondary
31   * equations.
32   * <p>
33   * One typical use case is the computation of the Jacobian matrix for some ODE.
34   * In this case, the primary set of equations corresponds to the raw ODE, and we
35   * add to this set another bunch of secondary equations which represent the Jacobian
36   * matrix of the primary set.
37   * </p>
38   * <p>
39   * We want the integrator to use <em>only</em> the primary set to estimate the
40   * errors and hence the step sizes. It should <em>not</em> use the secondary
41   * equations in this computation. The {@link FirstOrderFieldIntegrator integrator} will
42   * be able to know where the primary set ends and so where the secondary sets begin.
43   * </p>
44   *
45   * @see FirstOrderFieldDifferentialEquations
46   * @see FieldSecondaryEquations
47   *
48   * @param <T> the type of the field elements
49   * @since 3.6
50   */
51  
52  public class FieldExpandableODE<T extends RealFieldElement<T>> {
53  
54      /** Primary differential equation. */
55      private final FirstOrderFieldDifferentialEquations<T> primary;
56  
57      /** Components of the expandable ODE. */
58      private List<FieldSecondaryEquations<T>> components;
59  
60      /** Mapper for all equations. */
61      private FieldEquationsMapper<T> mapper;
62  
63      /** Build an expandable set from its primary ODE set.
64       * @param primary the primary set of differential equations to be integrated.
65       */
66      public FieldExpandableODE(final FirstOrderFieldDifferentialEquations<T> primary) {
67          this.primary    = primary;
68          this.components = new ArrayList<>();
69          this.mapper     = new FieldEquationsMapper<>(null, primary.getDimension());
70      }
71  
72      /** Get the mapper for the set of equations.
73       * @return mapper for the set of equations
74       */
75      public FieldEquationsMapper<T> getMapper() {
76          return mapper;
77      }
78  
79      /** Add a set of secondary equations to be integrated along with the primary set.
80       * @param secondary secondary equations set
81       * @return index of the secondary equation in the expanded state, to be used
82       * as the parameter to {@link FieldODEState#getSecondaryState(int)} and
83       * {@link FieldODEStateAndDerivative#getSecondaryDerivative(int)} (beware index
84       * 0 corresponds to main state, additional states start at 1)
85       */
86      public int addSecondaryEquations(final FieldSecondaryEquations<T> secondary) {
87  
88          components.add(secondary);
89          mapper = new FieldEquationsMapper<>(mapper, secondary.getDimension());
90  
91          return components.size();
92      }
93  
94      /** Initialize equations at the start of an ODE integration.
95       * @param t0 value of the independent <I>time</I> variable at integration start
96       * @param y0 array containing the value of the state vector at integration start
97       * @param finalTime target time for the integration
98       * @exception MaxCountExceededException if the number of functions evaluations is exceeded
99       * @exception DimensionMismatchException if arrays dimensions do not match equations settings
100      */
101     public void init(final T t0, final T[] y0, final T finalTime) {
102 
103         // initialize primary equations
104         int index = 0;
105         final T[] primary0 = mapper.extractEquationData(index, y0);
106         primary.init(t0, primary0, finalTime);
107 
108         // initialize secondary equations
109         while (++index < mapper.getNumberOfEquations()) {
110             final T[] secondary0 = mapper.extractEquationData(index, y0);
111             components.get(index - 1).init(t0, primary0, secondary0, finalTime);
112         }
113     }
114 
115     /** Get the current time derivative of the complete state vector.
116      * @param t current value of the independent <I>time</I> variable
117      * @param y array containing the current value of the complete state vector
118      * @return time derivative of the complete state vector
119      * @exception MaxCountExceededException if the number of functions evaluations is exceeded
120      * @exception DimensionMismatchException if arrays dimensions do not match equations settings
121      */
122     public T[] computeDerivatives(final T t, final T[] y)
123         throws MaxCountExceededException, DimensionMismatchException {
124 
125         final T[] yDot = MathArrays.buildArray(t.getField(), mapper.getTotalDimension());
126 
127         // compute derivatives of the primary equations
128         int index = 0;
129         final T[] primaryState    = mapper.extractEquationData(index, y);
130         final T[] primaryStateDot = primary.computeDerivatives(t, primaryState);
131         mapper.insertEquationData(index, primaryStateDot, yDot);
132 
133         // Add contribution for secondary equations
134         while (++index < mapper.getNumberOfEquations()) {
135             final T[] componentState    = mapper.extractEquationData(index, y);
136             final T[] componentStateDot = components.get(index - 1).computeDerivatives(t, primaryState, primaryStateDot,
137                                                                                        componentState);
138             mapper.insertEquationData(index, componentStateDot, yDot);
139         }
140 
141         return yDot;
142     }
143 }