View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.apache.commons.math4.legacy.ode.nonstiff;
19  
20  import org.apache.commons.math4.legacy.core.Field;
21  import org.apache.commons.math4.legacy.core.RealFieldElement;
22  import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
23  import org.apache.commons.math4.legacy.exception.MaxCountExceededException;
24  import org.apache.commons.math4.legacy.exception.NoBracketingException;
25  import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
26  import org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix;
27  import org.apache.commons.math4.legacy.linear.FieldMatrix;
28  import org.apache.commons.math4.legacy.ode.FieldExpandableODE;
29  import org.apache.commons.math4.legacy.ode.FieldODEState;
30  import org.apache.commons.math4.legacy.ode.FieldODEStateAndDerivative;
31  import org.apache.commons.math4.legacy.core.MathArrays;
32  
33  
34  /**
35   * This class implements explicit Adams-Bashforth integrators for Ordinary
36   * Differential Equations.
37   *
38   * <p>Adams-Bashforth methods (in fact due to Adams alone) are explicit
39   * multistep ODE solvers. This implementation is a variation of the classical
40   * one: it uses adaptive stepsize to implement error control, whereas
41   * classical implementations are fixed step size. The value of state vector
42   * at step n+1 is a simple combination of the value at step n and of the
43   * derivatives at steps n, n-1, n-2 ... Depending on the number k of previous
44   * steps one wants to use for computing the next value, different formulas
45   * are available:</p>
46   * <ul>
47   *   <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n</sub></li>
48   *   <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (3y'<sub>n</sub>-y'<sub>n-1</sub>)/2</li>
49   *   <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (23y'<sub>n</sub>-16y'<sub>n-1</sub>+5y'<sub>n-2</sub>)/12</li>
50   *   <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (55y'<sub>n</sub>-59y'<sub>n-1</sub>+37y'<sub>n-2</sub>-9y'<sub>n-3</sub>)/24</li>
51   *   <li>...</li>
52   * </ul>
53   *
54   * <p>A k-steps Adams-Bashforth method is of order k.</p>
55   *
56   * <p><b>Implementation details</b></p>
57   *
58   * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
59   * <div style="white-space: pre"><code>
60   * s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative
61   * s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative
62   * s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative
63   * ...
64   * s<sub>k</sub>(n) = h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub> for k<sup>th</sup> derivative
65   * </code></div>
66   *
67   * <p>The definitions above use the classical representation with several previous first
68   * derivatives. Lets define
69   * <div style="white-space: pre"><code>
70   *   q<sub>n</sub> = [ s<sub>1</sub>(n-1) s<sub>1</sub>(n-2) ... s<sub>1</sub>(n-(k-1)) ]<sup>T</sup>
71   * </code></div>
72   * (we omit the k index in the notation for clarity). With these definitions,
73   * Adams-Bashforth methods can be written:
74   * <ul>
75   *   <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n)</li>
76   *   <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + 3/2 s<sub>1</sub>(n) + [ -1/2 ] q<sub>n</sub></li>
77   *   <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + 23/12 s<sub>1</sub>(n) + [ -16/12 5/12 ] q<sub>n</sub></li>
78   *   <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + 55/24 s<sub>1</sub>(n) + [ -59/24 37/24 -9/24 ] q<sub>n</sub></li>
79   *   <li>...</li>
80   * </ul>
81   *
82   * <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>,
83   * s<sub>1</sub>(n) and q<sub>n</sub>), our implementation uses the Nordsieck vector with
84   * higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n)
85   * and r<sub>n</sub>) where r<sub>n</sub> is defined as:
86   * <div style="white-space: pre"><code>
87   * r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup>
88   * </code></div>
89   * (here again we omit the k index in the notation for clarity)
90   *
91   * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be
92   * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact
93   * for degree k polynomials.
94   * <div style="white-space: pre"><code>
95   * s<sub>1</sub>(n-i) = s<sub>1</sub>(n) + &sum;<sub>j&gt;0</sub> (j+1) (-i)<sup>j</sup> s<sub>j+1</sub>(n)
96   * </code></div>
97   * The previous formula can be used with several values for i to compute the transform between
98   * classical representation and Nordsieck vector. The transform between r<sub>n</sub>
99   * and q<sub>n</sub> resulting from the Taylor series formulas above is:
100  * <div style="white-space: pre"><code>
101  * q<sub>n</sub> = s<sub>1</sub>(n) u + P r<sub>n</sub>
102  * </code></div>
103  * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)&times;(k-1) matrix built
104  * with the (j+1) (-i)<sup>j</sup> terms with i being the row number starting from 1 and j being
105  * the column number starting from 1:
106  * <pre>
107  *        [  -2   3   -4    5  ... ]
108  *        [  -4  12  -32   80  ... ]
109  *   P =  [  -6  27 -108  405  ... ]
110  *        [  -8  48 -256 1280  ... ]
111  *        [          ...           ]
112  * </pre>
113  *
114  * <p>Using the Nordsieck vector has several advantages:
115  * <ul>
116  *   <li>it greatly simplifies step interpolation as the interpolator mainly applies
117  *   Taylor series formulas,</li>
118  *   <li>it simplifies step changes that occur when discrete events that truncate
119  *   the step are triggered,</li>
120  *   <li>it allows to extend the methods in order to support adaptive stepsize.</li>
121  * </ul>
122  *
123  * <p>The Nordsieck vector at step n+1 is computed from the Nordsieck vector at step n as follows:
124  * <ul>
125  *   <li>y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
126  *   <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
127  *   <li>r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
128  * </ul>
129  * where A is a rows shifting matrix (the lower left part is an identity matrix):
130  * <pre>
131  *        [ 0 0   ...  0 0 | 0 ]
132  *        [ ---------------+---]
133  *        [ 1 0   ...  0 0 | 0 ]
134  *    A = [ 0 1   ...  0 0 | 0 ]
135  *        [       ...      | 0 ]
136  *        [ 0 0   ...  1 0 | 0 ]
137  *        [ 0 0   ...  0 1 | 0 ]
138  * </pre>
139  *
140  * <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state,
141  * they only depend on k and therefore are precomputed once for all.</p>
142  *
143  * @param <T> the type of the field elements
144  * @since 3.6
145  */
146 public class AdamsBashforthFieldIntegrator<T extends RealFieldElement<T>> extends AdamsFieldIntegrator<T> {
147 
148     /** Integrator method name. */
149     private static final String METHOD_NAME = "Adams-Bashforth";
150 
151     /**
152      * Build an Adams-Bashforth integrator with the given order and step control parameters.
153      * @param field field to which the time and state vector elements belong
154      * @param nSteps number of steps of the method excluding the one being computed
155      * @param minStep minimal step (sign is irrelevant, regardless of
156      * integration direction, forward or backward), the last step can
157      * be smaller than this
158      * @param maxStep maximal step (sign is irrelevant, regardless of
159      * integration direction, forward or backward), the last step can
160      * be smaller than this
161      * @param scalAbsoluteTolerance allowed absolute error
162      * @param scalRelativeTolerance allowed relative error
163      * @exception NumberIsTooSmallException if order is 1 or less
164      */
165     public AdamsBashforthFieldIntegrator(final Field<T> field, final int nSteps,
166                                          final double minStep, final double maxStep,
167                                          final double scalAbsoluteTolerance,
168                                          final double scalRelativeTolerance)
169         throws NumberIsTooSmallException {
170         super(field, METHOD_NAME, nSteps, nSteps, minStep, maxStep,
171               scalAbsoluteTolerance, scalRelativeTolerance);
172     }
173 
174     /**
175      * Build an Adams-Bashforth integrator with the given order and step control parameters.
176      * @param field field to which the time and state vector elements belong
177      * @param nSteps number of steps of the method excluding the one being computed
178      * @param minStep minimal step (sign is irrelevant, regardless of
179      * integration direction, forward or backward), the last step can
180      * be smaller than this
181      * @param maxStep maximal step (sign is irrelevant, regardless of
182      * integration direction, forward or backward), the last step can
183      * be smaller than this
184      * @param vecAbsoluteTolerance allowed absolute error
185      * @param vecRelativeTolerance allowed relative error
186      * @exception IllegalArgumentException if order is 1 or less
187      */
188     public AdamsBashforthFieldIntegrator(final Field<T> field, final int nSteps,
189                                          final double minStep, final double maxStep,
190                                          final double[] vecAbsoluteTolerance,
191                                          final double[] vecRelativeTolerance)
192         throws IllegalArgumentException {
193         super(field, METHOD_NAME, nSteps, nSteps, minStep, maxStep,
194               vecAbsoluteTolerance, vecRelativeTolerance);
195     }
196 
197     /** Estimate error.
198      * <p>
199      * Error is estimated by interpolating back to previous state using
200      * the state Taylor expansion and comparing to real previous state.
201      * </p>
202      * @param previousState state vector at step start
203      * @param predictedState predicted state vector at step end
204      * @param predictedScaled predicted value of the scaled derivatives at step end
205      * @param predictedNordsieck predicted value of the Nordsieck vector at step end
206      * @return estimated normalized local discretization error
207      */
208     private T errorEstimation(final T[] previousState,
209                               final T[] predictedState,
210                               final T[] predictedScaled,
211                               final FieldMatrix<T> predictedNordsieck) {
212 
213         T error = getField().getZero();
214         for (int i = 0; i < mainSetDimension; ++i) {
215             final T yScale = predictedState[i].abs();
216             final T tol = (vecAbsoluteTolerance == null) ?
217                           yScale.multiply(scalRelativeTolerance).add(scalAbsoluteTolerance) :
218                           yScale.multiply(vecRelativeTolerance[i]).add(vecAbsoluteTolerance[i]);
219 
220             // apply Taylor formula from high order to low order,
221             // for the sake of numerical accuracy
222             T variation = getField().getZero();
223             int sign = (predictedNordsieck.getRowDimension() & 1) == 0 ? -1 : 1;
224             for (int k = predictedNordsieck.getRowDimension() - 1; k >= 0; --k) {
225                 variation = variation.add(predictedNordsieck.getEntry(k, i).multiply(sign));
226                 sign      = -sign;
227             }
228             variation = variation.subtract(predictedScaled[i]);
229 
230             final T ratio  = predictedState[i].subtract(previousState[i]).add(variation).divide(tol);
231             error = error.add(ratio.multiply(ratio));
232         }
233 
234         return error.divide(mainSetDimension).sqrt();
235     }
236 
237     /** {@inheritDoc} */
238     @Override
239     public FieldODEStateAndDerivative<T> integrate(final FieldExpandableODE<T> equations,
240                                                    final FieldODEState<T> initialState,
241                                                    final T finalTime)
242         throws NumberIsTooSmallException, DimensionMismatchException,
243                MaxCountExceededException, NoBracketingException {
244 
245         sanityChecks(initialState, finalTime);
246         final T   t0 = initialState.getTime();
247         final T[] y  = equations.getMapper().mapState(initialState);
248         setStepStart(initIntegration(equations, t0, y, finalTime));
249         final boolean forward = finalTime.subtract(initialState.getTime()).getReal() > 0;
250 
251         // compute the initial Nordsieck vector using the configured starter integrator
252         start(equations, getStepStart(), finalTime);
253 
254         // reuse the step that was chosen by the starter integrator
255         FieldODEStateAndDerivative<T> stepStart = getStepStart();
256         FieldODEStateAndDerivative<T> stepEnd   =
257                         AdamsFieldStepInterpolator.taylor(stepStart,
258                                                           stepStart.getTime().add(getStepSize()),
259                                                           getStepSize(), scaled, nordsieck);
260 
261         // main integration loop
262         setIsLastStep(false);
263         do {
264 
265             T[] predictedY = null;
266             final T[] predictedScaled = MathArrays.buildArray(getField(), y.length);
267             Array2DRowFieldMatrix<T> predictedNordsieck = null;
268             T error = getField().getZero().add(10);
269             while (error.subtract(1.0).getReal() >= 0.0) {
270 
271                 // predict a first estimate of the state at step end
272                 predictedY = stepEnd.getState();
273 
274                 // evaluate the derivative
275                 final T[] yDot = computeDerivatives(stepEnd.getTime(), predictedY);
276 
277                 // predict Nordsieck vector at step end
278                 for (int j = 0; j < predictedScaled.length; ++j) {
279                     predictedScaled[j] = getStepSize().multiply(yDot[j]);
280                 }
281                 predictedNordsieck = updateHighOrderDerivativesPhase1(nordsieck);
282                 updateHighOrderDerivativesPhase2(scaled, predictedScaled, predictedNordsieck);
283 
284                 // evaluate error
285                 error = errorEstimation(y, predictedY, predictedScaled, predictedNordsieck);
286 
287                 if (error.subtract(1.0).getReal() >= 0.0) {
288                     // reject the step and attempt to reduce error by stepsize control
289                     final T factor = computeStepGrowShrinkFactor(error);
290                     rescale(filterStep(getStepSize().multiply(factor), forward, false));
291                     stepEnd = AdamsFieldStepInterpolator.taylor(getStepStart(),
292                                                                 getStepStart().getTime().add(getStepSize()),
293                                                                 getStepSize(),
294                                                                 scaled,
295                                                                 nordsieck);
296                 }
297             }
298 
299             // discrete events handling
300             setStepStart(acceptStep(new AdamsFieldStepInterpolator<>(getStepSize(), stepEnd,
301                                                                       predictedScaled, predictedNordsieck, forward,
302                                                                       getStepStart(), stepEnd,
303                                                                       equations.getMapper()),
304                                     finalTime));
305             scaled    = predictedScaled;
306             nordsieck = predictedNordsieck;
307 
308             if (!isLastStep()) {
309 
310                 System.arraycopy(predictedY, 0, y, 0, y.length);
311 
312                 if (resetOccurred()) {
313                     // some events handler has triggered changes that
314                     // invalidate the derivatives, we need to restart from scratch
315                     start(equations, getStepStart(), finalTime);
316                 }
317 
318                 // stepsize control for next step
319                 final T       factor     = computeStepGrowShrinkFactor(error);
320                 final T       scaledH    = getStepSize().multiply(factor);
321                 final T       nextT      = getStepStart().getTime().add(scaledH);
322                 final boolean nextIsLast = forward ?
323                                            nextT.subtract(finalTime).getReal() >= 0 :
324                                            nextT.subtract(finalTime).getReal() <= 0;
325                 T hNew = filterStep(scaledH, forward, nextIsLast);
326 
327                 final T       filteredNextT      = getStepStart().getTime().add(hNew);
328                 final boolean filteredNextIsLast = forward ?
329                                                    filteredNextT.subtract(finalTime).getReal() >= 0 :
330                                                    filteredNextT.subtract(finalTime).getReal() <= 0;
331                 if (filteredNextIsLast) {
332                     hNew = finalTime.subtract(getStepStart().getTime());
333                 }
334 
335                 rescale(hNew);
336                 stepEnd = AdamsFieldStepInterpolator.taylor(getStepStart(), getStepStart().getTime().add(getStepSize()),
337                                                             getStepSize(), scaled, nordsieck);
338             }
339         } while (!isLastStep());
340 
341         final FieldODEStateAndDerivative<T> finalState = getStepStart();
342         setStepStart(null);
343         setStepSize(null);
344         return finalState;
345     }
346 }