View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.apache.commons.math4.legacy.ode.nonstiff;
19  
20  import java.util.Arrays;
21  import java.util.HashMap;
22  import java.util.Map;
23  
24  import org.apache.commons.math4.legacy.core.Field;
25  import org.apache.commons.math4.legacy.core.RealFieldElement;
26  import org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix;
27  import org.apache.commons.math4.legacy.linear.ArrayFieldVector;
28  import org.apache.commons.math4.legacy.linear.FieldDecompositionSolver;
29  import org.apache.commons.math4.legacy.linear.FieldLUDecomposition;
30  import org.apache.commons.math4.legacy.linear.FieldMatrix;
31  import org.apache.commons.math4.legacy.core.MathArrays;
32  
33  /** Transformer to Nordsieck vectors for Adams integrators.
34   * <p>This class is used by {@link AdamsBashforthIntegrator Adams-Bashforth} and
35   * {@link AdamsMoultonIntegrator Adams-Moulton} integrators to convert between
36   * classical representation with several previous first derivatives and Nordsieck
37   * representation with higher order scaled derivatives.</p>
38   *
39   * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
40   * <div style="white-space: pre"><code>
41   * s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative
42   * s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative
43   * s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative
44   * ...
45   * s<sub>k</sub>(n) = h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub> for k<sup>th</sup> derivative
46   * </code></div>
47   *
48   * <p>With the previous definition, the classical representation of multistep methods
49   * uses first derivatives only, i.e. it handles y<sub>n</sub>, s<sub>1</sub>(n) and
50   * q<sub>n</sub> where q<sub>n</sub> is defined as:
51   * <div style="white-space: pre"><code>
52   *   q<sub>n</sub> = [ s<sub>1</sub>(n-1) s<sub>1</sub>(n-2) ... s<sub>1</sub>(n-(k-1)) ]<sup>T</sup>
53   * </code></div>
54   * (we omit the k index in the notation for clarity).
55   *
56   * <p>Another possible representation uses the Nordsieck vector with
57   * higher degrees scaled derivatives all taken at the same step, i.e it handles y<sub>n</sub>,
58   * s<sub>1</sub>(n) and r<sub>n</sub>) where r<sub>n</sub> is defined as:
59   * <div style="white-space: pre"><code>
60   * r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup>
61   * </code></div>
62   * (here again we omit the k index in the notation for clarity)
63   *
64   * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be
65   * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact
66   * for degree k polynomials.
67   * <div style="white-space: pre"><code>
68   * s<sub>1</sub>(n-i) = s<sub>1</sub>(n) + &sum;<sub>j&gt;0</sub> (j+1) (-i)<sup>j</sup> s<sub>j+1</sub>(n)
69   * </code></div>
70   * The previous formula can be used with several values for i to compute the transform between
71   * classical representation and Nordsieck vector at step end. The transform between r<sub>n</sub>
72   * and q<sub>n</sub> resulting from the Taylor series formulas above is:
73   * <div style="white-space: pre"><code>
74   * q<sub>n</sub> = s<sub>1</sub>(n) u + P r<sub>n</sub>
75   * </code></div>
76   * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)&times;(k-1) matrix built
77   * with the (j+1) (-i)<sup>j</sup> terms with i being the row number starting from 1 and j being
78   * the column number starting from 1:
79   * <pre>
80   *        [  -2   3   -4    5  ... ]
81   *        [  -4  12  -32   80  ... ]
82   *   P =  [  -6  27 -108  405  ... ]
83   *        [  -8  48 -256 1280  ... ]
84   *        [          ...           ]
85   * </pre>
86   *
87   * <p>Changing -i into +i in the formula above can be used to compute a similar transform between
88   * classical representation and Nordsieck vector at step start. The resulting matrix is simply
89   * the absolute value of matrix P.</p>
90   *
91   * <p>For {@link AdamsBashforthIntegrator Adams-Bashforth} method, the Nordsieck vector
92   * at step n+1 is computed from the Nordsieck vector at step n as follows:
93   * <ul>
94   *   <li>y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
95   *   <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
96   *   <li>r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
97   * </ul>
98   * where A is a rows shifting matrix (the lower left part is an identity matrix):
99   * <pre>
100  *        [ 0 0   ...  0 0 | 0 ]
101  *        [ ---------------+---]
102  *        [ 1 0   ...  0 0 | 0 ]
103  *    A = [ 0 1   ...  0 0 | 0 ]
104  *        [       ...      | 0 ]
105  *        [ 0 0   ...  1 0 | 0 ]
106  *        [ 0 0   ...  0 1 | 0 ]
107  * </pre>
108  *
109  * <p>For {@link AdamsMoultonIntegrator Adams-Moulton} method, the predicted Nordsieck vector
110  * at step n+1 is computed from the Nordsieck vector at step n as follows:
111  * <ul>
112  *   <li>Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
113  *   <li>S<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, Y<sub>n+1</sub>)</li>
114  *   <li>R<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
115  * </ul>
116  * From this predicted vector, the corrected vector is computed as follows:
117  * <ul>
118  *   <li>y<sub>n+1</sub> = y<sub>n</sub> + S<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... &plusmn;1 ] r<sub>n+1</sub></li>
119  *   <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
120  *   <li>r<sub>n+1</sub> = R<sub>n+1</sub> + (s<sub>1</sub>(n+1) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u</li>
121  * </ul>
122  * where the upper case Y<sub>n+1</sub>, S<sub>1</sub>(n+1) and R<sub>n+1</sub> represent the
123  * predicted states whereas the lower case y<sub>n+1</sub>, s<sub>n+1</sub> and r<sub>n+1</sub>
124  * represent the corrected states.
125  *
126  * <p>We observe that both methods use similar update formulas. In both cases a P<sup>-1</sup>u
127  * vector and a P<sup>-1</sup> A P matrix are used that do not depend on the state,
128  * they only depend on k. This class handles these transformations.</p>
129  *
130  * @param <T> the type of the field elements
131  * @since 3.6
132  */
133 public final class AdamsNordsieckFieldTransformer<T extends RealFieldElement<T>> {
134 
135     /** Cache for already computed coefficients. */
136     private static final Map<Integer,
137                          Map<Field<? extends RealFieldElement<?>>,
138                                    AdamsNordsieckFieldTransformer<? extends RealFieldElement<?>>>> CACHE =
139         new HashMap<>();
140 
141     /** Field to which the time and state vector elements belong. */
142     private final Field<T> field;
143 
144     /** Update matrix for the higher order derivatives h<sup>2</sup>/2 y'', h<sup>3</sup>/6 y''' ... */
145     private final Array2DRowFieldMatrix<T> update;
146 
147     /** Update coefficients of the higher order derivatives wrt y'. */
148     private final T[] c1;
149 
150     /** Simple constructor.
151      * @param field field to which the time and state vector elements belong
152      * @param n number of steps of the multistep method
153      * (excluding the one being computed)
154      */
155     private AdamsNordsieckFieldTransformer(final Field<T> field, final int n) {
156 
157         this.field = field;
158         final int rows = n - 1;
159 
160         // compute coefficients
161         FieldMatrix<T> bigP = buildP(rows);
162         FieldDecompositionSolver<T> pSolver =
163             new FieldLUDecomposition<>(bigP).getSolver();
164 
165         T[] u = MathArrays.buildArray(field, rows);
166         Arrays.fill(u, field.getOne());
167         c1 = pSolver.solve(new ArrayFieldVector<>(u, false)).toArray();
168 
169         // update coefficients are computed by combining transform from
170         // Nordsieck to multistep, then shifting rows to represent step advance
171         // then applying inverse transform
172         T[][] shiftedP = bigP.getData();
173         // shift rows
174         if (shiftedP.length - 1 > 0){
175             System.arraycopy(shiftedP, 0, shiftedP, 1, shiftedP.length - 1);
176         }
177         shiftedP[0] = MathArrays.buildArray(field, rows);
178         Arrays.fill(shiftedP[0], field.getZero());
179         update = new Array2DRowFieldMatrix<>(pSolver.solve(new Array2DRowFieldMatrix<>(shiftedP, false)).getData());
180     }
181 
182     /** Get the Nordsieck transformer for a given field and number of steps.
183      * @param field field to which the time and state vector elements belong
184      * @param nSteps number of steps of the multistep method
185      * (excluding the one being computed)
186      * @return Nordsieck transformer for the specified field and number of steps
187      * @param <T> the type of the field elements
188      */
189     public static <T extends RealFieldElement<T>> AdamsNordsieckFieldTransformer<T>
190     getInstance(final Field<T> field, final int nSteps) {
191         synchronized(CACHE) {
192             Map<Field<? extends RealFieldElement<?>>,
193                       AdamsNordsieckFieldTransformer<? extends RealFieldElement<?>>> map = CACHE.get(nSteps);
194             if (map == null) {
195                 map = new HashMap<>();
196                 CACHE.put(nSteps, map);
197             }
198             @SuppressWarnings("unchecked")
199             AdamsNordsieckFieldTransformer<T> t = (AdamsNordsieckFieldTransformer<T>) map.get(field);
200             if (t == null) {
201                 t = new AdamsNordsieckFieldTransformer<>(field, nSteps);
202                 map.put(field, t);
203             }
204             return t;
205         }
206     }
207 
208     /** Build the P matrix.
209      * <p>The P matrix general terms are shifted (j+1) (-i)<sup>j</sup> terms
210      * with i being the row number starting from 1 and j being the column
211      * number starting from 1:
212      * <pre>
213      *        [  -2   3   -4    5  ... ]
214      *        [  -4  12  -32   80  ... ]
215      *   P =  [  -6  27 -108  405  ... ]
216      *        [  -8  48 -256 1280  ... ]
217      *        [          ...           ]
218      * </pre>
219      * @param rows number of rows of the matrix
220      * @return P matrix
221      */
222     private FieldMatrix<T> buildP(final int rows) {
223 
224         final T[][] pData = MathArrays.buildArray(field, rows, rows);
225 
226         for (int i = 1; i <= pData.length; ++i) {
227             // build the P matrix elements from Taylor series formulas
228             final T[] pI = pData[i - 1];
229             final int factor = -i;
230             T aj = field.getZero().add(factor);
231             for (int j = 1; j <= pI.length; ++j) {
232                 pI[j - 1] = aj.multiply(j + 1);
233                 aj = aj.multiply(factor);
234             }
235         }
236 
237         return new Array2DRowFieldMatrix<>(pData, false);
238     }
239 
240     /** Initialize the high order scaled derivatives at step start.
241      * @param h step size to use for scaling
242      * @param t first steps times
243      * @param y first steps states
244      * @param yDot first steps derivatives
245      * @return Nordieck vector at start of first step (h<sup>2</sup>/2 y''<sub>n</sub>,
246      * h<sup>3</sup>/6 y'''<sub>n</sub> ... h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub>)
247      */
248 
249     public Array2DRowFieldMatrix<T> initializeHighOrderDerivatives(final T h, final T[] t,
250                                                                    final T[][] y,
251                                                                    final T[][] yDot) {
252 
253         // using Taylor series with di = ti - t0, we get:
254         //  y(ti)  - y(t0)  - di y'(t0) =   di^2 / h^2 s2 + ... +   di^k     / h^k sk + O(h^k)
255         //  y'(ti) - y'(t0)             = 2 di   / h^2 s2 + ... + k di^(k-1) / h^k sk + O(h^(k-1))
256         // we write these relations for i = 1 to i= 1+n/2 as a set of n + 2 linear
257         // equations depending on the Nordsieck vector [s2 ... sk rk], so s2 to sk correspond
258         // to the appropriately truncated Taylor expansion, and rk is the Taylor remainder.
259         // The goal is to have s2 to sk as accurate as possible considering the fact the sum is
260         // truncated and we don't want the error terms to be included in s2 ... sk, so we need
261         // to solve also for the remainder
262         final T[][] a     = MathArrays.buildArray(field, c1.length + 1, c1.length + 1);
263         final T[][] b     = MathArrays.buildArray(field, c1.length + 1, y[0].length);
264         final T[]   y0    = y[0];
265         final T[]   yDot0 = yDot[0];
266         for (int i = 1; i < y.length; ++i) {
267 
268             final T di    = t[i].subtract(t[0]);
269             final T ratio = di.divide(h);
270             T dikM1Ohk    = h.reciprocal();
271 
272             // linear coefficients of equations
273             // y(ti) - y(t0) - di y'(t0) and y'(ti) - y'(t0)
274             final T[] aI    = a[2 * i - 2];
275             final T[] aDotI = (2 * i - 1) < a.length ? a[2 * i - 1] : null;
276             for (int j = 0; j < aI.length; ++j) {
277                 dikM1Ohk = dikM1Ohk.multiply(ratio);
278                 aI[j]    = di.multiply(dikM1Ohk);
279                 if (aDotI != null) {
280                     aDotI[j]  = dikM1Ohk.multiply(j + 2);
281                 }
282             }
283 
284             // expected value of the previous equations
285             final T[] yI    = y[i];
286             final T[] yDotI = yDot[i];
287             final T[] bI    = b[2 * i - 2];
288             final T[] bDotI = (2 * i - 1) < b.length ? b[2 * i - 1] : null;
289             for (int j = 0; j < yI.length; ++j) {
290                 bI[j]    = yI[j].subtract(y0[j]).subtract(di.multiply(yDot0[j]));
291                 if (bDotI != null) {
292                     bDotI[j] = yDotI[j].subtract(yDot0[j]);
293                 }
294             }
295         }
296 
297         // solve the linear system to get the best estimate of the Nordsieck vector [s2 ... sk],
298         // with the additional terms s(k+1) and c grabbing the parts after the truncated Taylor expansion
299         final FieldLUDecomposition<T> decomposition = new FieldLUDecomposition<>(new Array2DRowFieldMatrix<>(a, false));
300         final FieldMatrix<T> x = decomposition.getSolver().solve(new Array2DRowFieldMatrix<>(b, false));
301 
302         // extract just the Nordsieck vector [s2 ... sk]
303         final Array2DRowFieldMatrix<T> truncatedX =
304                         new Array2DRowFieldMatrix<>(field, x.getRowDimension() - 1, x.getColumnDimension());
305         for (int i = 0; i < truncatedX.getRowDimension(); ++i) {
306             for (int j = 0; j < truncatedX.getColumnDimension(); ++j) {
307                 truncatedX.setEntry(i, j, x.getEntry(i, j));
308             }
309         }
310         return truncatedX;
311     }
312 
313     /** Update the high order scaled derivatives for Adams integrators (phase 1).
314      * <p>The complete update of high order derivatives has a form similar to:
315      * <div style="white-space: pre"><code>
316      * r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub>
317      * </code></div>
318      * this method computes the P<sup>-1</sup> A P r<sub>n</sub> part.
319      * @param highOrder high order scaled derivatives
320      * (h<sup>2</sup>/2 y'', ... h<sup>k</sup>/k! y(k))
321      * @return updated high order derivatives
322      * @see #updateHighOrderDerivativesPhase2(RealFieldElement[], RealFieldElement[], Array2DRowFieldMatrix)
323      */
324     public Array2DRowFieldMatrix<T> updateHighOrderDerivativesPhase1(final Array2DRowFieldMatrix<T> highOrder) {
325         return update.multiply(highOrder);
326     }
327 
328     /** Update the high order scaled derivatives Adams integrators (phase 2).
329      * <p>The complete update of high order derivatives has a form similar to:
330      * <div style="white-space: pre"><code>
331      * r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub>
332      * </code></div>
333      * this method computes the (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u part.
334      * <p>Phase 1 of the update must already have been performed.</p>
335      * @param start first order scaled derivatives at step start
336      * @param end first order scaled derivatives at step end
337      * @param highOrder high order scaled derivatives, will be modified
338      * (h<sup>2</sup>/2 y'', ... h<sup>k</sup>/k! y(k))
339      * @see #updateHighOrderDerivativesPhase1(Array2DRowFieldMatrix)
340      */
341     public void updateHighOrderDerivativesPhase2(final T[] start,
342                                                  final T[] end,
343                                                  final Array2DRowFieldMatrix<T> highOrder) {
344         final T[][] data = highOrder.getDataRef();
345         for (int i = 0; i < data.length; ++i) {
346             final T[] dataI = data[i];
347             final T c1I = c1[i];
348             for (int j = 0; j < dataI.length; ++j) {
349                 dataI[j] = dataI[j].add(c1I.multiply(start[j].subtract(end[j])));
350             }
351         }
352     }
353 }