View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.apache.commons.math4.legacy.ode.nonstiff;
19  
20  import java.util.HashMap;
21  import java.util.Map;
22  
23  import org.apache.commons.numbers.fraction.BigFraction;
24  import org.apache.commons.numbers.field.BigFractionField;
25  import org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix;
26  import org.apache.commons.math4.legacy.linear.QRDecomposition;
27  import org.apache.commons.math4.legacy.linear.RealMatrix;
28  import org.apache.commons.math4.legacy.field.linalg.FieldDenseMatrix;
29  import org.apache.commons.math4.legacy.field.linalg.FieldDecompositionSolver;
30  import org.apache.commons.math4.legacy.field.linalg.FieldLUDecomposition;
31  
32  /** Transformer to Nordsieck vectors for Adams integrators.
33   * <p>This class is used by {@link AdamsBashforthIntegrator Adams-Bashforth} and
34   * {@link AdamsMoultonIntegrator Adams-Moulton} integrators to convert between
35   * classical representation with several previous first derivatives and Nordsieck
36   * representation with higher order scaled derivatives.</p>
37   *
38   * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
39   * <div style="white-space: pre"><code>
40   * s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative
41   * s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative
42   * s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative
43   * ...
44   * s<sub>k</sub>(n) = h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub> for k<sup>th</sup> derivative
45   * </code></div>
46   *
47   * <p>With the previous definition, the classical representation of multistep methods
48   * uses first derivatives only, i.e. it handles y<sub>n</sub>, s<sub>1</sub>(n) and
49   * q<sub>n</sub> where q<sub>n</sub> is defined as:
50   * <div style="white-space: pre"><code>
51   *   q<sub>n</sub> = [ s<sub>1</sub>(n-1) s<sub>1</sub>(n-2) ... s<sub>1</sub>(n-(k-1)) ]<sup>T</sup>
52   * </code></div>
53   * (we omit the k index in the notation for clarity).
54   *
55   * <p>Another possible representation uses the Nordsieck vector with
56   * higher degrees scaled derivatives all taken at the same step, i.e it handles y<sub>n</sub>,
57   * s<sub>1</sub>(n) and r<sub>n</sub>) where r<sub>n</sub> is defined as:
58   * <div style="white-space: pre"><code>
59   * r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup>
60   * </code></div>
61   * (here again we omit the k index in the notation for clarity)
62   *
63   * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be
64   * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact
65   * for degree k polynomials.
66   * <div style="white-space: pre"><code>
67   * s<sub>1</sub>(n-i) = s<sub>1</sub>(n) + &sum;<sub>j&gt;0</sub> (j+1) (-i)<sup>j</sup> s<sub>j+1</sub>(n)
68   * </code></div>
69   * The previous formula can be used with several values for i to compute the transform between
70   * classical representation and Nordsieck vector at step end. The transform between r<sub>n</sub>
71   * and q<sub>n</sub> resulting from the Taylor series formulas above is:
72   * <div style="white-space: pre"><code>
73   * q<sub>n</sub> = s<sub>1</sub>(n) u + P r<sub>n</sub>
74   * </code></div>
75   * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)&times;(k-1) matrix built
76   * with the (j+1) (-i)<sup>j</sup> terms with i being the row number starting from 1 and j being
77   * the column number starting from 1:
78   * <pre>
79   *        [  -2   3   -4    5  ... ]
80   *        [  -4  12  -32   80  ... ]
81   *   P =  [  -6  27 -108  405  ... ]
82   *        [  -8  48 -256 1280  ... ]
83   *        [          ...           ]
84   * </pre>
85   *
86   * <p>Changing -i into +i in the formula above can be used to compute a similar transform between
87   * classical representation and Nordsieck vector at step start. The resulting matrix is simply
88   * the absolute value of matrix P.</p>
89   *
90   * <p>For {@link AdamsBashforthIntegrator Adams-Bashforth} method, the Nordsieck vector
91   * at step n+1 is computed from the Nordsieck vector at step n as follows:
92   * <ul>
93   *   <li>y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
94   *   <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
95   *   <li>r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
96   * </ul>
97   * where A is a rows shifting matrix (the lower left part is an identity matrix):
98   * <pre>
99   *        [ 0 0   ...  0 0 | 0 ]
100  *        [ ---------------+---]
101  *        [ 1 0   ...  0 0 | 0 ]
102  *    A = [ 0 1   ...  0 0 | 0 ]
103  *        [       ...      | 0 ]
104  *        [ 0 0   ...  1 0 | 0 ]
105  *        [ 0 0   ...  0 1 | 0 ]
106  * </pre>
107  *
108  * <p>For {@link AdamsMoultonIntegrator Adams-Moulton} method, the predicted Nordsieck vector
109  * at step n+1 is computed from the Nordsieck vector at step n as follows:
110  * <ul>
111  *   <li>Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
112  *   <li>S<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, Y<sub>n+1</sub>)</li>
113  *   <li>R<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
114  * </ul>
115  * From this predicted vector, the corrected vector is computed as follows:
116  * <ul>
117  *   <li>y<sub>n+1</sub> = y<sub>n</sub> + S<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... &plusmn;1 ] r<sub>n+1</sub></li>
118  *   <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
119  *   <li>r<sub>n+1</sub> = R<sub>n+1</sub> + (s<sub>1</sub>(n+1) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u</li>
120  * </ul>
121  * where the upper case Y<sub>n+1</sub>, S<sub>1</sub>(n+1) and R<sub>n+1</sub> represent the
122  * predicted states whereas the lower case y<sub>n+1</sub>, s<sub>n+1</sub> and r<sub>n+1</sub>
123  * represent the corrected states.
124  *
125  * <p>We observe that both methods use similar update formulas. In both cases a P<sup>-1</sup>u
126  * vector and a P<sup>-1</sup> A P matrix are used that do not depend on the state,
127  * they only depend on k. This class handles these transformations.</p>
128  *
129  * @since 2.0
130  */
131 public final class AdamsNordsieckTransformer {
132 
133     /** Cache for already computed coefficients. */
134     private static final Map<Integer, AdamsNordsieckTransformer> CACHE =
135         new HashMap<>();
136 
137     /** Update matrix for the higher order derivatives h<sup>2</sup>/2 y'', h<sup>3</sup>/6 y''' ... */
138     private final Array2DRowRealMatrix update;
139 
140     /** Update coefficients of the higher order derivatives wrt y'. */
141     private final double[] c1;
142 
143     /** Simple constructor.
144      * @param n number of steps of the multistep method
145      * (excluding the one being computed)
146      */
147     private AdamsNordsieckTransformer(final int n) {
148         final int dim = n - 1;
149 
150         // compute exact coefficients
151         final FieldDenseMatrix<BigFraction> bigP = buildP(dim);
152         final FieldDecompositionSolver<BigFraction> pSolver = FieldLUDecomposition.of(bigP).getSolver();
153 
154         final FieldDenseMatrix<BigFraction> u = FieldDenseMatrix.create(BigFractionField.get(), dim, 1)
155             .fill(BigFraction.ONE);
156         final FieldDenseMatrix<BigFraction> bigC1 = pSolver.solve(u);
157 
158         // update coefficients are computed by combining transform from
159         // Nordsieck to multistep, then shifting rows to represent step advance
160         // then applying inverse transform
161         final FieldDenseMatrix<BigFraction> shiftedP = bigP.copy();
162         for (int i = dim - 1; i > 0; --i) {
163             // shift rows
164             for (int j = 0; j < dim; j++) {
165                 shiftedP.set(i, j, shiftedP.get(i - 1, j));
166             }
167         }
168         for (int j = 0; j < dim; j++) {
169             shiftedP.set(0, j, BigFraction.ZERO);
170         }
171 
172         final FieldDenseMatrix<BigFraction> bigMSupdate = pSolver.solve(shiftedP);
173 
174         // convert coefficients to double
175         final double[][] updateData = new double[dim][dim];
176         for (int i = 0; i < dim; i++) {
177             for (int j = 0; j < dim; j++) {
178                 updateData[i][j] = bigMSupdate.get(i, j).doubleValue();
179             }
180         }
181 
182         update = new Array2DRowRealMatrix(updateData, false);
183         c1 = new double[dim];
184         for (int i = 0; i < dim; ++i) {
185             c1[i] = bigC1.get(i, 0).doubleValue();
186         }
187     }
188 
189     /** Get the Nordsieck transformer for a given number of steps.
190      * @param nSteps number of steps of the multistep method
191      * (excluding the one being computed)
192      * @return Nordsieck transformer for the specified number of steps
193      */
194     public static AdamsNordsieckTransformer getInstance(final int nSteps) {
195         synchronized(CACHE) {
196             AdamsNordsieckTransformer t = CACHE.get(nSteps);
197             if (t == null) {
198                 t = new AdamsNordsieckTransformer(nSteps);
199                 CACHE.put(nSteps, t);
200             }
201             return t;
202         }
203     }
204 
205     /** Get the number of steps of the method
206      * (excluding the one being computed).
207      * @return number of steps of the method
208      * (excluding the one being computed)
209      * @deprecated as of 3.6, this method is not used anymore
210      */
211     @Deprecated
212     public int getNSteps() {
213         return c1.length;
214     }
215 
216     /** Build the P matrix.
217      * <p>The P matrix general terms are shifted (j+1) (-i)<sup>j</sup> terms
218      * with i being the row number starting from 1 and j being the column
219      * number starting from 1:
220      * <pre>
221      *        [  -2   3   -4    5  ... ]
222      *        [  -4  12  -32   80  ... ]
223      *   P =  [  -6  27 -108  405  ... ]
224      *        [  -8  48 -256 1280  ... ]
225      *        [          ...           ]
226      * </pre>
227      * @param rows number of rows of the matrix
228      * @return P matrix
229      */
230     private FieldDenseMatrix<BigFraction> buildP(final int rows) {
231         final FieldDenseMatrix<BigFraction> pData = FieldDenseMatrix.create(BigFractionField.get(),
232                                                                             rows, rows)
233             .fill(BigFraction.ZERO);
234 
235         for (int i = 1; i <= rows; ++i) {
236             // build the P matrix elements from Taylor series formulas
237             final int factor = -i;
238             int aj = factor;
239             for (int j = 1; j <= rows; ++j) {
240                 pData.set(i - 1, j - 1,
241                           BigFraction.of(aj * (j + 1)));
242                 aj *= factor;
243             }
244         }
245 
246         return pData;
247     }
248 
249     /** Initialize the high order scaled derivatives at step start.
250      * @param h step size to use for scaling
251      * @param t first steps times
252      * @param y first steps states
253      * @param yDot first steps derivatives
254      * @return Nordieck vector at start of first step (h<sup>2</sup>/2 y''<sub>n</sub>,
255      * h<sup>3</sup>/6 y'''<sub>n</sub> ... h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub>)
256      */
257 
258     public Array2DRowRealMatrix initializeHighOrderDerivatives(final double h, final double[] t,
259                                                                final double[][] y,
260                                                                final double[][] yDot) {
261 
262         // using Taylor series with di = ti - t0, we get:
263         //  y(ti)  - y(t0)  - di y'(t0) =   di^2 / h^2 s2 + ... +   di^k     / h^k sk + O(h^k)
264         //  y'(ti) - y'(t0)             = 2 di   / h^2 s2 + ... + k di^(k-1) / h^k sk + O(h^(k-1))
265         // we write these relations for i = 1 to i= 1+n/2 as a set of n + 2 linear
266         // equations depending on the Nordsieck vector [s2 ... sk rk], so s2 to sk correspond
267         // to the appropriately truncated Taylor expansion, and rk is the Taylor remainder.
268         // The goal is to have s2 to sk as accurate as possible considering the fact the sum is
269         // truncated and we don't want the error terms to be included in s2 ... sk, so we need
270         // to solve also for the remainder
271         final double[][] a     = new double[c1.length + 1][c1.length + 1];
272         final double[][] b     = new double[c1.length + 1][y[0].length];
273         final double[]   y0    = y[0];
274         final double[]   yDot0 = yDot[0];
275         for (int i = 1; i < y.length; ++i) {
276 
277             final double di    = t[i] - t[0];
278             final double ratio = di / h;
279             double dikM1Ohk    =  1 / h;
280 
281             // linear coefficients of equations
282             // y(ti) - y(t0) - di y'(t0) and y'(ti) - y'(t0)
283             final double[] aI    = a[2 * i - 2];
284             final double[] aDotI = (2 * i - 1) < a.length ? a[2 * i - 1] : null;
285             for (int j = 0; j < aI.length; ++j) {
286                 dikM1Ohk *= ratio;
287                 aI[j]     = di      * dikM1Ohk;
288                 if (aDotI != null) {
289                     aDotI[j]  = (j + 2) * dikM1Ohk;
290                 }
291             }
292 
293             // expected value of the previous equations
294             final double[] yI    = y[i];
295             final double[] yDotI = yDot[i];
296             final double[] bI    = b[2 * i - 2];
297             final double[] bDotI = (2 * i - 1) < b.length ? b[2 * i - 1] : null;
298             for (int j = 0; j < yI.length; ++j) {
299                 bI[j]    = yI[j] - y0[j] - di * yDot0[j];
300                 if (bDotI != null) {
301                     bDotI[j] = yDotI[j] - yDot0[j];
302                 }
303             }
304         }
305 
306         // solve the linear system to get the best estimate of the Nordsieck vector [s2 ... sk],
307         // with the additional terms s(k+1) and c grabbing the parts after the truncated Taylor expansion
308         final QRDecomposition decomposition = new QRDecomposition(new Array2DRowRealMatrix(a, false));
309         final RealMatrix x = decomposition.getSolver().solve(new Array2DRowRealMatrix(b, false));
310 
311         // extract just the Nordsieck vector [s2 ... sk]
312         final Array2DRowRealMatrix truncatedX = new Array2DRowRealMatrix(x.getRowDimension() - 1, x.getColumnDimension());
313         for (int i = 0; i < truncatedX.getRowDimension(); ++i) {
314             for (int j = 0; j < truncatedX.getColumnDimension(); ++j) {
315                 truncatedX.setEntry(i, j, x.getEntry(i, j));
316             }
317         }
318         return truncatedX;
319     }
320 
321     /** Update the high order scaled derivatives for Adams integrators (phase 1).
322      * <p>The complete update of high order derivatives has a form similar to:
323      * <div style="white-space: pre"><code>
324      * r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub>
325      * </code></div>
326      * this method computes the P<sup>-1</sup> A P r<sub>n</sub> part.
327      * @param highOrder high order scaled derivatives
328      * (h<sup>2</sup>/2 y'', ... h<sup>k</sup>/k! y(k))
329      * @return updated high order derivatives
330      * @see #updateHighOrderDerivativesPhase2(double[], double[], Array2DRowRealMatrix)
331      */
332     public Array2DRowRealMatrix updateHighOrderDerivativesPhase1(final Array2DRowRealMatrix highOrder) {
333         return update.multiply(highOrder);
334     }
335 
336     /** Update the high order scaled derivatives Adams integrators (phase 2).
337      * <p>The complete update of high order derivatives has a form similar to:
338      * <div style="white-space: pre"><code>
339      * r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub>
340      * </code></div>
341      * this method computes the (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u part.
342      * <p>Phase 1 of the update must already have been performed.</p>
343      * @param start first order scaled derivatives at step start
344      * @param end first order scaled derivatives at step end
345      * @param highOrder high order scaled derivatives, will be modified
346      * (h<sup>2</sup>/2 y'', ... h<sup>k</sup>/k! y(k))
347      * @see #updateHighOrderDerivativesPhase1(Array2DRowRealMatrix)
348      */
349     public void updateHighOrderDerivativesPhase2(final double[] start,
350                                                  final double[] end,
351                                                  final Array2DRowRealMatrix highOrder) {
352         final double[][] data = highOrder.getDataRef();
353         for (int i = 0; i < data.length; ++i) {
354             final double[] dataI = data[i];
355             final double c1I = c1[i];
356             for (int j = 0; j < dataI.length; ++j) {
357                 dataI[j] += c1I * (start[j] - end[j]);
358             }
359         }
360     }
361 }