View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.apache.commons.math4.legacy.ode.nonstiff;
19  
20  import org.apache.commons.math4.core.jdkmath.JdkMath;
21  
22  
23  /**
24   * This class implements the 5(4) Dormand-Prince integrator for Ordinary
25   * Differential Equations.
26  
27   * <p>This integrator is an embedded Runge-Kutta integrator
28   * of order 5(4) used in local extrapolation mode (i.e. the solution
29   * is computed using the high order formula) with stepsize control
30   * (and automatic step initialization) and continuous output. This
31   * method uses 7 functions evaluations per step. However, since this
32   * is an <i>fsal</i>, the last evaluation of one step is the same as
33   * the first evaluation of the next step and hence can be avoided. So
34   * the cost is really 6 functions evaluations per step.</p>
35   *
36   * <p>This method has been published (whithout the continuous output
37   * that was added by Shampine in 1986) in the following article :
38   * <pre>
39   *  A family of embedded Runge-Kutta formulae
40   *  J. R. Dormand and P. J. Prince
41   *  Journal of Computational and Applied Mathematics
42   *  volume 6, no 1, 1980, pp. 19-26
43   * </pre>
44   *
45   * @since 1.2
46   */
47  
48  public class DormandPrince54Integrator extends EmbeddedRungeKuttaIntegrator {
49  
50    /** Integrator method name. */
51    private static final String METHOD_NAME = "Dormand-Prince 5(4)";
52  
53    /** Time steps Butcher array. */
54    private static final double[] STATIC_C = {
55      1.0/5.0, 3.0/10.0, 4.0/5.0, 8.0/9.0, 1.0, 1.0
56    };
57  
58    /** Internal weights Butcher array. */
59    private static final double[][] STATIC_A = {
60      {1.0/5.0},
61      {3.0/40.0, 9.0/40.0},
62      {44.0/45.0, -56.0/15.0, 32.0/9.0},
63      {19372.0/6561.0, -25360.0/2187.0, 64448.0/6561.0,  -212.0/729.0},
64      {9017.0/3168.0, -355.0/33.0, 46732.0/5247.0, 49.0/176.0, -5103.0/18656.0},
65      {35.0/384.0, 0.0, 500.0/1113.0, 125.0/192.0, -2187.0/6784.0, 11.0/84.0}
66    };
67  
68    /** Propagation weights Butcher array. */
69    private static final double[] STATIC_B = {
70      35.0/384.0, 0.0, 500.0/1113.0, 125.0/192.0, -2187.0/6784.0, 11.0/84.0, 0.0
71    };
72  
73    /** Error array, element 1. */
74    private static final double E1 =     71.0 / 57600.0;
75  
76    // element 2 is zero, so it is neither stored nor used
77  
78    /** Error array, element 3. */
79    private static final double E3 =    -71.0 / 16695.0;
80  
81    /** Error array, element 4. */
82    private static final double E4 =     71.0 / 1920.0;
83  
84    /** Error array, element 5. */
85    private static final double E5 = -17253.0 / 339200.0;
86  
87    /** Error array, element 6. */
88    private static final double E6 =     22.0 / 525.0;
89  
90    /** Error array, element 7. */
91    private static final double E7 =     -1.0 / 40.0;
92  
93    /** Simple constructor.
94     * Build a fifth order Dormand-Prince integrator with the given step bounds
95     * @param minStep minimal step (sign is irrelevant, regardless of
96     * integration direction, forward or backward), the last step can
97     * be smaller than this
98     * @param maxStep maximal step (sign is irrelevant, regardless of
99     * integration direction, forward or backward), the last step can
100    * be smaller than this
101    * @param scalAbsoluteTolerance allowed absolute error
102    * @param scalRelativeTolerance allowed relative error
103    */
104   public DormandPrince54Integrator(final double minStep, final double maxStep,
105                                    final double scalAbsoluteTolerance,
106                                    final double scalRelativeTolerance) {
107     super(METHOD_NAME, true, STATIC_C, STATIC_A, STATIC_B, new DormandPrince54StepInterpolator(),
108           minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
109   }
110 
111   /** Simple constructor.
112    * Build a fifth order Dormand-Prince integrator with the given step bounds
113    * @param minStep minimal step (sign is irrelevant, regardless of
114    * integration direction, forward or backward), the last step can
115    * be smaller than this
116    * @param maxStep maximal step (sign is irrelevant, regardless of
117    * integration direction, forward or backward), the last step can
118    * be smaller than this
119    * @param vecAbsoluteTolerance allowed absolute error
120    * @param vecRelativeTolerance allowed relative error
121    */
122   public DormandPrince54Integrator(final double minStep, final double maxStep,
123                                    final double[] vecAbsoluteTolerance,
124                                    final double[] vecRelativeTolerance) {
125     super(METHOD_NAME, true, STATIC_C, STATIC_A, STATIC_B, new DormandPrince54StepInterpolator(),
126           minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
127   }
128 
129   /** {@inheritDoc} */
130   @Override
131   public int getOrder() {
132     return 5;
133   }
134 
135   /** {@inheritDoc} */
136   @Override
137   protected double estimateError(final double[][] yDotK,
138                                  final double[] y0, final double[] y1,
139                                  final double h) {
140 
141     double error = 0;
142 
143     for (int j = 0; j < mainSetDimension; ++j) {
144         final double errSum = E1 * yDotK[0][j] +  E3 * yDotK[2][j] +
145                               E4 * yDotK[3][j] +  E5 * yDotK[4][j] +
146                               E6 * yDotK[5][j] +  E7 * yDotK[6][j];
147 
148         final double yScale = JdkMath.max(JdkMath.abs(y0[j]), JdkMath.abs(y1[j]));
149         final double tol = (vecAbsoluteTolerance == null) ?
150                            (scalAbsoluteTolerance + scalRelativeTolerance * yScale) :
151                                (vecAbsoluteTolerance[j] + vecRelativeTolerance[j] * yScale);
152         final double ratio  = h * errSum / tol;
153         error += ratio * ratio;
154     }
155 
156     return JdkMath.sqrt(error / mainSetDimension);
157   }
158 }