View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.apache.commons.math4.legacy.ode.nonstiff;
19  
20  import org.apache.commons.math4.legacy.core.Field;
21  import org.apache.commons.math4.legacy.core.RealFieldElement;
22  import org.apache.commons.math4.legacy.ode.FieldEquationsMapper;
23  import org.apache.commons.math4.legacy.ode.FieldODEStateAndDerivative;
24  import org.apache.commons.math4.legacy.core.MathArrays;
25  
26  
27  /**
28   * This class implements the 8(5,3) Dormand-Prince integrator for Ordinary
29   * Differential Equations.
30   *
31   * <p>This integrator is an embedded Runge-Kutta integrator
32   * of order 8(5,3) used in local extrapolation mode (i.e. the solution
33   * is computed using the high order formula) with stepsize control
34   * (and automatic step initialization) and continuous output. This
35   * method uses 12 functions evaluations per step for integration and 4
36   * evaluations for interpolation. However, since the first
37   * interpolation evaluation is the same as the first integration
38   * evaluation of the next step, we have included it in the integrator
39   * rather than in the interpolator and specified the method was an
40   * <i>fsal</i>. Hence, despite we have 13 stages here, the cost is
41   * really 12 evaluations per step even if no interpolation is done,
42   * and the overcost of interpolation is only 3 evaluations.</p>
43   *
44   * <p>This method is based on an 8(6) method by Dormand and Prince
45   * (i.e. order 8 for the integration and order 6 for error estimation)
46   * modified by Hairer and Wanner to use a 5th order error estimator
47   * with 3rd order correction. This modification was introduced because
48   * the original method failed in some cases (wrong steps can be
49   * accepted when step size is too large, for example in the
50   * Brusselator problem) and also had <i>severe difficulties when
51   * applied to problems with discontinuities</i>. This modification is
52   * explained in the second edition of the first volume (Nonstiff
53   * Problems) of the reference book by Hairer, Norsett and Wanner:
54   * <i>Solving Ordinary Differential Equations</i> (Springer-Verlag,
55   * ISBN 3-540-56670-8).</p>
56   *
57   * @param <T> the type of the field elements
58   * @since 3.6
59   */
60  
61  public class DormandPrince853FieldIntegrator<T extends RealFieldElement<T>>
62      extends EmbeddedRungeKuttaFieldIntegrator<T> {
63  
64      /** Integrator method name. */
65      private static final String METHOD_NAME = "Dormand-Prince 8 (5, 3)";
66  
67      /** First error weights array, element 1. */
68      private final T e1_01;
69  
70      // elements 2 to 5 are zero, so they are neither stored nor used
71  
72      /** First error weights array, element 6. */
73      private final T e1_06;
74  
75      /** First error weights array, element 7. */
76      private final T e1_07;
77  
78      /** First error weights array, element 8. */
79      private final T e1_08;
80  
81      /** First error weights array, element 9. */
82      private final T e1_09;
83  
84      /** First error weights array, element 10. */
85      private final T e1_10;
86  
87      /** First error weights array, element 11. */
88      private final T e1_11;
89  
90      /** First error weights array, element 12. */
91      private final T e1_12;
92  
93  
94      /** Second error weights array, element 1. */
95      private final T e2_01;
96  
97      // elements 2 to 5 are zero, so they are neither stored nor used
98  
99      /** Second error weights array, element 6. */
100     private final T e2_06;
101 
102     /** Second error weights array, element 7. */
103     private final T e2_07;
104 
105     /** Second error weights array, element 8. */
106     private final T e2_08;
107 
108     /** Second error weights array, element 9. */
109     private final T e2_09;
110 
111     /** Second error weights array, element 10. */
112     private final T e2_10;
113 
114     /** Second error weights array, element 11. */
115     private final T e2_11;
116 
117     /** Second error weights array, element 12. */
118     private final T e2_12;
119 
120     /** Simple constructor.
121      * Build an eighth order Dormand-Prince integrator with the given step bounds
122      * @param field field to which the time and state vector elements belong
123      * @param minStep minimal step (sign is irrelevant, regardless of
124      * integration direction, forward or backward), the last step can
125      * be smaller than this
126      * @param maxStep maximal step (sign is irrelevant, regardless of
127      * integration direction, forward or backward), the last step can
128      * be smaller than this
129      * @param scalAbsoluteTolerance allowed absolute error
130      * @param scalRelativeTolerance allowed relative error
131      */
132     public DormandPrince853FieldIntegrator(final Field<T> field,
133                                            final double minStep, final double maxStep,
134                                            final double scalAbsoluteTolerance,
135                                            final double scalRelativeTolerance) {
136         super(field, METHOD_NAME, 12,
137               minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
138         e1_01 = fraction(        116092271.0,       8848465920.0);
139         e1_06 = fraction(         -1871647.0,          1527680.0);
140         e1_07 = fraction(        -69799717.0,        140793660.0);
141         e1_08 = fraction(    1230164450203.0,     739113984000.0);
142         e1_09 = fraction(-1980813971228885.0, 5654156025964544.0);
143         e1_10 = fraction(        464500805.0,       1389975552.0);
144         e1_11 = fraction(    1606764981773.0,   19613062656000.0);
145         e1_12 = fraction(          -137909.0,          6168960.0);
146         e2_01 = fraction(          -364463.0,          1920240.0);
147         e2_06 = fraction(          3399327.0,           763840.0);
148         e2_07 = fraction(         66578432.0,         35198415.0);
149         e2_08 = fraction(      -1674902723.0,        288716400.0);
150         e2_09 = fraction(  -74684743568175.0,  176692375811392.0);
151         e2_10 = fraction(          -734375.0,          4826304.0);
152         e2_11 = fraction(        171414593.0,        851261400.0);
153         e2_12 = fraction(            69869.0,          3084480.0);
154     }
155 
156     /** Simple constructor.
157      * Build an eighth order Dormand-Prince integrator with the given step bounds
158      * @param field field to which the time and state vector elements belong
159      * @param minStep minimal step (sign is irrelevant, regardless of
160      * integration direction, forward or backward), the last step can
161      * be smaller than this
162      * @param maxStep maximal step (sign is irrelevant, regardless of
163      * integration direction, forward or backward), the last step can
164      * be smaller than this
165      * @param vecAbsoluteTolerance allowed absolute error
166      * @param vecRelativeTolerance allowed relative error
167      */
168     public DormandPrince853FieldIntegrator(final Field<T> field,
169                                            final double minStep, final double maxStep,
170                                            final double[] vecAbsoluteTolerance,
171                                            final double[] vecRelativeTolerance) {
172         super(field, METHOD_NAME, 12,
173               minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
174         e1_01 = fraction(        116092271.0,       8848465920.0);
175         e1_06 = fraction(         -1871647.0,          1527680.0);
176         e1_07 = fraction(        -69799717.0,        140793660.0);
177         e1_08 = fraction(    1230164450203.0,     739113984000.0);
178         e1_09 = fraction(-1980813971228885.0, 5654156025964544.0);
179         e1_10 = fraction(        464500805.0,       1389975552.0);
180         e1_11 = fraction(    1606764981773.0,   19613062656000.0);
181         e1_12 = fraction(          -137909.0,          6168960.0);
182         e2_01 = fraction(          -364463.0,          1920240.0);
183         e2_06 = fraction(          3399327.0,           763840.0);
184         e2_07 = fraction(         66578432.0,         35198415.0);
185         e2_08 = fraction(      -1674902723.0,        288716400.0);
186         e2_09 = fraction(  -74684743568175.0,  176692375811392.0);
187         e2_10 = fraction(          -734375.0,          4826304.0);
188         e2_11 = fraction(        171414593.0,        851261400.0);
189         e2_12 = fraction(            69869.0,          3084480.0);
190     }
191 
192     /** {@inheritDoc} */
193     @Override
194     public T[] getC() {
195 
196         final T sqrt6 = getField().getOne().multiply(6).sqrt();
197 
198         final T[] c = MathArrays.buildArray(getField(), 15);
199         c[ 0] = sqrt6.add(-6).divide(-67.5);
200         c[ 1] = sqrt6.add(-6).divide(-45.0);
201         c[ 2] = sqrt6.add(-6).divide(-30.0);
202         c[ 3] = sqrt6.add( 6).divide( 30.0);
203         c[ 4] = fraction(1, 3);
204         c[ 5] = fraction(1, 4);
205         c[ 6] = fraction(4, 13);
206         c[ 7] = fraction(127, 195);
207         c[ 8] = fraction(3, 5);
208         c[ 9] = fraction(6, 7);
209         c[10] = getField().getOne();
210         c[11] = getField().getOne();
211         c[12] = fraction(1.0, 10.0);
212         c[13] = fraction(1.0, 5.0);
213         c[14] = fraction(7.0, 9.0);
214 
215         return c;
216     }
217 
218     /** {@inheritDoc} */
219     @Override
220     public T[][] getA() {
221 
222         final T sqrt6 = getField().getOne().multiply(6).sqrt();
223 
224         final T[][] a = MathArrays.buildArray(getField(), 15, -1);
225         for (int i = 0; i < a.length; ++i) {
226             a[i] = MathArrays.buildArray(getField(), i + 1);
227         }
228 
229         a[ 0][ 0] = sqrt6.add(-6).divide(-67.5);
230 
231         a[ 1][ 0] = sqrt6.add(-6).divide(-180);
232         a[ 1][ 1] = sqrt6.add(-6).divide( -60);
233 
234         a[ 2][ 0] = sqrt6.add(-6).divide(-120);
235         a[ 2][ 1] = getField().getZero();
236         a[ 2][ 2] = sqrt6.add(-6).divide( -40);
237 
238         a[ 3][ 0] = sqrt6.multiply(107).add(462).divide( 3000);
239         a[ 3][ 1] = getField().getZero();
240         a[ 3][ 2] = sqrt6.multiply(197).add(402).divide(-1000);
241         a[ 3][ 3] = sqrt6.multiply( 73).add(168).divide(  375);
242 
243         a[ 4][ 0] = fraction(1, 27);
244         a[ 4][ 1] = getField().getZero();
245         a[ 4][ 2] = getField().getZero();
246         a[ 4][ 3] = sqrt6.add( 16).divide( 108);
247         a[ 4][ 4] = sqrt6.add(-16).divide(-108);
248 
249         a[ 5][ 0] = fraction(19, 512);
250         a[ 5][ 1] = getField().getZero();
251         a[ 5][ 2] = getField().getZero();
252         a[ 5][ 3] = sqrt6.multiply( 23).add(118).divide(1024);
253         a[ 5][ 4] = sqrt6.multiply(-23).add(118).divide(1024);
254         a[ 5][ 5] = fraction(-9, 512);
255 
256         a[ 6][ 0] = fraction(13772, 371293);
257         a[ 6][ 1] = getField().getZero();
258         a[ 6][ 2] = getField().getZero();
259         a[ 6][ 3] = sqrt6.multiply( 4784).add(51544).divide(371293);
260         a[ 6][ 4] = sqrt6.multiply(-4784).add(51544).divide(371293);
261         a[ 6][ 5] = fraction(-5688, 371293);
262         a[ 6][ 6] = fraction( 3072, 371293);
263 
264         a[ 7][ 0] = fraction(58656157643.0, 93983540625.0);
265         a[ 7][ 1] = getField().getZero();
266         a[ 7][ 2] = getField().getZero();
267         a[ 7][ 3] = sqrt6.multiply(-318801444819.0).add(-1324889724104.0).divide(626556937500.0);
268         a[ 7][ 4] = sqrt6.multiply( 318801444819.0).add(-1324889724104.0).divide(626556937500.0);
269         a[ 7][ 5] = fraction(96044563816.0, 3480871875.0);
270         a[ 7][ 6] = fraction(5682451879168.0, 281950621875.0);
271         a[ 7][ 7] = fraction(-165125654.0, 3796875.0);
272 
273         a[ 8][ 0] = fraction(8909899.0, 18653125.0);
274         a[ 8][ 1] = getField().getZero();
275         a[ 8][ 2] = getField().getZero();
276         a[ 8][ 3] = sqrt6.multiply(-1137963.0).add(-4521408.0).divide(2937500.0);
277         a[ 8][ 4] = sqrt6.multiply( 1137963.0).add(-4521408.0).divide(2937500.0);
278         a[ 8][ 5] = fraction(96663078.0, 4553125.0);
279         a[ 8][ 6] = fraction(2107245056.0, 137915625.0);
280         a[ 8][ 7] = fraction(-4913652016.0, 147609375.0);
281         a[ 8][ 8] = fraction(-78894270.0, 3880452869.0);
282 
283         a[ 9][ 0] = fraction(-20401265806.0, 21769653311.0);
284         a[ 9][ 1] = getField().getZero();
285         a[ 9][ 2] = getField().getZero();
286         a[ 9][ 3] = sqrt6.multiply( 94326.0).add(354216.0).divide(112847.0);
287         a[ 9][ 4] = sqrt6.multiply(-94326.0).add(354216.0).divide(112847.0);
288         a[ 9][ 5] = fraction(-43306765128.0, 5313852383.0);
289         a[ 9][ 6] = fraction(-20866708358144.0, 1126708119789.0);
290         a[ 9][ 7] = fraction(14886003438020.0, 654632330667.0);
291         a[ 9][ 8] = fraction(35290686222309375.0, 14152473387134411.0);
292         a[ 9][ 9] = fraction(-1477884375.0, 485066827.0);
293 
294         a[10][ 0] = fraction(39815761.0, 17514443.0);
295         a[10][ 1] = getField().getZero();
296         a[10][ 2] = getField().getZero();
297         a[10][ 3] = sqrt6.multiply(-960905.0).add(-3457480.0).divide(551636.0);
298         a[10][ 4] = sqrt6.multiply( 960905.0).add(-3457480.0).divide(551636.0);
299         a[10][ 5] = fraction(-844554132.0, 47026969.0);
300         a[10][ 6] = fraction(8444996352.0, 302158619.0);
301         a[10][ 7] = fraction(-2509602342.0, 877790785.0);
302         a[10][ 8] = fraction(-28388795297996250.0, 3199510091356783.0);
303         a[10][ 9] = fraction(226716250.0, 18341897.0);
304         a[10][10] = fraction(1371316744.0, 2131383595.0);
305 
306         // the following stage is both for interpolation and the first stage in next step
307         // (the coefficients are identical to the B array)
308         a[11][ 0] = fraction(104257.0, 1920240.0);
309         a[11][ 1] = getField().getZero();
310         a[11][ 2] = getField().getZero();
311         a[11][ 3] = getField().getZero();
312         a[11][ 4] = getField().getZero();
313         a[11][ 5] = fraction(3399327.0, 763840.0);
314         a[11][ 6] = fraction(66578432.0, 35198415.0);
315         a[11][ 7] = fraction(-1674902723.0, 288716400.0);
316         a[11][ 8] = fraction(54980371265625.0, 176692375811392.0);
317         a[11][ 9] = fraction(-734375.0, 4826304.0);
318         a[11][10] = fraction(171414593.0, 851261400.0);
319         a[11][11] = fraction(137909.0, 3084480.0);
320 
321         // the following stages are for interpolation only
322         a[12][ 0] = fraction(      13481885573.0, 240030000000.0);
323         a[12][ 1] = getField().getZero();
324         a[12][ 2] = getField().getZero();
325         a[12][ 3] = getField().getZero();
326         a[12][ 4] = getField().getZero();
327         a[12][ 5] = getField().getZero();
328         a[12][ 6] = fraction(     139418837528.0, 549975234375.0);
329         a[12][ 7] = fraction(  -11108320068443.0, 45111937500000.0);
330         a[12][ 8] = fraction(-1769651421925959.0, 14249385146080000.0);
331         a[12][ 9] = fraction(         57799439.0, 377055000.0);
332         a[12][10] = fraction(     793322643029.0, 96734250000000.0);
333         a[12][11] = fraction(       1458939311.0, 192780000000.0);
334         a[12][12]  = fraction(            -4149.0, 500000.0);
335 
336         a[13][ 0] = fraction(    1595561272731.0, 50120273500000.0);
337         a[13][ 1] = getField().getZero();
338         a[13][ 2] = getField().getZero();
339         a[13][ 3] = getField().getZero();
340         a[13][ 4] = getField().getZero();
341         a[13][ 5] = fraction(     975183916491.0, 34457688031250.0);
342         a[13][ 6] = fraction(   38492013932672.0, 718912673015625.0);
343         a[13][ 7] = fraction(-1114881286517557.0, 20298710767500000.0);
344         a[13][ 8] = getField().getZero();
345         a[13][ 9] = getField().getZero();
346         a[13][10] = fraction(   -2538710946863.0, 23431227861250000.0);
347         a[13][11] = fraction(       8824659001.0, 23066716781250.0);
348         a[13][12] = fraction(     -11518334563.0, 33831184612500.0);
349         a[13][13] = fraction(       1912306948.0, 13532473845.0);
350 
351         a[14][ 0] = fraction(     -13613986967.0, 31741908048.0);
352         a[14][ 1] = getField().getZero();
353         a[14][ 2] = getField().getZero();
354         a[14][ 3] = getField().getZero();
355         a[14][ 4] = getField().getZero();
356         a[14][ 5] = fraction(      -4755612631.0, 1012344804.0);
357         a[14][ 6] = fraction(   42939257944576.0, 5588559685701.0);
358         a[14][ 7] = fraction(   77881972900277.0, 19140370552944.0);
359         a[14][ 8] = fraction(   22719829234375.0, 63689648654052.0);
360         a[14][ 9] = getField().getZero();
361         a[14][10] = getField().getZero();
362         a[14][11] = getField().getZero();
363         a[14][12] = fraction(      -1199007803.0, 857031517296.0);
364         a[14][13] = fraction(     157882067000.0, 53564469831.0);
365         a[14][14] = fraction(    -290468882375.0, 31741908048.0);
366 
367         return a;
368     }
369 
370     /** {@inheritDoc} */
371     @Override
372     public T[] getB() {
373         final T[] b = MathArrays.buildArray(getField(), 16);
374         b[ 0] = fraction(104257, 1920240);
375         b[ 1] = getField().getZero();
376         b[ 2] = getField().getZero();
377         b[ 3] = getField().getZero();
378         b[ 4] = getField().getZero();
379         b[ 5] = fraction(        3399327.0,          763840.0);
380         b[ 6] = fraction(       66578432.0,        35198415.0);
381         b[ 7] = fraction(    -1674902723.0,       288716400.0);
382         b[ 8] = fraction( 54980371265625.0, 176692375811392.0);
383         b[ 9] = fraction(        -734375.0,         4826304.0);
384         b[10] = fraction(      171414593.0,       851261400.0);
385         b[11] = fraction(         137909.0,         3084480.0);
386         b[12] = getField().getZero();
387         b[13] = getField().getZero();
388         b[14] = getField().getZero();
389         b[15] = getField().getZero();
390         return b;
391     }
392 
393     /** {@inheritDoc} */
394     @Override
395     protected DormandPrince853FieldStepInterpolator<T>
396         createInterpolator(final boolean forward, T[][] yDotK,
397                            final FieldODEStateAndDerivative<T> globalPreviousState,
398                            final FieldODEStateAndDerivative<T> globalCurrentState, final FieldEquationsMapper<T> mapper) {
399         return new DormandPrince853FieldStepInterpolator<>(getField(), forward, yDotK,
400                                                             globalPreviousState, globalCurrentState,
401                                                             globalPreviousState, globalCurrentState,
402                                                             mapper);
403     }
404 
405     /** {@inheritDoc} */
406     @Override
407     public int getOrder() {
408         return 8;
409     }
410 
411     /** {@inheritDoc} */
412     @Override
413     protected T estimateError(final T[][] yDotK, final T[] y0, final T[] y1, final T h) {
414         T error1 = h.getField().getZero();
415         T error2 = h.getField().getZero();
416 
417         for (int j = 0; j < mainSetDimension; ++j) {
418             final T errSum1 =      yDotK[ 0][j].multiply(e1_01).
419                                add(yDotK[ 5][j].multiply(e1_06)).
420                                add(yDotK[ 6][j].multiply(e1_07)).
421                                add(yDotK[ 7][j].multiply(e1_08)).
422                                add(yDotK[ 8][j].multiply(e1_09)).
423                                add(yDotK[ 9][j].multiply(e1_10)).
424                                add(yDotK[10][j].multiply(e1_11)).
425                                add(yDotK[11][j].multiply(e1_12));
426             final T errSum2 =      yDotK[ 0][j].multiply(e2_01).
427                                add(yDotK[ 5][j].multiply(e2_06)).
428                                add(yDotK[ 6][j].multiply(e2_07)).
429                                add(yDotK[ 7][j].multiply(e2_08)).
430                                add(yDotK[ 8][j].multiply(e2_09)).
431                                add(yDotK[ 9][j].multiply(e2_10)).
432                                add(yDotK[10][j].multiply(e2_11)).
433                                add(yDotK[11][j].multiply(e2_12));
434 
435             final T yScale = RealFieldElement.max(y0[j].abs(), y1[j].abs());
436             final T tol = vecAbsoluteTolerance == null ?
437                           yScale.multiply(scalRelativeTolerance).add(scalAbsoluteTolerance) :
438                           yScale.multiply(vecRelativeTolerance[j]).add(vecAbsoluteTolerance[j]);
439             final T ratio1  = errSum1.divide(tol);
440             error1        = error1.add(ratio1.multiply(ratio1));
441             final T ratio2  = errSum2.divide(tol);
442             error2        = error2.add(ratio2.multiply(ratio2));
443         }
444 
445         T den = error1.add(error2.multiply(0.01));
446         if (den.getReal() <= 0.0) {
447             den = h.getField().getOne();
448         }
449 
450         return h.abs().multiply(error1).divide(den.multiply(mainSetDimension).sqrt());
451     }
452 }