View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.apache.commons.math4.legacy.ode.nonstiff;
19  
20  import org.apache.commons.math4.core.jdkmath.JdkMath;
21  
22  
23  /**
24   * This class implements the 8(5,3) Dormand-Prince integrator for Ordinary
25   * Differential Equations.
26   *
27   * <p>This integrator is an embedded Runge-Kutta integrator
28   * of order 8(5,3) used in local extrapolation mode (i.e. the solution
29   * is computed using the high order formula) with stepsize control
30   * (and automatic step initialization) and continuous output. This
31   * method uses 12 functions evaluations per step for integration and 4
32   * evaluations for interpolation. However, since the first
33   * interpolation evaluation is the same as the first integration
34   * evaluation of the next step, we have included it in the integrator
35   * rather than in the interpolator and specified the method was an
36   * <i>fsal</i>. Hence, despite we have 13 stages here, the cost is
37   * really 12 evaluations per step even if no interpolation is done,
38   * and the overcost of interpolation is only 3 evaluations.</p>
39   *
40   * <p>This method is based on an 8(6) method by Dormand and Prince
41   * (i.e. order 8 for the integration and order 6 for error estimation)
42   * modified by Hairer and Wanner to use a 5th order error estimator
43   * with 3rd order correction. This modification was introduced because
44   * the original method failed in some cases (wrong steps can be
45   * accepted when step size is too large, for example in the
46   * Brusselator problem) and also had <i>severe difficulties when
47   * applied to problems with discontinuities</i>. This modification is
48   * explained in the second edition of the first volume (Nonstiff
49   * Problems) of the reference book by Hairer, Norsett and Wanner:
50   * <i>Solving Ordinary Differential Equations</i> (Springer-Verlag,
51   * ISBN 3-540-56670-8).</p>
52   *
53   * @since 1.2
54   */
55  
56  public class DormandPrince853Integrator extends EmbeddedRungeKuttaIntegrator {
57  
58    /** Integrator method name. */
59    private static final String METHOD_NAME = "Dormand-Prince 8 (5, 3)";
60  
61    /** Time steps Butcher array. */
62    private static final double[] STATIC_C = {
63      (12.0 - 2.0 * JdkMath.sqrt(6.0)) / 135.0, (6.0 - JdkMath.sqrt(6.0)) / 45.0, (6.0 - JdkMath.sqrt(6.0)) / 30.0,
64      (6.0 + JdkMath.sqrt(6.0)) / 30.0, 1.0/3.0, 1.0/4.0, 4.0/13.0, 127.0/195.0, 3.0/5.0,
65      6.0/7.0, 1.0, 1.0
66    };
67  
68    /** Internal weights Butcher array. */
69    private static final double[][] STATIC_A = {
70  
71      // k2
72      {(12.0 - 2.0 * JdkMath.sqrt(6.0)) / 135.0},
73  
74      // k3
75      {(6.0 - JdkMath.sqrt(6.0)) / 180.0, (6.0 - JdkMath.sqrt(6.0)) / 60.0},
76  
77      // k4
78      {(6.0 - JdkMath.sqrt(6.0)) / 120.0, 0.0, (6.0 - JdkMath.sqrt(6.0)) / 40.0},
79  
80      // k5
81      {(462.0 + 107.0 * JdkMath.sqrt(6.0)) / 3000.0, 0.0,
82       (-402.0 - 197.0 * JdkMath.sqrt(6.0)) / 1000.0, (168.0 + 73.0 * JdkMath.sqrt(6.0)) / 375.0},
83  
84      // k6
85      {1.0 / 27.0, 0.0, 0.0, (16.0 + JdkMath.sqrt(6.0)) / 108.0, (16.0 - JdkMath.sqrt(6.0)) / 108.0},
86  
87      // k7
88      {19.0 / 512.0, 0.0, 0.0, (118.0 + 23.0 * JdkMath.sqrt(6.0)) / 1024.0,
89       (118.0 - 23.0 * JdkMath.sqrt(6.0)) / 1024.0, -9.0 / 512.0},
90  
91      // k8
92      {13772.0 / 371293.0, 0.0, 0.0, (51544.0 + 4784.0 * JdkMath.sqrt(6.0)) / 371293.0,
93       (51544.0 - 4784.0 * JdkMath.sqrt(6.0)) / 371293.0, -5688.0 / 371293.0, 3072.0 / 371293.0},
94  
95      // k9
96      {58656157643.0 / 93983540625.0, 0.0, 0.0,
97       (-1324889724104.0 - 318801444819.0 * JdkMath.sqrt(6.0)) / 626556937500.0,
98       (-1324889724104.0 + 318801444819.0 * JdkMath.sqrt(6.0)) / 626556937500.0,
99       96044563816.0 / 3480871875.0, 5682451879168.0 / 281950621875.0,
100      -165125654.0 / 3796875.0},
101 
102     // k10
103     {8909899.0 / 18653125.0, 0.0, 0.0,
104      (-4521408.0 - 1137963.0 * JdkMath.sqrt(6.0)) / 2937500.0,
105      (-4521408.0 + 1137963.0 * JdkMath.sqrt(6.0)) / 2937500.0,
106      96663078.0 / 4553125.0, 2107245056.0 / 137915625.0,
107      -4913652016.0 / 147609375.0, -78894270.0 / 3880452869.0},
108 
109     // k11
110     {-20401265806.0 / 21769653311.0, 0.0, 0.0,
111      (354216.0 + 94326.0 * JdkMath.sqrt(6.0)) / 112847.0,
112      (354216.0 - 94326.0 * JdkMath.sqrt(6.0)) / 112847.0,
113      -43306765128.0 / 5313852383.0, -20866708358144.0 / 1126708119789.0,
114      14886003438020.0 / 654632330667.0, 35290686222309375.0 / 14152473387134411.0,
115      -1477884375.0 / 485066827.0},
116 
117     // k12
118     {39815761.0 / 17514443.0, 0.0, 0.0,
119      (-3457480.0 - 960905.0 * JdkMath.sqrt(6.0)) / 551636.0,
120      (-3457480.0 + 960905.0 * JdkMath.sqrt(6.0)) / 551636.0,
121      -844554132.0 / 47026969.0, 8444996352.0 / 302158619.0,
122      -2509602342.0 / 877790785.0, -28388795297996250.0 / 3199510091356783.0,
123      226716250.0 / 18341897.0, 1371316744.0 / 2131383595.0},
124 
125     // k13 should be for interpolation only, but since it is the same
126     // stage as the first evaluation of the next step, we perform it
127     // here at no cost by specifying this is an fsal method
128     {104257.0/1920240.0, 0.0, 0.0, 0.0, 0.0, 3399327.0/763840.0,
129      66578432.0/35198415.0, -1674902723.0/288716400.0,
130      54980371265625.0/176692375811392.0, -734375.0/4826304.0,
131      171414593.0/851261400.0, 137909.0/3084480.0}
132   };
133 
134   /** Propagation weights Butcher array. */
135   private static final double[] STATIC_B = {
136       104257.0/1920240.0,
137       0.0,
138       0.0,
139       0.0,
140       0.0,
141       3399327.0/763840.0,
142       66578432.0/35198415.0,
143       -1674902723.0/288716400.0,
144       54980371265625.0/176692375811392.0,
145       -734375.0/4826304.0,
146       171414593.0/851261400.0,
147       137909.0/3084480.0,
148       0.0
149   };
150 
151   /** First error weights array, element 1. */
152   private static final double E1_01 =         116092271.0 / 8848465920.0;
153 
154   // elements 2 to 5 are zero, so they are neither stored nor used
155 
156   /** First error weights array, element 6. */
157   private static final double E1_06 =          -1871647.0 / 1527680.0;
158 
159   /** First error weights array, element 7. */
160   private static final double E1_07 =         -69799717.0 / 140793660.0;
161 
162   /** First error weights array, element 8. */
163   private static final double E1_08 =     1230164450203.0 / 739113984000.0;
164 
165   /** First error weights array, element 9. */
166   private static final double E1_09 = -1980813971228885.0 / 5654156025964544.0;
167 
168   /** First error weights array, element 10. */
169   private static final double E1_10 =         464500805.0 / 1389975552.0;
170 
171   /** First error weights array, element 11. */
172   private static final double E1_11 =     1606764981773.0 / 19613062656000.0;
173 
174   /** First error weights array, element 12. */
175   private static final double E1_12 =           -137909.0 / 6168960.0;
176 
177 
178   /** Second error weights array, element 1. */
179   private static final double E2_01 =           -364463.0 / 1920240.0;
180 
181   // elements 2 to 5 are zero, so they are neither stored nor used
182 
183   /** Second error weights array, element 6. */
184   private static final double E2_06 =           3399327.0 / 763840.0;
185 
186   /** Second error weights array, element 7. */
187   private static final double E2_07 =          66578432.0 / 35198415.0;
188 
189   /** Second error weights array, element 8. */
190   private static final double E2_08 =       -1674902723.0 / 288716400.0;
191 
192   /** Second error weights array, element 9. */
193   private static final double E2_09 =   -74684743568175.0 / 176692375811392.0;
194 
195   /** Second error weights array, element 10. */
196   private static final double E2_10 =           -734375.0 / 4826304.0;
197 
198   /** Second error weights array, element 11. */
199   private static final double E2_11 =         171414593.0 / 851261400.0;
200 
201   /** Second error weights array, element 12. */
202   private static final double E2_12 =             69869.0 / 3084480.0;
203 
204   /** Simple constructor.
205    * Build an eighth order Dormand-Prince integrator with the given step bounds
206    * @param minStep minimal step (sign is irrelevant, regardless of
207    * integration direction, forward or backward), the last step can
208    * be smaller than this
209    * @param maxStep maximal step (sign is irrelevant, regardless of
210    * integration direction, forward or backward), the last step can
211    * be smaller than this
212    * @param scalAbsoluteTolerance allowed absolute error
213    * @param scalRelativeTolerance allowed relative error
214    */
215   public DormandPrince853Integrator(final double minStep, final double maxStep,
216                                     final double scalAbsoluteTolerance,
217                                     final double scalRelativeTolerance) {
218     super(METHOD_NAME, true, STATIC_C, STATIC_A, STATIC_B,
219           new DormandPrince853StepInterpolator(),
220           minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
221   }
222 
223   /** Simple constructor.
224    * Build an eighth order Dormand-Prince integrator with the given step bounds
225    * @param minStep minimal step (sign is irrelevant, regardless of
226    * integration direction, forward or backward), the last step can
227    * be smaller than this
228    * @param maxStep maximal step (sign is irrelevant, regardless of
229    * integration direction, forward or backward), the last step can
230    * be smaller than this
231    * @param vecAbsoluteTolerance allowed absolute error
232    * @param vecRelativeTolerance allowed relative error
233    */
234   public DormandPrince853Integrator(final double minStep, final double maxStep,
235                                     final double[] vecAbsoluteTolerance,
236                                     final double[] vecRelativeTolerance) {
237     super(METHOD_NAME, true, STATIC_C, STATIC_A, STATIC_B,
238           new DormandPrince853StepInterpolator(),
239           minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
240   }
241 
242   /** {@inheritDoc} */
243   @Override
244   public int getOrder() {
245     return 8;
246   }
247 
248   /** {@inheritDoc} */
249   @Override
250   protected double estimateError(final double[][] yDotK,
251                                  final double[] y0, final double[] y1,
252                                  final double h) {
253     double error1 = 0;
254     double error2 = 0;
255 
256     for (int j = 0; j < mainSetDimension; ++j) {
257       final double errSum1 = E1_01 * yDotK[0][j]  + E1_06 * yDotK[5][j] +
258                              E1_07 * yDotK[6][j]  + E1_08 * yDotK[7][j] +
259                              E1_09 * yDotK[8][j]  + E1_10 * yDotK[9][j] +
260                              E1_11 * yDotK[10][j] + E1_12 * yDotK[11][j];
261       final double errSum2 = E2_01 * yDotK[0][j]  + E2_06 * yDotK[5][j] +
262                              E2_07 * yDotK[6][j]  + E2_08 * yDotK[7][j] +
263                              E2_09 * yDotK[8][j]  + E2_10 * yDotK[9][j] +
264                              E2_11 * yDotK[10][j] + E2_12 * yDotK[11][j];
265 
266       final double yScale = JdkMath.max(JdkMath.abs(y0[j]), JdkMath.abs(y1[j]));
267       final double tol = (vecAbsoluteTolerance == null) ?
268                          (scalAbsoluteTolerance + scalRelativeTolerance * yScale) :
269                          (vecAbsoluteTolerance[j] + vecRelativeTolerance[j] * yScale);
270       final double ratio1  = errSum1 / tol;
271       error1        += ratio1 * ratio1;
272       final double ratio2  = errSum2 / tol;
273       error2        += ratio2 * ratio2;
274     }
275 
276     double den = error1 + 0.01 * error2;
277     if (den <= 0.0) {
278       den = 1.0;
279     }
280 
281     return JdkMath.abs(h) * error1 / JdkMath.sqrt(mainSetDimension * den);
282   }
283 }