1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.codec.digest;
18
19 import java.security.MessageDigest;
20 import java.security.NoSuchAlgorithmException;
21 import java.util.Arrays;
22 import java.util.regex.Matcher;
23 import java.util.regex.Pattern;
24
25 import org.apache.commons.codec.Charsets;
26
27 /**
28 * SHA2-based Unix crypt implementation.
29 * <p>
30 * Based on the C implementation released into the Public Domain by Ulrich Drepper <drepper@redhat.com>
31 * http://www.akkadia.org/drepper/SHA-crypt.txt
32 * <p>
33 * Conversion to Kotlin and from there to Java in 2012 by Christian Hammers <ch@lathspell.de> and likewise put
34 * into the Public Domain.
35 * <p>
36 * This class is immutable and thread-safe.
37 *
38 * @version $Id: Sha2Crypt.html 928559 2014-11-10 02:53:54Z ggregory $
39 * @since 1.7
40 */
41 public class Sha2Crypt {
42
43 /** Default number of rounds if not explicitly specified. */
44 private static final int ROUNDS_DEFAULT = 5000;
45
46 /** Maximum number of rounds. */
47 private static final int ROUNDS_MAX = 999999999;
48
49 /** Minimum number of rounds. */
50 private static final int ROUNDS_MIN = 1000;
51
52 /** Prefix for optional rounds specification. */
53 private static final String ROUNDS_PREFIX = "rounds=";
54
55 /** The number of bytes the final hash value will have (SHA-256 variant). */
56 private static final int SHA256_BLOCKSIZE = 32;
57
58 /** The prefixes that can be used to identify this crypt() variant (SHA-256). */
59 static final String SHA256_PREFIX = "$5$";
60
61 /** The number of bytes the final hash value will have (SHA-512 variant). */
62 private static final int SHA512_BLOCKSIZE = 64;
63
64 /** The prefixes that can be used to identify this crypt() variant (SHA-512). */
65 static final String SHA512_PREFIX = "$6$";
66
67 /** The pattern to match valid salt values. */
68 private static final Pattern SALT_PATTERN = Pattern
69 .compile("^\\$([56])\\$(rounds=(\\d+)\\$)?([\\.\\/a-zA-Z0-9]{1,16}).*");
70
71 /**
72 * Generates a libc crypt() compatible "$5$" hash value with random salt.
73 * <p>
74 * See {@link Crypt#crypt(String, String)} for details.
75 *
76 * @param keyBytes
77 * plaintext to hash
78 * @return complete hash value
79 * @throws RuntimeException
80 * when a {@link java.security.NoSuchAlgorithmException} is caught.
81 */
82 public static String sha256Crypt(final byte[] keyBytes) {
83 return sha256Crypt(keyBytes, null);
84 }
85
86 /**
87 * Generates a libc6 crypt() compatible "$5$" hash value.
88 * <p>
89 * See {@link Crypt#crypt(String, String)} for details.
90 *
91 * @param keyBytes
92 * plaintext to hash
93 * @param salt
94 * real salt value without prefix or "rounds="
95 * @return complete hash value including salt
96 * @throws IllegalArgumentException
97 * if the salt does not match the allowed pattern
98 * @throws RuntimeException
99 * when a {@link java.security.NoSuchAlgorithmException} is caught.
100 */
101 public static String sha256Crypt(final byte[] keyBytes, String salt) {
102 if (salt == null) {
103 salt = SHA256_PREFIX + B64.getRandomSalt(8);
104 }
105 return sha2Crypt(keyBytes, salt, SHA256_PREFIX, SHA256_BLOCKSIZE, MessageDigestAlgorithms.SHA_256);
106 }
107
108 /**
109 * Generates a libc6 crypt() compatible "$5$" or "$6$" SHA2 based hash value.
110 * <p>
111 * This is a nearly line by line conversion of the original C function. The numbered comments are from the algorithm
112 * description, the short C-style ones from the original C code and the ones with "Remark" from me.
113 * <p>
114 * See {@link Crypt#crypt(String, String)} for details.
115 *
116 * @param keyBytes
117 * plaintext to hash
118 * @param salt
119 * real salt value without prefix or "rounds="
120 * @param saltPrefix
121 * either $5$ or $6$
122 * @param blocksize
123 * a value that differs between $5$ and $6$
124 * @param algorithm
125 * {@link MessageDigest} algorithm identifier string
126 * @return complete hash value including prefix and salt
127 * @throws IllegalArgumentException
128 * if the given salt is <code>null</code> or does not match the allowed pattern
129 * @throws IllegalArgumentException
130 * when a {@link NoSuchAlgorithmException} is caught
131 * @see MessageDigestAlgorithms
132 */
133 private static String sha2Crypt(final byte[] keyBytes, final String salt, final String saltPrefix,
134 final int blocksize, final String algorithm) {
135
136 final int keyLen = keyBytes.length;
137
138 // Extracts effective salt and the number of rounds from the given salt.
139 int rounds = ROUNDS_DEFAULT;
140 boolean roundsCustom = false;
141 if (salt == null) {
142 throw new IllegalArgumentException("Salt must not be null");
143 }
144
145 final Matcher m = SALT_PATTERN.matcher(salt);
146 if (m == null || !m.find()) {
147 throw new IllegalArgumentException("Invalid salt value: " + salt);
148 }
149 if (m.group(3) != null) {
150 rounds = Integer.parseInt(m.group(3));
151 rounds = Math.max(ROUNDS_MIN, Math.min(ROUNDS_MAX, rounds));
152 roundsCustom = true;
153 }
154 final String saltString = m.group(4);
155 final byte[] saltBytes = saltString.getBytes(Charsets.UTF_8);
156 final int saltLen = saltBytes.length;
157
158 // 1. start digest A
159 // Prepare for the real work.
160 MessageDigest ctx = DigestUtils.getDigest(algorithm);
161
162 // 2. the password string is added to digest A
163 /*
164 * Add the key string.
165 */
166 ctx.update(keyBytes);
167
168 // 3. the salt string is added to digest A. This is just the salt string
169 // itself without the enclosing '$', without the magic salt_prefix $5$ and
170 // $6$ respectively and without the rounds=<N> specification.
171 //
172 // NB: the MD5 algorithm did add the $1$ salt_prefix. This is not deemed
173 // necessary since it is a constant string and does not add security
174 // and /possibly/ allows a plain text attack. Since the rounds=<N>
175 // specification should never be added this would also create an
176 // inconsistency.
177 /*
178 * The last part is the salt string. This must be at most 16 characters and it ends at the first `$' character
179 * (for compatibility with existing implementations).
180 */
181 ctx.update(saltBytes);
182
183 // 4. start digest B
184 /*
185 * Compute alternate sha512 sum with input KEY, SALT, and KEY. The final result will be added to the first
186 * context.
187 */
188 MessageDigest altCtx = DigestUtils.getDigest(algorithm);
189
190 // 5. add the password to digest B
191 /*
192 * Add key.
193 */
194 altCtx.update(keyBytes);
195
196 // 6. add the salt string to digest B
197 /*
198 * Add salt.
199 */
200 altCtx.update(saltBytes);
201
202 // 7. add the password again to digest B
203 /*
204 * Add key again.
205 */
206 altCtx.update(keyBytes);
207
208 // 8. finish digest B
209 /*
210 * Now get result of this (32 bytes) and add it to the other context.
211 */
212 byte[] altResult = altCtx.digest();
213
214 // 9. For each block of 32 or 64 bytes in the password string (excluding
215 // the terminating NUL in the C representation), add digest B to digest A
216 /*
217 * Add for any character in the key one byte of the alternate sum.
218 */
219 /*
220 * (Remark: the C code comment seems wrong for key length > 32!)
221 */
222 int cnt = keyBytes.length;
223 while (cnt > blocksize) {
224 ctx.update(altResult, 0, blocksize);
225 cnt -= blocksize;
226 }
227
228 // 10. For the remaining N bytes of the password string add the first
229 // N bytes of digest B to digest A
230 ctx.update(altResult, 0, cnt);
231
232 // 11. For each bit of the binary representation of the length of the
233 // password string up to and including the highest 1-digit, starting
234 // from to lowest bit position (numeric value 1):
235 //
236 // a) for a 1-digit add digest B to digest A
237 //
238 // b) for a 0-digit add the password string
239 //
240 // NB: this step differs significantly from the MD5 algorithm. It
241 // adds more randomness.
242 /*
243 * Take the binary representation of the length of the key and for every 1 add the alternate sum, for every 0
244 * the key.
245 */
246 cnt = keyBytes.length;
247 while (cnt > 0) {
248 if ((cnt & 1) != 0) {
249 ctx.update(altResult, 0, blocksize);
250 } else {
251 ctx.update(keyBytes);
252 }
253 cnt >>= 1;
254 }
255
256 // 12. finish digest A
257 /*
258 * Create intermediate result.
259 */
260 altResult = ctx.digest();
261
262 // 13. start digest DP
263 /*
264 * Start computation of P byte sequence.
265 */
266 altCtx = DigestUtils.getDigest(algorithm);
267
268 // 14. for every byte in the password (excluding the terminating NUL byte
269 // in the C representation of the string)
270 //
271 // add the password to digest DP
272 /*
273 * For every character in the password add the entire password.
274 */
275 for (int i = 1; i <= keyLen; i++) {
276 altCtx.update(keyBytes);
277 }
278
279 // 15. finish digest DP
280 /*
281 * Finish the digest.
282 */
283 byte[] tempResult = altCtx.digest();
284
285 // 16. produce byte sequence P of the same length as the password where
286 //
287 // a) for each block of 32 or 64 bytes of length of the password string
288 // the entire digest DP is used
289 //
290 // b) for the remaining N (up to 31 or 63) bytes use the first N
291 // bytes of digest DP
292 /*
293 * Create byte sequence P.
294 */
295 final byte[] pBytes = new byte[keyLen];
296 int cp = 0;
297 while (cp < keyLen - blocksize) {
298 System.arraycopy(tempResult, 0, pBytes, cp, blocksize);
299 cp += blocksize;
300 }
301 System.arraycopy(tempResult, 0, pBytes, cp, keyLen - cp);
302
303 // 17. start digest DS
304 /*
305 * Start computation of S byte sequence.
306 */
307 altCtx = DigestUtils.getDigest(algorithm);
308
309 // 18. repeast the following 16+A[0] times, where A[0] represents the first
310 // byte in digest A interpreted as an 8-bit unsigned value
311 //
312 // add the salt to digest DS
313 /*
314 * For every character in the password add the entire password.
315 */
316 for (int i = 1; i <= 16 + (altResult[0] & 0xff); i++) {
317 altCtx.update(saltBytes);
318 }
319
320 // 19. finish digest DS
321 /*
322 * Finish the digest.
323 */
324 tempResult = altCtx.digest();
325
326 // 20. produce byte sequence S of the same length as the salt string where
327 //
328 // a) for each block of 32 or 64 bytes of length of the salt string
329 // the entire digest DS is used
330 //
331 // b) for the remaining N (up to 31 or 63) bytes use the first N
332 // bytes of digest DS
333 /*
334 * Create byte sequence S.
335 */
336 // Remark: The salt is limited to 16 chars, how does this make sense?
337 final byte[] sBytes = new byte[saltLen];
338 cp = 0;
339 while (cp < saltLen - blocksize) {
340 System.arraycopy(tempResult, 0, sBytes, cp, blocksize);
341 cp += blocksize;
342 }
343 System.arraycopy(tempResult, 0, sBytes, cp, saltLen - cp);
344
345 // 21. repeat a loop according to the number specified in the rounds=<N>
346 // specification in the salt (or the default value if none is
347 // present). Each round is numbered, starting with 0 and up to N-1.
348 //
349 // The loop uses a digest as input. In the first round it is the
350 // digest produced in step 12. In the latter steps it is the digest
351 // produced in step 21.h. The following text uses the notation
352 // "digest A/C" to describe this behavior.
353 /*
354 * Repeatedly run the collected hash value through sha512 to burn CPU cycles.
355 */
356 for (int i = 0; i <= rounds - 1; i++) {
357 // a) start digest C
358 /*
359 * New context.
360 */
361 ctx = DigestUtils.getDigest(algorithm);
362
363 // b) for odd round numbers add the byte sequense P to digest C
364 // c) for even round numbers add digest A/C
365 /*
366 * Add key or last result.
367 */
368 if ((i & 1) != 0) {
369 ctx.update(pBytes, 0, keyLen);
370 } else {
371 ctx.update(altResult, 0, blocksize);
372 }
373
374 // d) for all round numbers not divisible by 3 add the byte sequence S
375 /*
376 * Add salt for numbers not divisible by 3.
377 */
378 if (i % 3 != 0) {
379 ctx.update(sBytes, 0, saltLen);
380 }
381
382 // e) for all round numbers not divisible by 7 add the byte sequence P
383 /*
384 * Add key for numbers not divisible by 7.
385 */
386 if (i % 7 != 0) {
387 ctx.update(pBytes, 0, keyLen);
388 }
389
390 // f) for odd round numbers add digest A/C
391 // g) for even round numbers add the byte sequence P
392 /*
393 * Add key or last result.
394 */
395 if ((i & 1) != 0) {
396 ctx.update(altResult, 0, blocksize);
397 } else {
398 ctx.update(pBytes, 0, keyLen);
399 }
400
401 // h) finish digest C.
402 /*
403 * Create intermediate result.
404 */
405 altResult = ctx.digest();
406 }
407
408 // 22. Produce the output string. This is an ASCII string of the maximum
409 // size specified above, consisting of multiple pieces:
410 //
411 // a) the salt salt_prefix, $5$ or $6$ respectively
412 //
413 // b) the rounds=<N> specification, if one was present in the input
414 // salt string. A trailing '$' is added in this case to separate
415 // the rounds specification from the following text.
416 //
417 // c) the salt string truncated to 16 characters
418 //
419 // d) a '$' character
420 /*
421 * Now we can construct the result string. It consists of three parts.
422 */
423 final StringBuilder buffer = new StringBuilder(saltPrefix);
424 if (roundsCustom) {
425 buffer.append(ROUNDS_PREFIX);
426 buffer.append(rounds);
427 buffer.append("$");
428 }
429 buffer.append(saltString);
430 buffer.append("$");
431
432 // e) the base-64 encoded final C digest. The encoding used is as
433 // follows:
434 // [...]
435 //
436 // Each group of three bytes from the digest produces four
437 // characters as output:
438 //
439 // 1. character: the six low bits of the first byte
440 // 2. character: the two high bits of the first byte and the
441 // four low bytes from the second byte
442 // 3. character: the four high bytes from the second byte and
443 // the two low bits from the third byte
444 // 4. character: the six high bits from the third byte
445 //
446 // The groups of three bytes are as follows (in this sequence).
447 // These are the indices into the byte array containing the
448 // digest, starting with index 0. For the last group there are
449 // not enough bytes left in the digest and the value zero is used
450 // in its place. This group also produces only three or two
451 // characters as output for SHA-512 and SHA-512 respectively.
452
453 // This was just a safeguard in the C implementation:
454 // int buflen = salt_prefix.length() - 1 + ROUNDS_PREFIX.length() + 9 + 1 + salt_string.length() + 1 + 86 + 1;
455
456 if (blocksize == 32) {
457 B64.b64from24bit(altResult[0], altResult[10], altResult[20], 4, buffer);
458 B64.b64from24bit(altResult[21], altResult[1], altResult[11], 4, buffer);
459 B64.b64from24bit(altResult[12], altResult[22], altResult[2], 4, buffer);
460 B64.b64from24bit(altResult[3], altResult[13], altResult[23], 4, buffer);
461 B64.b64from24bit(altResult[24], altResult[4], altResult[14], 4, buffer);
462 B64.b64from24bit(altResult[15], altResult[25], altResult[5], 4, buffer);
463 B64.b64from24bit(altResult[6], altResult[16], altResult[26], 4, buffer);
464 B64.b64from24bit(altResult[27], altResult[7], altResult[17], 4, buffer);
465 B64.b64from24bit(altResult[18], altResult[28], altResult[8], 4, buffer);
466 B64.b64from24bit(altResult[9], altResult[19], altResult[29], 4, buffer);
467 B64.b64from24bit((byte) 0, altResult[31], altResult[30], 3, buffer);
468 } else {
469 B64.b64from24bit(altResult[0], altResult[21], altResult[42], 4, buffer);
470 B64.b64from24bit(altResult[22], altResult[43], altResult[1], 4, buffer);
471 B64.b64from24bit(altResult[44], altResult[2], altResult[23], 4, buffer);
472 B64.b64from24bit(altResult[3], altResult[24], altResult[45], 4, buffer);
473 B64.b64from24bit(altResult[25], altResult[46], altResult[4], 4, buffer);
474 B64.b64from24bit(altResult[47], altResult[5], altResult[26], 4, buffer);
475 B64.b64from24bit(altResult[6], altResult[27], altResult[48], 4, buffer);
476 B64.b64from24bit(altResult[28], altResult[49], altResult[7], 4, buffer);
477 B64.b64from24bit(altResult[50], altResult[8], altResult[29], 4, buffer);
478 B64.b64from24bit(altResult[9], altResult[30], altResult[51], 4, buffer);
479 B64.b64from24bit(altResult[31], altResult[52], altResult[10], 4, buffer);
480 B64.b64from24bit(altResult[53], altResult[11], altResult[32], 4, buffer);
481 B64.b64from24bit(altResult[12], altResult[33], altResult[54], 4, buffer);
482 B64.b64from24bit(altResult[34], altResult[55], altResult[13], 4, buffer);
483 B64.b64from24bit(altResult[56], altResult[14], altResult[35], 4, buffer);
484 B64.b64from24bit(altResult[15], altResult[36], altResult[57], 4, buffer);
485 B64.b64from24bit(altResult[37], altResult[58], altResult[16], 4, buffer);
486 B64.b64from24bit(altResult[59], altResult[17], altResult[38], 4, buffer);
487 B64.b64from24bit(altResult[18], altResult[39], altResult[60], 4, buffer);
488 B64.b64from24bit(altResult[40], altResult[61], altResult[19], 4, buffer);
489 B64.b64from24bit(altResult[62], altResult[20], altResult[41], 4, buffer);
490 B64.b64from24bit((byte) 0, (byte) 0, altResult[63], 2, buffer);
491 }
492
493 /*
494 * Clear the buffer for the intermediate result so that people attaching to processes or reading core dumps
495 * cannot get any information.
496 */
497 // Is there a better way to do this with the JVM?
498 Arrays.fill(tempResult, (byte) 0);
499 Arrays.fill(pBytes, (byte) 0);
500 Arrays.fill(sBytes, (byte) 0);
501 ctx.reset();
502 altCtx.reset();
503 Arrays.fill(keyBytes, (byte) 0);
504 Arrays.fill(saltBytes, (byte) 0);
505
506 return buffer.toString();
507 }
508
509 /**
510 * Generates a libc crypt() compatible "$6$" hash value with random salt.
511 * <p>
512 * See {@link Crypt#crypt(String, String)} for details.
513 *
514 * @param keyBytes
515 * plaintext to hash
516 * @return complete hash value
517 * @throws RuntimeException
518 * when a {@link java.security.NoSuchAlgorithmException} is caught.
519 */
520 public static String sha512Crypt(final byte[] keyBytes) {
521 return sha512Crypt(keyBytes, null);
522 }
523
524 /**
525 * Generates a libc6 crypt() compatible "$6$" hash value.
526 * <p>
527 * See {@link Crypt#crypt(String, String)} for details.
528 *
529 * @param keyBytes
530 * plaintext to hash
531 * @param salt
532 * real salt value without prefix or "rounds="
533 * @return complete hash value including salt
534 * @throws IllegalArgumentException
535 * if the salt does not match the allowed pattern
536 * @throws RuntimeException
537 * when a {@link java.security.NoSuchAlgorithmException} is caught.
538 */
539 public static String sha512Crypt(final byte[] keyBytes, String salt) {
540 if (salt == null) {
541 salt = SHA512_PREFIX + B64.getRandomSalt(8);
542 }
543 return sha2Crypt(keyBytes, salt, SHA512_PREFIX, SHA512_BLOCKSIZE, MessageDigestAlgorithms.SHA_512);
544 }
545 }