1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.apache.commons.codec.digest; 18 19 import java.security.MessageDigest; 20 import java.security.NoSuchAlgorithmException; 21 import java.util.Arrays; 22 import java.util.regex.Matcher; 23 import java.util.regex.Pattern; 24 25 import org.apache.commons.codec.Charsets; 26 27 /** 28 * SHA2-based Unix crypt implementation. 29 * <p> 30 * Based on the C implementation released into the Public Domain by Ulrich Drepper <drepper@redhat.com> 31 * http://www.akkadia.org/drepper/SHA-crypt.txt 32 * <p> 33 * Conversion to Kotlin and from there to Java in 2012 by Christian Hammers <ch@lathspell.de> and likewise put 34 * into the Public Domain. 35 * <p> 36 * This class is immutable and thread-safe. 37 * 38 * @version $Id: Sha2Crypt.html 889935 2013-12-11 05:05:13Z ggregory $ 39 * @since 1.7 40 */ 41 public class Sha2Crypt { 42 43 /** Default number of rounds if not explicitly specified. */ 44 private static final int ROUNDS_DEFAULT = 5000; 45 46 /** Maximum number of rounds. */ 47 private static final int ROUNDS_MAX = 999999999; 48 49 /** Minimum number of rounds. */ 50 private static final int ROUNDS_MIN = 1000; 51 52 /** Prefix for optional rounds specification. */ 53 private static final String ROUNDS_PREFIX = "rounds="; 54 55 /** The number of bytes the final hash value will have (SHA-256 variant). */ 56 private static final int SHA256_BLOCKSIZE = 32; 57 58 /** The prefixes that can be used to identify this crypt() variant (SHA-256). */ 59 static final String SHA256_PREFIX = "$5$"; 60 61 /** The number of bytes the final hash value will have (SHA-512 variant). */ 62 private static final int SHA512_BLOCKSIZE = 64; 63 64 /** The prefixes that can be used to identify this crypt() variant (SHA-512). */ 65 static final String SHA512_PREFIX = "$6$"; 66 67 /** The pattern to match valid salt values. */ 68 private static final Pattern SALT_PATTERN = Pattern 69 .compile("^\\$([56])\\$(rounds=(\\d+)\\$)?([\\.\\/a-zA-Z0-9]{1,16}).*"); 70 71 /** 72 * Generates a libc crypt() compatible "$5$" hash value with random salt. 73 * <p> 74 * See {@link Crypt#crypt(String, String)} for details. 75 * 76 * @throws RuntimeException 77 * when a {@link java.security.NoSuchAlgorithmException} is caught. 78 */ 79 public static String sha256Crypt(final byte[] keyBytes) { 80 return sha256Crypt(keyBytes, null); 81 } 82 83 /** 84 * Generates a libc6 crypt() compatible "$5$" hash value. 85 * <p> 86 * See {@link Crypt#crypt(String, String)} for details. 87 * 88 * @throws IllegalArgumentException 89 * if the salt does not match the allowed pattern 90 * @throws RuntimeException 91 * when a {@link java.security.NoSuchAlgorithmException} is caught. 92 */ 93 public static String sha256Crypt(final byte[] keyBytes, String salt) { 94 if (salt == null) { 95 salt = SHA256_PREFIX + B64.getRandomSalt(8); 96 } 97 return sha2Crypt(keyBytes, salt, SHA256_PREFIX, SHA256_BLOCKSIZE, MessageDigestAlgorithms.SHA_256); 98 } 99 100 /** 101 * Generates a libc6 crypt() compatible "$5$" or "$6$" SHA2 based hash value. 102 * <p> 103 * This is a nearly line by line conversion of the original C function. The numbered comments are from the 104 * algorithm description, the short C-style ones from the original C code and the ones with "Remark" from me. 105 * <p> 106 * See {@link Crypt#crypt(String, String)} for details. 107 * 108 * @param keyBytes 109 * plaintext that should be hashed 110 * @param salt 111 * real salt value without prefix or "rounds=" 112 * @param saltPrefix 113 * either $5$ or $6$ 114 * @param blocksize 115 * a value that differs between $5$ and $6$ 116 * @param algorithm 117 * {@link MessageDigest} algorithm identifier string 118 * @return complete hash value including prefix and salt 119 * @throws IllegalArgumentException 120 * if the given salt is {@code null} or does not match the allowed pattern 121 * @throws IllegalArgumentException 122 * when a {@link NoSuchAlgorithmException} is caught 123 * @see MessageDigestAlgorithms 124 */ 125 private static String sha2Crypt(final byte[] keyBytes, final String salt, final String saltPrefix, 126 final int blocksize, final String algorithm) { 127 128 final int keyLen = keyBytes.length; 129 130 // Extracts effective salt and the number of rounds from the given salt. 131 int rounds = ROUNDS_DEFAULT; 132 boolean roundsCustom = false; 133 if (salt == null) { 134 throw new IllegalArgumentException("Salt must not be null"); 135 } 136 137 final Matcher m = SALT_PATTERN.matcher(salt); 138 if (m == null || !m.find()) { 139 throw new IllegalArgumentException("Invalid salt value: " + salt); 140 } 141 if (m.group(3) != null) { 142 rounds = Integer.parseInt(m.group(3)); 143 rounds = Math.max(ROUNDS_MIN, Math.min(ROUNDS_MAX, rounds)); 144 roundsCustom = true; 145 } 146 final String saltString = m.group(4); 147 final byte[] saltBytes = saltString.getBytes(Charsets.UTF_8); 148 final int saltLen = saltBytes.length; 149 150 // 1. start digest A 151 // Prepare for the real work. 152 MessageDigest ctx = DigestUtils.getDigest(algorithm); 153 154 // 2. the password string is added to digest A 155 /* 156 * Add the key string. 157 */ 158 ctx.update(keyBytes); 159 160 // 3. the salt string is added to digest A. This is just the salt string 161 // itself without the enclosing '$', without the magic salt_prefix $5$ and 162 // $6$ respectively and without the rounds=<N> specification. 163 // 164 // NB: the MD5 algorithm did add the $1$ salt_prefix. This is not deemed 165 // necessary since it is a constant string and does not add security 166 // and /possibly/ allows a plain text attack. Since the rounds=<N> 167 // specification should never be added this would also create an 168 // inconsistency. 169 /* 170 * The last part is the salt string. This must be at most 16 characters and it ends at the first `$' character 171 * (for compatibility with existing implementations). 172 */ 173 ctx.update(saltBytes); 174 175 // 4. start digest B 176 /* 177 * Compute alternate sha512 sum with input KEY, SALT, and KEY. The final result will be added to the first 178 * context. 179 */ 180 MessageDigest altCtx = DigestUtils.getDigest(algorithm); 181 182 // 5. add the password to digest B 183 /* 184 * Add key. 185 */ 186 altCtx.update(keyBytes); 187 188 // 6. add the salt string to digest B 189 /* 190 * Add salt. 191 */ 192 altCtx.update(saltBytes); 193 194 // 7. add the password again to digest B 195 /* 196 * Add key again. 197 */ 198 altCtx.update(keyBytes); 199 200 // 8. finish digest B 201 /* 202 * Now get result of this (32 bytes) and add it to the other context. 203 */ 204 byte[] altResult = altCtx.digest(); 205 206 // 9. For each block of 32 or 64 bytes in the password string (excluding 207 // the terminating NUL in the C representation), add digest B to digest A 208 /* 209 * Add for any character in the key one byte of the alternate sum. 210 */ 211 /* 212 * (Remark: the C code comment seems wrong for key length > 32!) 213 */ 214 int cnt = keyBytes.length; 215 while (cnt > blocksize) { 216 ctx.update(altResult, 0, blocksize); 217 cnt -= blocksize; 218 } 219 220 // 10. For the remaining N bytes of the password string add the first 221 // N bytes of digest B to digest A 222 ctx.update(altResult, 0, cnt); 223 224 // 11. For each bit of the binary representation of the length of the 225 // password string up to and including the highest 1-digit, starting 226 // from to lowest bit position (numeric value 1): 227 // 228 // a) for a 1-digit add digest B to digest A 229 // 230 // b) for a 0-digit add the password string 231 // 232 // NB: this step differs significantly from the MD5 algorithm. It 233 // adds more randomness. 234 /* 235 * Take the binary representation of the length of the key and for every 1 add the alternate sum, for every 0 236 * the key. 237 */ 238 cnt = keyBytes.length; 239 while (cnt > 0) { 240 if ((cnt & 1) != 0) { 241 ctx.update(altResult, 0, blocksize); 242 } else { 243 ctx.update(keyBytes); 244 } 245 cnt >>= 1; 246 } 247 248 // 12. finish digest A 249 /* 250 * Create intermediate result. 251 */ 252 altResult = ctx.digest(); 253 254 // 13. start digest DP 255 /* 256 * Start computation of P byte sequence. 257 */ 258 altCtx = DigestUtils.getDigest(algorithm); 259 260 // 14. for every byte in the password (excluding the terminating NUL byte 261 // in the C representation of the string) 262 // 263 // add the password to digest DP 264 /* 265 * For every character in the password add the entire password. 266 */ 267 for (int i = 1; i <= keyLen; i++) { 268 altCtx.update(keyBytes); 269 } 270 271 // 15. finish digest DP 272 /* 273 * Finish the digest. 274 */ 275 byte[] tempResult = altCtx.digest(); 276 277 // 16. produce byte sequence P of the same length as the password where 278 // 279 // a) for each block of 32 or 64 bytes of length of the password string 280 // the entire digest DP is used 281 // 282 // b) for the remaining N (up to 31 or 63) bytes use the first N 283 // bytes of digest DP 284 /* 285 * Create byte sequence P. 286 */ 287 final byte[] pBytes = new byte[keyLen]; 288 int cp = 0; 289 while (cp < keyLen - blocksize) { 290 System.arraycopy(tempResult, 0, pBytes, cp, blocksize); 291 cp += blocksize; 292 } 293 System.arraycopy(tempResult, 0, pBytes, cp, keyLen - cp); 294 295 // 17. start digest DS 296 /* 297 * Start computation of S byte sequence. 298 */ 299 altCtx = DigestUtils.getDigest(algorithm); 300 301 // 18. repeast the following 16+A[0] times, where A[0] represents the first 302 // byte in digest A interpreted as an 8-bit unsigned value 303 // 304 // add the salt to digest DS 305 /* 306 * For every character in the password add the entire password. 307 */ 308 for (int i = 1; i <= 16 + (altResult[0] & 0xff); i++) { 309 altCtx.update(saltBytes); 310 } 311 312 // 19. finish digest DS 313 /* 314 * Finish the digest. 315 */ 316 tempResult = altCtx.digest(); 317 318 // 20. produce byte sequence S of the same length as the salt string where 319 // 320 // a) for each block of 32 or 64 bytes of length of the salt string 321 // the entire digest DS is used 322 // 323 // b) for the remaining N (up to 31 or 63) bytes use the first N 324 // bytes of digest DS 325 /* 326 * Create byte sequence S. 327 */ 328 // Remark: The salt is limited to 16 chars, how does this make sense? 329 final byte[] sBytes = new byte[saltLen]; 330 cp = 0; 331 while (cp < saltLen - blocksize) { 332 System.arraycopy(tempResult, 0, sBytes, cp, blocksize); 333 cp += blocksize; 334 } 335 System.arraycopy(tempResult, 0, sBytes, cp, saltLen - cp); 336 337 // 21. repeat a loop according to the number specified in the rounds=<N> 338 // specification in the salt (or the default value if none is 339 // present). Each round is numbered, starting with 0 and up to N-1. 340 // 341 // The loop uses a digest as input. In the first round it is the 342 // digest produced in step 12. In the latter steps it is the digest 343 // produced in step 21.h. The following text uses the notation 344 // "digest A/C" to describe this behavior. 345 /* 346 * Repeatedly run the collected hash value through sha512 to burn CPU cycles. 347 */ 348 for (int i = 0; i <= rounds - 1; i++) { 349 // a) start digest C 350 /* 351 * New context. 352 */ 353 ctx = DigestUtils.getDigest(algorithm); 354 355 // b) for odd round numbers add the byte sequense P to digest C 356 // c) for even round numbers add digest A/C 357 /* 358 * Add key or last result. 359 */ 360 if ((i & 1) != 0) { 361 ctx.update(pBytes, 0, keyLen); 362 } else { 363 ctx.update(altResult, 0, blocksize); 364 } 365 366 // d) for all round numbers not divisible by 3 add the byte sequence S 367 /* 368 * Add salt for numbers not divisible by 3. 369 */ 370 if (i % 3 != 0) { 371 ctx.update(sBytes, 0, saltLen); 372 } 373 374 // e) for all round numbers not divisible by 7 add the byte sequence P 375 /* 376 * Add key for numbers not divisible by 7. 377 */ 378 if (i % 7 != 0) { 379 ctx.update(pBytes, 0, keyLen); 380 } 381 382 // f) for odd round numbers add digest A/C 383 // g) for even round numbers add the byte sequence P 384 /* 385 * Add key or last result. 386 */ 387 if ((i & 1) != 0) { 388 ctx.update(altResult, 0, blocksize); 389 } else { 390 ctx.update(pBytes, 0, keyLen); 391 } 392 393 // h) finish digest C. 394 /* 395 * Create intermediate result. 396 */ 397 altResult = ctx.digest(); 398 } 399 400 // 22. Produce the output string. This is an ASCII string of the maximum 401 // size specified above, consisting of multiple pieces: 402 // 403 // a) the salt salt_prefix, $5$ or $6$ respectively 404 // 405 // b) the rounds=<N> specification, if one was present in the input 406 // salt string. A trailing '$' is added in this case to separate 407 // the rounds specification from the following text. 408 // 409 // c) the salt string truncated to 16 characters 410 // 411 // d) a '$' character 412 /* 413 * Now we can construct the result string. It consists of three parts. 414 */ 415 final StringBuilder buffer = new StringBuilder(saltPrefix); 416 if (roundsCustom) { 417 buffer.append(ROUNDS_PREFIX); 418 buffer.append(rounds); 419 buffer.append("$"); 420 } 421 buffer.append(saltString); 422 buffer.append("$"); 423 424 // e) the base-64 encoded final C digest. The encoding used is as 425 // follows: 426 // [...] 427 // 428 // Each group of three bytes from the digest produces four 429 // characters as output: 430 // 431 // 1. character: the six low bits of the first byte 432 // 2. character: the two high bits of the first byte and the 433 // four low bytes from the second byte 434 // 3. character: the four high bytes from the second byte and 435 // the two low bits from the third byte 436 // 4. character: the six high bits from the third byte 437 // 438 // The groups of three bytes are as follows (in this sequence). 439 // These are the indices into the byte array containing the 440 // digest, starting with index 0. For the last group there are 441 // not enough bytes left in the digest and the value zero is used 442 // in its place. This group also produces only three or two 443 // characters as output for SHA-512 and SHA-512 respectively. 444 445 // This was just a safeguard in the C implementation: 446 // int buflen = salt_prefix.length() - 1 + ROUNDS_PREFIX.length() + 9 + 1 + salt_string.length() + 1 + 86 + 1; 447 448 if (blocksize == 32) { 449 B64.b64from24bit(altResult[0], altResult[10], altResult[20], 4, buffer); 450 B64.b64from24bit(altResult[21], altResult[1], altResult[11], 4, buffer); 451 B64.b64from24bit(altResult[12], altResult[22], altResult[2], 4, buffer); 452 B64.b64from24bit(altResult[3], altResult[13], altResult[23], 4, buffer); 453 B64.b64from24bit(altResult[24], altResult[4], altResult[14], 4, buffer); 454 B64.b64from24bit(altResult[15], altResult[25], altResult[5], 4, buffer); 455 B64.b64from24bit(altResult[6], altResult[16], altResult[26], 4, buffer); 456 B64.b64from24bit(altResult[27], altResult[7], altResult[17], 4, buffer); 457 B64.b64from24bit(altResult[18], altResult[28], altResult[8], 4, buffer); 458 B64.b64from24bit(altResult[9], altResult[19], altResult[29], 4, buffer); 459 B64.b64from24bit((byte) 0, altResult[31], altResult[30], 3, buffer); 460 } else { 461 B64.b64from24bit(altResult[0], altResult[21], altResult[42], 4, buffer); 462 B64.b64from24bit(altResult[22], altResult[43], altResult[1], 4, buffer); 463 B64.b64from24bit(altResult[44], altResult[2], altResult[23], 4, buffer); 464 B64.b64from24bit(altResult[3], altResult[24], altResult[45], 4, buffer); 465 B64.b64from24bit(altResult[25], altResult[46], altResult[4], 4, buffer); 466 B64.b64from24bit(altResult[47], altResult[5], altResult[26], 4, buffer); 467 B64.b64from24bit(altResult[6], altResult[27], altResult[48], 4, buffer); 468 B64.b64from24bit(altResult[28], altResult[49], altResult[7], 4, buffer); 469 B64.b64from24bit(altResult[50], altResult[8], altResult[29], 4, buffer); 470 B64.b64from24bit(altResult[9], altResult[30], altResult[51], 4, buffer); 471 B64.b64from24bit(altResult[31], altResult[52], altResult[10], 4, buffer); 472 B64.b64from24bit(altResult[53], altResult[11], altResult[32], 4, buffer); 473 B64.b64from24bit(altResult[12], altResult[33], altResult[54], 4, buffer); 474 B64.b64from24bit(altResult[34], altResult[55], altResult[13], 4, buffer); 475 B64.b64from24bit(altResult[56], altResult[14], altResult[35], 4, buffer); 476 B64.b64from24bit(altResult[15], altResult[36], altResult[57], 4, buffer); 477 B64.b64from24bit(altResult[37], altResult[58], altResult[16], 4, buffer); 478 B64.b64from24bit(altResult[59], altResult[17], altResult[38], 4, buffer); 479 B64.b64from24bit(altResult[18], altResult[39], altResult[60], 4, buffer); 480 B64.b64from24bit(altResult[40], altResult[61], altResult[19], 4, buffer); 481 B64.b64from24bit(altResult[62], altResult[20], altResult[41], 4, buffer); 482 B64.b64from24bit((byte) 0, (byte) 0, altResult[63], 2, buffer); 483 } 484 485 /* 486 * Clear the buffer for the intermediate result so that people attaching to processes or reading core dumps 487 * cannot get any information. 488 */ 489 // Is there a better way to do this with the JVM? 490 Arrays.fill(tempResult, (byte) 0); 491 Arrays.fill(pBytes, (byte) 0); 492 Arrays.fill(sBytes, (byte) 0); 493 ctx.reset(); 494 altCtx.reset(); 495 Arrays.fill(keyBytes, (byte) 0); 496 Arrays.fill(saltBytes, (byte) 0); 497 498 return buffer.toString(); 499 } 500 501 /** 502 * Generates a libc crypt() compatible "$6$" hash value with random salt. 503 * <p> 504 * See {@link Crypt#crypt(String, String)} for details. 505 * 506 * @throws RuntimeException 507 * when a {@link java.security.NoSuchAlgorithmException} is caught. 508 */ 509 public static String sha512Crypt(final byte[] keyBytes) { 510 return sha512Crypt(keyBytes, null); 511 } 512 513 /** 514 * Generates a libc6 crypt() compatible "$6$" hash value. 515 * <p> 516 * See {@link Crypt#crypt(String, String)} for details. 517 * 518 * @throws IllegalArgumentException 519 * if the salt does not match the allowed pattern 520 * @throws RuntimeException 521 * when a {@link java.security.NoSuchAlgorithmException} is caught. 522 */ 523 public static String sha512Crypt(final byte[] keyBytes, String salt) { 524 if (salt == null) { 525 salt = SHA512_PREFIX + B64.getRandomSalt(8); 526 } 527 return sha2Crypt(keyBytes, salt, SHA512_PREFIX, SHA512_BLOCKSIZE, MessageDigestAlgorithms.SHA_512); 528 } 529 }