1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.codec.digest;
18
19 import java.security.MessageDigest;
20 import java.security.NoSuchAlgorithmException;
21 import java.util.Arrays;
22 import java.util.regex.Matcher;
23 import java.util.regex.Pattern;
24
25 import org.apache.commons.codec.Charsets;
26
27 /**
28 * SHA2-based Unix crypt implementation.
29 * <p>
30 * Based on the C implementation released into the Public Domain by Ulrich Drepper <drepper@redhat.com>
31 * http://www.akkadia.org/drepper/SHA-crypt.txt
32 * <p>
33 * Conversion to Kotlin and from there to Java in 2012 by Christian Hammers <ch@lathspell.de> and likewise put
34 * into the Public Domain.
35 * <p>
36 * This class is immutable and thread-safe.
37 *
38 * @version $Id: Sha2Crypt.html 889935 2013-12-11 05:05:13Z ggregory $
39 * @since 1.7
40 */
41 public class Sha2Crypt {
42
43 /** Default number of rounds if not explicitly specified. */
44 private static final int ROUNDS_DEFAULT = 5000;
45
46 /** Maximum number of rounds. */
47 private static final int ROUNDS_MAX = 999999999;
48
49 /** Minimum number of rounds. */
50 private static final int ROUNDS_MIN = 1000;
51
52 /** Prefix for optional rounds specification. */
53 private static final String ROUNDS_PREFIX = "rounds=";
54
55 /** The number of bytes the final hash value will have (SHA-256 variant). */
56 private static final int SHA256_BLOCKSIZE = 32;
57
58 /** The prefixes that can be used to identify this crypt() variant (SHA-256). */
59 static final String SHA256_PREFIX = "$5$";
60
61 /** The number of bytes the final hash value will have (SHA-512 variant). */
62 private static final int SHA512_BLOCKSIZE = 64;
63
64 /** The prefixes that can be used to identify this crypt() variant (SHA-512). */
65 static final String SHA512_PREFIX = "$6$";
66
67 /** The pattern to match valid salt values. */
68 private static final Pattern SALT_PATTERN = Pattern
69 .compile("^\\$([56])\\$(rounds=(\\d+)\\$)?([\\.\\/a-zA-Z0-9]{1,16}).*");
70
71 /**
72 * Generates a libc crypt() compatible "$5$" hash value with random salt.
73 * <p>
74 * See {@link Crypt#crypt(String, String)} for details.
75 *
76 * @throws RuntimeException
77 * when a {@link java.security.NoSuchAlgorithmException} is caught.
78 */
79 public static String sha256Crypt(final byte[] keyBytes) {
80 return sha256Crypt(keyBytes, null);
81 }
82
83 /**
84 * Generates a libc6 crypt() compatible "$5$" hash value.
85 * <p>
86 * See {@link Crypt#crypt(String, String)} for details.
87 *
88 * @throws IllegalArgumentException
89 * if the salt does not match the allowed pattern
90 * @throws RuntimeException
91 * when a {@link java.security.NoSuchAlgorithmException} is caught.
92 */
93 public static String sha256Crypt(final byte[] keyBytes, String salt) {
94 if (salt == null) {
95 salt = SHA256_PREFIX + B64.getRandomSalt(8);
96 }
97 return sha2Crypt(keyBytes, salt, SHA256_PREFIX, SHA256_BLOCKSIZE, MessageDigestAlgorithms.SHA_256);
98 }
99
100 /**
101 * Generates a libc6 crypt() compatible "$5$" or "$6$" SHA2 based hash value.
102 * <p>
103 * This is a nearly line by line conversion of the original C function. The numbered comments are from the
104 * algorithm description, the short C-style ones from the original C code and the ones with "Remark" from me.
105 * <p>
106 * See {@link Crypt#crypt(String, String)} for details.
107 *
108 * @param keyBytes
109 * plaintext that should be hashed
110 * @param salt
111 * real salt value without prefix or "rounds="
112 * @param saltPrefix
113 * either $5$ or $6$
114 * @param blocksize
115 * a value that differs between $5$ and $6$
116 * @param algorithm
117 * {@link MessageDigest} algorithm identifier string
118 * @return complete hash value including prefix and salt
119 * @throws IllegalArgumentException
120 * if the given salt is {@code null} or does not match the allowed pattern
121 * @throws IllegalArgumentException
122 * when a {@link NoSuchAlgorithmException} is caught
123 * @see MessageDigestAlgorithms
124 */
125 private static String sha2Crypt(final byte[] keyBytes, final String salt, final String saltPrefix,
126 final int blocksize, final String algorithm) {
127
128 final int keyLen = keyBytes.length;
129
130 // Extracts effective salt and the number of rounds from the given salt.
131 int rounds = ROUNDS_DEFAULT;
132 boolean roundsCustom = false;
133 if (salt == null) {
134 throw new IllegalArgumentException("Salt must not be null");
135 }
136
137 final Matcher m = SALT_PATTERN.matcher(salt);
138 if (m == null || !m.find()) {
139 throw new IllegalArgumentException("Invalid salt value: " + salt);
140 }
141 if (m.group(3) != null) {
142 rounds = Integer.parseInt(m.group(3));
143 rounds = Math.max(ROUNDS_MIN, Math.min(ROUNDS_MAX, rounds));
144 roundsCustom = true;
145 }
146 final String saltString = m.group(4);
147 final byte[] saltBytes = saltString.getBytes(Charsets.UTF_8);
148 final int saltLen = saltBytes.length;
149
150 // 1. start digest A
151 // Prepare for the real work.
152 MessageDigest ctx = DigestUtils.getDigest(algorithm);
153
154 // 2. the password string is added to digest A
155 /*
156 * Add the key string.
157 */
158 ctx.update(keyBytes);
159
160 // 3. the salt string is added to digest A. This is just the salt string
161 // itself without the enclosing '$', without the magic salt_prefix $5$ and
162 // $6$ respectively and without the rounds=<N> specification.
163 //
164 // NB: the MD5 algorithm did add the $1$ salt_prefix. This is not deemed
165 // necessary since it is a constant string and does not add security
166 // and /possibly/ allows a plain text attack. Since the rounds=<N>
167 // specification should never be added this would also create an
168 // inconsistency.
169 /*
170 * The last part is the salt string. This must be at most 16 characters and it ends at the first `$' character
171 * (for compatibility with existing implementations).
172 */
173 ctx.update(saltBytes);
174
175 // 4. start digest B
176 /*
177 * Compute alternate sha512 sum with input KEY, SALT, and KEY. The final result will be added to the first
178 * context.
179 */
180 MessageDigest altCtx = DigestUtils.getDigest(algorithm);
181
182 // 5. add the password to digest B
183 /*
184 * Add key.
185 */
186 altCtx.update(keyBytes);
187
188 // 6. add the salt string to digest B
189 /*
190 * Add salt.
191 */
192 altCtx.update(saltBytes);
193
194 // 7. add the password again to digest B
195 /*
196 * Add key again.
197 */
198 altCtx.update(keyBytes);
199
200 // 8. finish digest B
201 /*
202 * Now get result of this (32 bytes) and add it to the other context.
203 */
204 byte[] altResult = altCtx.digest();
205
206 // 9. For each block of 32 or 64 bytes in the password string (excluding
207 // the terminating NUL in the C representation), add digest B to digest A
208 /*
209 * Add for any character in the key one byte of the alternate sum.
210 */
211 /*
212 * (Remark: the C code comment seems wrong for key length > 32!)
213 */
214 int cnt = keyBytes.length;
215 while (cnt > blocksize) {
216 ctx.update(altResult, 0, blocksize);
217 cnt -= blocksize;
218 }
219
220 // 10. For the remaining N bytes of the password string add the first
221 // N bytes of digest B to digest A
222 ctx.update(altResult, 0, cnt);
223
224 // 11. For each bit of the binary representation of the length of the
225 // password string up to and including the highest 1-digit, starting
226 // from to lowest bit position (numeric value 1):
227 //
228 // a) for a 1-digit add digest B to digest A
229 //
230 // b) for a 0-digit add the password string
231 //
232 // NB: this step differs significantly from the MD5 algorithm. It
233 // adds more randomness.
234 /*
235 * Take the binary representation of the length of the key and for every 1 add the alternate sum, for every 0
236 * the key.
237 */
238 cnt = keyBytes.length;
239 while (cnt > 0) {
240 if ((cnt & 1) != 0) {
241 ctx.update(altResult, 0, blocksize);
242 } else {
243 ctx.update(keyBytes);
244 }
245 cnt >>= 1;
246 }
247
248 // 12. finish digest A
249 /*
250 * Create intermediate result.
251 */
252 altResult = ctx.digest();
253
254 // 13. start digest DP
255 /*
256 * Start computation of P byte sequence.
257 */
258 altCtx = DigestUtils.getDigest(algorithm);
259
260 // 14. for every byte in the password (excluding the terminating NUL byte
261 // in the C representation of the string)
262 //
263 // add the password to digest DP
264 /*
265 * For every character in the password add the entire password.
266 */
267 for (int i = 1; i <= keyLen; i++) {
268 altCtx.update(keyBytes);
269 }
270
271 // 15. finish digest DP
272 /*
273 * Finish the digest.
274 */
275 byte[] tempResult = altCtx.digest();
276
277 // 16. produce byte sequence P of the same length as the password where
278 //
279 // a) for each block of 32 or 64 bytes of length of the password string
280 // the entire digest DP is used
281 //
282 // b) for the remaining N (up to 31 or 63) bytes use the first N
283 // bytes of digest DP
284 /*
285 * Create byte sequence P.
286 */
287 final byte[] pBytes = new byte[keyLen];
288 int cp = 0;
289 while (cp < keyLen - blocksize) {
290 System.arraycopy(tempResult, 0, pBytes, cp, blocksize);
291 cp += blocksize;
292 }
293 System.arraycopy(tempResult, 0, pBytes, cp, keyLen - cp);
294
295 // 17. start digest DS
296 /*
297 * Start computation of S byte sequence.
298 */
299 altCtx = DigestUtils.getDigest(algorithm);
300
301 // 18. repeast the following 16+A[0] times, where A[0] represents the first
302 // byte in digest A interpreted as an 8-bit unsigned value
303 //
304 // add the salt to digest DS
305 /*
306 * For every character in the password add the entire password.
307 */
308 for (int i = 1; i <= 16 + (altResult[0] & 0xff); i++) {
309 altCtx.update(saltBytes);
310 }
311
312 // 19. finish digest DS
313 /*
314 * Finish the digest.
315 */
316 tempResult = altCtx.digest();
317
318 // 20. produce byte sequence S of the same length as the salt string where
319 //
320 // a) for each block of 32 or 64 bytes of length of the salt string
321 // the entire digest DS is used
322 //
323 // b) for the remaining N (up to 31 or 63) bytes use the first N
324 // bytes of digest DS
325 /*
326 * Create byte sequence S.
327 */
328 // Remark: The salt is limited to 16 chars, how does this make sense?
329 final byte[] sBytes = new byte[saltLen];
330 cp = 0;
331 while (cp < saltLen - blocksize) {
332 System.arraycopy(tempResult, 0, sBytes, cp, blocksize);
333 cp += blocksize;
334 }
335 System.arraycopy(tempResult, 0, sBytes, cp, saltLen - cp);
336
337 // 21. repeat a loop according to the number specified in the rounds=<N>
338 // specification in the salt (or the default value if none is
339 // present). Each round is numbered, starting with 0 and up to N-1.
340 //
341 // The loop uses a digest as input. In the first round it is the
342 // digest produced in step 12. In the latter steps it is the digest
343 // produced in step 21.h. The following text uses the notation
344 // "digest A/C" to describe this behavior.
345 /*
346 * Repeatedly run the collected hash value through sha512 to burn CPU cycles.
347 */
348 for (int i = 0; i <= rounds - 1; i++) {
349 // a) start digest C
350 /*
351 * New context.
352 */
353 ctx = DigestUtils.getDigest(algorithm);
354
355 // b) for odd round numbers add the byte sequense P to digest C
356 // c) for even round numbers add digest A/C
357 /*
358 * Add key or last result.
359 */
360 if ((i & 1) != 0) {
361 ctx.update(pBytes, 0, keyLen);
362 } else {
363 ctx.update(altResult, 0, blocksize);
364 }
365
366 // d) for all round numbers not divisible by 3 add the byte sequence S
367 /*
368 * Add salt for numbers not divisible by 3.
369 */
370 if (i % 3 != 0) {
371 ctx.update(sBytes, 0, saltLen);
372 }
373
374 // e) for all round numbers not divisible by 7 add the byte sequence P
375 /*
376 * Add key for numbers not divisible by 7.
377 */
378 if (i % 7 != 0) {
379 ctx.update(pBytes, 0, keyLen);
380 }
381
382 // f) for odd round numbers add digest A/C
383 // g) for even round numbers add the byte sequence P
384 /*
385 * Add key or last result.
386 */
387 if ((i & 1) != 0) {
388 ctx.update(altResult, 0, blocksize);
389 } else {
390 ctx.update(pBytes, 0, keyLen);
391 }
392
393 // h) finish digest C.
394 /*
395 * Create intermediate result.
396 */
397 altResult = ctx.digest();
398 }
399
400 // 22. Produce the output string. This is an ASCII string of the maximum
401 // size specified above, consisting of multiple pieces:
402 //
403 // a) the salt salt_prefix, $5$ or $6$ respectively
404 //
405 // b) the rounds=<N> specification, if one was present in the input
406 // salt string. A trailing '$' is added in this case to separate
407 // the rounds specification from the following text.
408 //
409 // c) the salt string truncated to 16 characters
410 //
411 // d) a '$' character
412 /*
413 * Now we can construct the result string. It consists of three parts.
414 */
415 final StringBuilder buffer = new StringBuilder(saltPrefix);
416 if (roundsCustom) {
417 buffer.append(ROUNDS_PREFIX);
418 buffer.append(rounds);
419 buffer.append("$");
420 }
421 buffer.append(saltString);
422 buffer.append("$");
423
424 // e) the base-64 encoded final C digest. The encoding used is as
425 // follows:
426 // [...]
427 //
428 // Each group of three bytes from the digest produces four
429 // characters as output:
430 //
431 // 1. character: the six low bits of the first byte
432 // 2. character: the two high bits of the first byte and the
433 // four low bytes from the second byte
434 // 3. character: the four high bytes from the second byte and
435 // the two low bits from the third byte
436 // 4. character: the six high bits from the third byte
437 //
438 // The groups of three bytes are as follows (in this sequence).
439 // These are the indices into the byte array containing the
440 // digest, starting with index 0. For the last group there are
441 // not enough bytes left in the digest and the value zero is used
442 // in its place. This group also produces only three or two
443 // characters as output for SHA-512 and SHA-512 respectively.
444
445 // This was just a safeguard in the C implementation:
446 // int buflen = salt_prefix.length() - 1 + ROUNDS_PREFIX.length() + 9 + 1 + salt_string.length() + 1 + 86 + 1;
447
448 if (blocksize == 32) {
449 B64.b64from24bit(altResult[0], altResult[10], altResult[20], 4, buffer);
450 B64.b64from24bit(altResult[21], altResult[1], altResult[11], 4, buffer);
451 B64.b64from24bit(altResult[12], altResult[22], altResult[2], 4, buffer);
452 B64.b64from24bit(altResult[3], altResult[13], altResult[23], 4, buffer);
453 B64.b64from24bit(altResult[24], altResult[4], altResult[14], 4, buffer);
454 B64.b64from24bit(altResult[15], altResult[25], altResult[5], 4, buffer);
455 B64.b64from24bit(altResult[6], altResult[16], altResult[26], 4, buffer);
456 B64.b64from24bit(altResult[27], altResult[7], altResult[17], 4, buffer);
457 B64.b64from24bit(altResult[18], altResult[28], altResult[8], 4, buffer);
458 B64.b64from24bit(altResult[9], altResult[19], altResult[29], 4, buffer);
459 B64.b64from24bit((byte) 0, altResult[31], altResult[30], 3, buffer);
460 } else {
461 B64.b64from24bit(altResult[0], altResult[21], altResult[42], 4, buffer);
462 B64.b64from24bit(altResult[22], altResult[43], altResult[1], 4, buffer);
463 B64.b64from24bit(altResult[44], altResult[2], altResult[23], 4, buffer);
464 B64.b64from24bit(altResult[3], altResult[24], altResult[45], 4, buffer);
465 B64.b64from24bit(altResult[25], altResult[46], altResult[4], 4, buffer);
466 B64.b64from24bit(altResult[47], altResult[5], altResult[26], 4, buffer);
467 B64.b64from24bit(altResult[6], altResult[27], altResult[48], 4, buffer);
468 B64.b64from24bit(altResult[28], altResult[49], altResult[7], 4, buffer);
469 B64.b64from24bit(altResult[50], altResult[8], altResult[29], 4, buffer);
470 B64.b64from24bit(altResult[9], altResult[30], altResult[51], 4, buffer);
471 B64.b64from24bit(altResult[31], altResult[52], altResult[10], 4, buffer);
472 B64.b64from24bit(altResult[53], altResult[11], altResult[32], 4, buffer);
473 B64.b64from24bit(altResult[12], altResult[33], altResult[54], 4, buffer);
474 B64.b64from24bit(altResult[34], altResult[55], altResult[13], 4, buffer);
475 B64.b64from24bit(altResult[56], altResult[14], altResult[35], 4, buffer);
476 B64.b64from24bit(altResult[15], altResult[36], altResult[57], 4, buffer);
477 B64.b64from24bit(altResult[37], altResult[58], altResult[16], 4, buffer);
478 B64.b64from24bit(altResult[59], altResult[17], altResult[38], 4, buffer);
479 B64.b64from24bit(altResult[18], altResult[39], altResult[60], 4, buffer);
480 B64.b64from24bit(altResult[40], altResult[61], altResult[19], 4, buffer);
481 B64.b64from24bit(altResult[62], altResult[20], altResult[41], 4, buffer);
482 B64.b64from24bit((byte) 0, (byte) 0, altResult[63], 2, buffer);
483 }
484
485 /*
486 * Clear the buffer for the intermediate result so that people attaching to processes or reading core dumps
487 * cannot get any information.
488 */
489 // Is there a better way to do this with the JVM?
490 Arrays.fill(tempResult, (byte) 0);
491 Arrays.fill(pBytes, (byte) 0);
492 Arrays.fill(sBytes, (byte) 0);
493 ctx.reset();
494 altCtx.reset();
495 Arrays.fill(keyBytes, (byte) 0);
496 Arrays.fill(saltBytes, (byte) 0);
497
498 return buffer.toString();
499 }
500
501 /**
502 * Generates a libc crypt() compatible "$6$" hash value with random salt.
503 * <p>
504 * See {@link Crypt#crypt(String, String)} for details.
505 *
506 * @throws RuntimeException
507 * when a {@link java.security.NoSuchAlgorithmException} is caught.
508 */
509 public static String sha512Crypt(final byte[] keyBytes) {
510 return sha512Crypt(keyBytes, null);
511 }
512
513 /**
514 * Generates a libc6 crypt() compatible "$6$" hash value.
515 * <p>
516 * See {@link Crypt#crypt(String, String)} for details.
517 *
518 * @throws IllegalArgumentException
519 * if the salt does not match the allowed pattern
520 * @throws RuntimeException
521 * when a {@link java.security.NoSuchAlgorithmException} is caught.
522 */
523 public static String sha512Crypt(final byte[] keyBytes, String salt) {
524 if (salt == null) {
525 salt = SHA512_PREFIX + B64.getRandomSalt(8);
526 }
527 return sha2Crypt(keyBytes, salt, SHA512_PREFIX, SHA512_BLOCKSIZE, MessageDigestAlgorithms.SHA_512);
528 }
529 }