View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.collections4.iterators;
18  
19  import java.util.ArrayList;
20  import java.util.Arrays;
21  import java.util.Collection;
22  import java.util.HashMap;
23  import java.util.Iterator;
24  import java.util.List;
25  import java.util.Map;
26  import java.util.NoSuchElementException;
27  import java.util.Objects;
28  
29  /**
30   * This iterator creates permutations of an input collection, using the
31   * Steinhaus-Johnson-Trotter algorithm (also called plain changes).
32   * <p>
33   * The iterator will return exactly n! permutations of the input collection.
34   * The {@code remove()} operation is not supported, and will throw an
35   * {@code UnsupportedOperationException}.
36   * <p>
37   * NOTE: in case an empty collection is provided, the iterator will
38   * return exactly one empty list as result, as 0! = 1.
39   *
40   * @param <E>  the type of the objects being permuted
41   *
42   * @since 4.0
43   */
44  public class PermutationIterator<E> implements Iterator<List<E>> {
45  
46      /**
47       * Permutation is done on these keys to handle equal objects.
48       */
49      private final int[] keys;
50  
51      /**
52       * Mapping between keys and objects.
53       */
54      private final Map<Integer, E> objectMap;
55  
56      /**
57       * Direction table used in the algorithm:
58       * <ul>
59       *   <li>false is left</li>
60       *   <li>true is right</li>
61       * </ul>
62       */
63      private final boolean[] direction;
64  
65      /**
66       * Next permutation to return. When a permutation is requested
67       * this instance is provided and the next one is computed.
68       */
69      private List<E> nextPermutation;
70  
71      /**
72       * Standard constructor for this class.
73       * @param collection  the collection to generate permutations for
74       * @throws NullPointerException if coll is null
75       */
76      public PermutationIterator(final Collection<? extends E> collection) {
77          Objects.requireNonNull(collection, "collection");
78          keys = new int[collection.size()];
79          direction = new boolean[collection.size()];
80          Arrays.fill(direction, false);
81          int value = 1;
82          objectMap = new HashMap<>();
83          for (final E e : collection) {
84              objectMap.put(Integer.valueOf(value), e);
85              keys[value - 1] = value;
86              value++;
87          }
88          nextPermutation = new ArrayList<>(collection);
89      }
90  
91      /**
92       * Indicates if there are more permutation available.
93       * @return true if there are more permutations, otherwise false
94       */
95      @Override
96      public boolean hasNext() {
97          return nextPermutation != null;
98      }
99  
100     /**
101      * Returns the next permutation of the input collection.
102      * @return a list of the permutator's elements representing a permutation
103      * @throws NoSuchElementException if there are no more permutations
104      */
105     @Override
106     public List<E> next() {
107         if (!hasNext()) {
108             throw new NoSuchElementException();
109         }
110 
111         // find the largest mobile integer k
112         int indexOfLargestMobileInteger = -1;
113         int largestKey = -1;
114         for (int i = 0; i < keys.length; i++) {
115             if (direction[i] && i < keys.length - 1 && keys[i] > keys[i + 1] ||
116                 !direction[i] && i > 0 && keys[i] > keys[i - 1]) {
117                 if (keys[i] > largestKey) { // NOPMD
118                     largestKey = keys[i];
119                     indexOfLargestMobileInteger = i;
120                 }
121             }
122         }
123         if (largestKey == -1) {
124             final List<E> toReturn = nextPermutation;
125             nextPermutation = null;
126             return toReturn;
127         }
128 
129         // swap k and the adjacent integer it is looking at
130         final int offset = direction[indexOfLargestMobileInteger] ? 1 : -1;
131         final int tmpKey = keys[indexOfLargestMobileInteger];
132         keys[indexOfLargestMobileInteger] = keys[indexOfLargestMobileInteger + offset];
133         keys[indexOfLargestMobileInteger + offset] = tmpKey;
134         final boolean tmpDirection = direction[indexOfLargestMobileInteger];
135         direction[indexOfLargestMobileInteger] = direction[indexOfLargestMobileInteger + offset];
136         direction[indexOfLargestMobileInteger + offset] = tmpDirection;
137 
138         // reverse the direction of all integers larger than k and build the result
139         final List<E> nextP = new ArrayList<>();
140         for (int i = 0; i < keys.length; i++) {
141             if (keys[i] > largestKey) {
142                 direction[i] = !direction[i];
143             }
144             nextP.add(objectMap.get(Integer.valueOf(keys[i])));
145         }
146         final List<E> result = nextPermutation;
147         nextPermutation = nextP;
148         return result;
149     }
150 
151     @Override
152     public void remove() {
153         throw new UnsupportedOperationException("remove() is not supported");
154     }
155 
156 }