View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.geometry.euclidean.threed.rotation;
18  
19  import java.util.Objects;
20  import java.util.function.DoubleFunction;
21  
22  import org.apache.commons.geometry.core.internal.GeometryInternalError;
23  import org.apache.commons.geometry.euclidean.internal.Vectors;
24  import org.apache.commons.geometry.euclidean.threed.AffineTransformMatrix3D;
25  import org.apache.commons.geometry.euclidean.threed.Vector3D;
26  import org.apache.commons.numbers.angle.Angle;
27  import org.apache.commons.numbers.quaternion.Quaternion;
28  import org.apache.commons.numbers.quaternion.Slerp;
29  
30  /**
31   * Class using a unit-length quaternion to represent
32   * <a href="https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation">rotations</a>
33   * in 3-dimensional Euclidean space.
34   * The underlying quaternion is in <em>positive polar form</em>: It is normalized and has a
35   * non-negative scalar component ({@code w}).
36   *
37   * @see Quaternion
38   */
39  public final class QuaternionRotation implements Rotation3D {
40      /** Threshold value for the dot product of antiparallel vectors. If the dot product of two vectors is
41       * less than this value, (adjusted for the lengths of the vectors), then the vectors are considered to be
42       * antiparallel (ie, negations of each other).
43       */
44      private static final double ANTIPARALLEL_DOT_THRESHOLD = 2.0e-15 - 1.0;
45  
46      /** Threshold value used to identify singularities when converting from quaternions to
47       * axis angle sequences.
48       */
49      private static final double AXIS_ANGLE_SINGULARITY_THRESHOLD = 0.9999999999;
50  
51      /** Instance used to represent the identity rotation, ie a rotation with
52       * an angle of zero.
53       */
54      private static final QuaternionRotation IDENTITY_INSTANCE = of(Quaternion.ONE);
55  
56      /** Unit-length quaternion instance in positive polar form. */
57      private final Quaternion quat;
58  
59      /** Simple constructor. The given quaternion is converted to positive polar form.
60       * @param quat quaternion instance
61       * @throws IllegalStateException if the the norm of the given components is zero,
62       *                              NaN, or infinite
63       */
64      private QuaternionRotation(final Quaternion quat) {
65          this.quat = quat.positivePolarForm();
66      }
67  
68      /** Get the underlying quaternion instance.
69       * @return the quaternion instance
70       */
71      public Quaternion getQuaternion() {
72          return quat;
73      }
74  
75      /**
76       * Get the axis of rotation as a normalized {@link Vector3D}. The rotation axis
77       * is not well defined when the rotation is the identity rotation, ie it has a
78       * rotation angle of zero. In this case, the vector representing the positive
79       * x-axis is returned.
80       *
81       * @return the axis of rotation
82       */
83      @Override
84      public Vector3D getAxis() {
85          final Vector3D axis = Vector3D.of(quat.getX(), quat.getY(), quat.getZ())
86                  .normalizeOrNull();
87          return axis != null ?
88                  axis :
89                  Vector3D.Unit.PLUS_X;
90      }
91  
92      /**
93       * Get the angle of rotation in radians. The returned value is in the range 0
94       * through {@code pi}.
95       *
96       * @return The rotation angle in the range {@code [0, pi]}.
97       */
98      @Override
99      public double getAngle() {
100         return 2 * Math.acos(quat.getW());
101     }
102 
103     /**
104      * Get the inverse of this rotation. The returned rotation has the same
105      * rotation angle but the opposite rotation axis. If {@code r.apply(u)}
106      * is equal to {@code v}, then {@code r.negate().apply(v)} is equal
107      * to {@code u}.
108      *
109      * @return the negation (inverse) of the rotation
110      */
111     @Override
112     public QuaternionRotation inverse() {
113         return new QuaternionRotation(quat.conjugate());
114     }
115 
116     /**
117      * Apply this rotation to the given vector.
118      *
119      * @param v vector to rotate
120      * @return the rotated vector
121      */
122     @Override
123     public Vector3D apply(final Vector3D v) {
124         final double qw = quat.getW();
125         final double qx = quat.getX();
126         final double qy = quat.getY();
127         final double qz = quat.getZ();
128 
129         final double x = v.getX();
130         final double y = v.getY();
131         final double z = v.getZ();
132 
133         // calculate the Hamilton product of the quaternion and vector
134         final double iw = -(qx * x) - (qy * y) - (qz * z);
135         final double ix = (qw * x) + (qy * z) - (qz * y);
136         final double iy = (qw * y) + (qz * x) - (qx * z);
137         final double iz = (qw * z) + (qx * y) - (qy * x);
138 
139         // calculate the Hamilton product of the intermediate vector and
140         // the inverse quaternion
141 
142         return Vector3D.of(
143                     (iw * -qx) + (ix * qw) + (iy * -qz) - (iz * -qy),
144                     (iw * -qy) - (ix * -qz) + (iy * qw) + (iz * -qx),
145                     (iw * -qz) + (ix * -qy) - (iy * -qx) + (iz * qw)
146                 );
147     }
148 
149     /** {@inheritDoc}
150      *
151      * <p>This method simply calls {@code apply(vec)} since rotations treat
152      * points and vectors similarly.</p>
153      */
154     @Override
155     public Vector3D applyVector(final Vector3D vec) {
156         return apply(vec);
157     }
158 
159     /** {@inheritDoc}
160      *
161      * <p>This method simply returns true since rotations always preserve the orientation
162      * of the space.</p>
163      */
164     @Override
165     public boolean preservesOrientation() {
166         return true;
167     }
168 
169     /** Return an {@link AffineTransformMatrix3D} representing the same rotation as this
170      * instance.
171      * @return a transform matrix representing the same rotation as this instance
172      */
173     public AffineTransformMatrix3D toMatrix() {
174 
175         final double qw = quat.getW();
176         final double qx = quat.getX();
177         final double qy = quat.getY();
178         final double qz = quat.getZ();
179 
180         // pre-calculate products that we'll need
181         final double xx = qx * qx;
182         final double xy = qx * qy;
183         final double xz = qx * qz;
184         final double xw = qx * qw;
185 
186         final double yy = qy * qy;
187         final double yz = qy * qz;
188         final double yw = qy * qw;
189 
190         final double zz = qz * qz;
191         final double zw = qz * qw;
192 
193         final double m00 = 1.0 - (2.0 * (yy + zz));
194         final double m01 = 2.0 * (xy - zw);
195         final double m02 = 2.0 * (xz + yw);
196         final double m03 = 0.0;
197 
198         final double m10 = 2.0 * (xy + zw);
199         final double m11 = 1.0 - (2.0 * (xx + zz));
200         final double m12 = 2.0 * (yz - xw);
201         final double m13 = 0.0;
202 
203         final double m20 = 2.0 * (xz - yw);
204         final double m21 = 2.0 * (yz + xw);
205         final double m22 = 1.0 - (2.0 * (xx + yy));
206         final double m23 = 0.0;
207 
208         return AffineTransformMatrix3D.of(
209                     m00, m01, m02, m03,
210                     m10, m11, m12, m13,
211                     m20, m21, m22, m23
212                 );
213     }
214 
215     /**
216      * Multiply this instance by the given argument, returning the result as
217      * a new instance. This is equivalent to the expression {@code t * q} where
218      * {@code q} is the argument and {@code t} is this instance.
219      *
220      * <p>
221      * Multiplication of quaternions behaves similarly to transformation
222      * matrices in regard to the order that operations are performed.
223      * For example, if <code>q<sub>1</sub></code> and <code>q<sub>2</sub></code> are unit
224      * quaternions, then the quaternion <code>q<sub>r</sub> = q<sub>1</sub>*q<sub>2</sub></code>
225      * will give the effect of applying the rotation in <code>q<sub>2</sub></code> followed
226      * by the rotation in <code>q<sub>1</sub></code>. In other words, the rightmost element
227      * in the multiplication is applied first.
228      * </p>
229      *
230      * @param q quaternion to multiply with the current instance
231      * @return the result of multiplying this quaternion by the argument
232      */
233     public QuaternionRotation multiply(final QuaternionRotation q) {
234         final Quaternion product = quat.multiply(q.quat);
235         return new QuaternionRotation(product);
236     }
237 
238     /** Multiply the argument by this instance, returning the result as
239      * a new instance. This is equivalent to the expression {@code q * t} where
240      * {@code q} is the argument and {@code t} is this instance.
241      *
242      * <p>
243      * Multiplication of quaternions behaves similarly to transformation
244      * matrices in regard to the order that operations are performed.
245      * For example, if <code>q<sub>1</sub></code> and <code>q<sub>2</sub></code> are unit
246      * quaternions, then the quaternion <code>q<sub>r</sub> = q<sub>1</sub>*q<sub>2</sub></code>
247      * will give the effect of applying the rotation in <code>q<sub>2</sub></code> followed
248      * by the rotation in <code>q<sub>1</sub></code>. In other words, the rightmost element
249      * in the multiplication is applied first.
250      * </p>
251      *
252      * @param q quaternion to multiply by the current instance
253      * @return the result of multiplying the argument by the current instance
254      */
255     public QuaternionRotation premultiply(final QuaternionRotation q) {
256         return q.multiply(this);
257     }
258 
259     /**
260      * Creates a function that performs a
261      * <a href="https://en.wikipedia.org/wiki/Slerp">spherical
262      * linear interpolation</a> between this instance and the argument.
263      * <p>
264      * The argument to the function returned by this method is the
265      * interpolation parameter {@code t}.
266      * If {@code t = 0}, the rotation is equal to this instance.
267      * If {@code t = 1}, the rotation is equal to the {@code end} instance.
268      * All other values are interpolated (or extrapolated if {@code t} is
269      * outside of the {@code [0, 1]} range).
270      *
271      * @param end end value of the interpolation
272      * @return a function that interpolates between this instance and the
273      * argument.
274      *
275      * @see org.apache.commons.numbers.quaternion.Slerp
276      */
277     public DoubleFunction<QuaternionRotation> slerp(final QuaternionRotation end) {
278         final Slerp s = new Slerp(getQuaternion(), end.getQuaternion());
279         return t -> QuaternionRotation.of(s.apply(t));
280     }
281 
282     /** Get a sequence of axis-angle rotations that produce an overall rotation equivalent to this instance.
283      *
284      * <p>
285      * In most cases, the returned rotation sequence will be unique. However, at points of singularity
286      * (second angle equal to {@code 0} or {@code -pi} for Euler angles and {@code +pi/2} or {@code -pi/2}
287      * for Tait-Bryan angles), there are an infinite number of possible sequences that produce the same result.
288      * In these cases, the result is returned that leaves the last rotation equal to 0 (in the case of a relative
289      * reference frame) or the first rotation equal to 0 (in the case of an absolute reference frame).
290      * </p>
291      *
292      * @param frame the reference frame used to interpret the positions of the rotation axes
293      * @param axes the sequence of rotation axes
294      * @return a sequence of axis-angle rotations equivalent to this rotation
295      */
296     public AxisAngleSequence toAxisAngleSequence(final AxisReferenceFrame frame, final AxisSequence axes) {
297         if (frame == null) {
298             throw new IllegalArgumentException("Axis reference frame cannot be null");
299         }
300         if (axes == null) {
301             throw new IllegalArgumentException("Axis sequence cannot be null");
302         }
303 
304         final double[] angles = getAngles(frame, axes);
305 
306         return new AxisAngleSequence(frame, axes, angles[0], angles[1], angles[2]);
307     }
308 
309     /** Get a sequence of axis-angle rotations that produce an overall rotation equivalent to this instance.
310      * Each rotation axis is interpreted relative to the rotated coordinate frame (ie, intrinsic rotation).
311      * @param axes the sequence of rotation axes
312      * @return a sequence of relative axis-angle rotations equivalent to this rotation
313      * @see #toAxisAngleSequence(AxisReferenceFrame, AxisSequence)
314      */
315     public AxisAngleSequence toRelativeAxisAngleSequence(final AxisSequence axes) {
316         return toAxisAngleSequence(AxisReferenceFrame.RELATIVE, axes);
317     }
318 
319     /** Get a sequence of axis-angle rotations that produce an overall rotation equivalent to this instance.
320      * Each rotation axis is interpreted as part of an absolute, unmoving coordinate frame (ie, extrinsic rotation).
321      * @param axes the sequence of rotation axes
322      * @return a sequence of absolute axis-angle rotations equivalent to this rotation
323      * @see #toAxisAngleSequence(AxisReferenceFrame, AxisSequence)
324      */
325     public AxisAngleSequence toAbsoluteAxisAngleSequence(final AxisSequence axes) {
326         return toAxisAngleSequence(AxisReferenceFrame.ABSOLUTE, axes);
327     }
328 
329     /** {@inheritDoc} */
330     @Override
331     public int hashCode() {
332         return quat.hashCode();
333     }
334 
335     /** {@inheritDoc} */
336     @Override
337     public boolean equals(final Object obj) {
338         if (this == obj) {
339             return true;
340         }
341         if (!(obj instanceof QuaternionRotation)) {
342             return false;
343         }
344 
345         final QuaternionRotation other = (QuaternionRotation) obj;
346         return Objects.equals(this.quat, other.quat);
347     }
348 
349     /** {@inheritDoc} */
350     @Override
351     public String toString() {
352         return quat.toString();
353     }
354 
355     /** Get a sequence of angles around the given axes that produce a rotation equivalent
356      * to this instance.
357      * @param frame the reference frame used to define the positions of the axes
358      * @param axes the axis sequence
359      * @return a sequence of angles around the given axes that produce a rotation equivalent
360      *      to this instance
361      */
362     private double[] getAngles(final AxisReferenceFrame frame, final AxisSequence axes) {
363 
364         final AxisSequenceType sequenceType = axes.getType();
365 
366         final Vector3D axis1 = axes.getAxis1();
367         final Vector3D axis2 = axes.getAxis2();
368         final Vector3D axis3 = axes.getAxis3();
369 
370         if (frame == AxisReferenceFrame.RELATIVE) {
371             if (sequenceType == AxisSequenceType.TAIT_BRYAN) {
372                 return getRelativeTaitBryanAngles(axis1, axis2, axis3);
373             } else if (sequenceType == AxisSequenceType.EULER) {
374                 return getRelativeEulerAngles(axis1, axis2);
375             }
376         } else if (frame == AxisReferenceFrame.ABSOLUTE) {
377             if (sequenceType == AxisSequenceType.TAIT_BRYAN) {
378                 return getAbsoluteTaitBryanAngles(axis1, axis2, axis3);
379             } else if (sequenceType == AxisSequenceType.EULER) {
380                 return getAbsoluteEulerAngles(axis1, axis2);
381             }
382         }
383 
384         // all possibilities should have been covered above
385         throw new GeometryInternalError();
386     }
387 
388     /** Get a sequence of angles around the given Tait-Bryan axes that produce a rotation equivalent
389      * to this instance. The axes are interpreted as being relative to the rotated coordinate frame.
390      * @param axis1 first Tait-Bryan axis
391      * @param axis2 second Tait-Bryan axis
392      * @param axis3 third Tait-Bryan axis
393      * @return a sequence of rotation angles around the relative input axes that produce a rotation equivalent
394      *      to this instance
395      */
396     private double[] getRelativeTaitBryanAngles(final Vector3D axis1, final Vector3D axis2, final Vector3D axis3) {
397 
398         // We can use geometry to get the first and second angles pretty easily here by analyzing the positions
399         // of the transformed rotation axes. The third angle is trickier but we can get it by treating it as
400         // if it were the first rotation in the inverse (which it would be).
401 
402         final Vector3D vec3 = apply(axis3);
403         final Vector3D invVec1 = inverse().apply(axis1);
404 
405         final double angle2Sin = vec3.dot(axis2.cross(axis3));
406 
407         if (angle2Sin < -AXIS_ANGLE_SINGULARITY_THRESHOLD ||
408                 angle2Sin > AXIS_ANGLE_SINGULARITY_THRESHOLD) {
409 
410             final Vector3D vec2 = apply(axis2);
411 
412             final double angle1TanY = vec2.dot(axis1.cross(axis2));
413             final double angle1TanX = vec2.dot(axis2);
414 
415             final double angle2 = angle2Sin > AXIS_ANGLE_SINGULARITY_THRESHOLD ?
416                     Angle.PI_OVER_TWO :
417                     -Angle.PI_OVER_TWO;
418 
419             return new double[] {
420                 Math.atan2(angle1TanY, angle1TanX),
421                 angle2,
422                 0.0
423             };
424         }
425 
426         final Vector3D  crossAxis13 = axis1.cross(axis3);
427 
428         final double angle1TanY = vec3.dot(crossAxis13);
429         final double angle1TanX = vec3.dot(axis3);
430 
431         final double angle3TanY = invVec1.dot(crossAxis13);
432         final double angle3TanX = invVec1.dot(axis1);
433 
434         return new double[] {
435             Math.atan2(angle1TanY, angle1TanX),
436             Math.asin(angle2Sin),
437             Math.atan2(angle3TanY, angle3TanX)
438         };
439     }
440 
441     /** Get a sequence of angles around the given Tait-Bryan axes that produce a rotation equivalent
442      * to this instance. The axes are interpreted as being part of an absolute (unmoving) coordinate frame.
443      * @param axis1 first Tait-Bryan axis
444      * @param axis2 second Tait-Bryan axis
445      * @param axis3 third Tait-Bryan axis
446      * @return a sequence of rotation angles around the absolute input axes that produce a rotation equivalent
447      *      to this instance
448      */
449     private double[] getAbsoluteTaitBryanAngles(final Vector3D axis1, final Vector3D axis2, final Vector3D axis3) {
450         // A relative axis-angle rotation sequence is equivalent to an absolute one with the rotation
451         // sequence reversed, meaning we can reuse our relative logic here.
452         return reverseArray(getRelativeTaitBryanAngles(axis3, axis2, axis1));
453     }
454 
455     /** Get a sequence of angles around the given Euler axes that produce a rotation equivalent
456      * to this instance. The axes are interpreted as being relative to the rotated coordinate frame. Only
457      * the first two axes are needed since, by definition, the first Euler angle axis is repeated as the
458      * third axis.
459      * @param axis1 first Euler axis
460      * @param axis2 second Euler axis
461      * @return a sequence of rotation angles around the relative input axes that produce a rotation equivalent
462      *      to this instance
463      */
464     private double[] getRelativeEulerAngles(final Vector3D axis1, final Vector3D axis2) {
465 
466         // Use the same overall approach as with the Tait-Bryan angles: get the first two angles by looking
467         // at the transformed rotation axes and the third by using the inverse.
468 
469         final Vector3D crossAxis = axis1.cross(axis2);
470 
471         final Vector3D vec1 = apply(axis1);
472         final Vector3D invVec1 = inverse().apply(axis1);
473 
474         final double angle2Cos = vec1.dot(axis1);
475 
476         if (angle2Cos < -AXIS_ANGLE_SINGULARITY_THRESHOLD ||
477                 angle2Cos > AXIS_ANGLE_SINGULARITY_THRESHOLD) {
478 
479             final Vector3D vec2 = apply(axis2);
480 
481             final double angle1TanY = vec2.dot(crossAxis);
482             final double angle1TanX = vec2.dot(axis2);
483 
484             final double angle2 = angle2Cos > AXIS_ANGLE_SINGULARITY_THRESHOLD ? 0.0 : Math.PI;
485 
486             return new double[] {
487                 Math.atan2(angle1TanY, angle1TanX),
488                 angle2,
489                 0.0
490             };
491         }
492 
493         final double angle1TanY = vec1.dot(axis2);
494         final double angle1TanX = -vec1.dot(crossAxis);
495 
496         final double angle3TanY = invVec1.dot(axis2);
497         final double angle3TanX = invVec1.dot(crossAxis);
498 
499         return new double[] {
500             Math.atan2(angle1TanY, angle1TanX),
501             Math.acos(angle2Cos),
502             Math.atan2(angle3TanY, angle3TanX)
503         };
504     }
505 
506     /** Get a sequence of angles around the given Euler axes that produce a rotation equivalent
507      * to this instance. The axes are interpreted as being part of an absolute (unmoving) coordinate frame.
508      * Only the first two axes are needed since, by definition, the first Euler angle axis is repeated as
509      * the third axis.
510      * @param axis1 first Euler axis
511      * @param axis2 second Euler axis
512      * @return a sequence of rotation angles around the absolute input axes that produce a rotation equivalent
513      *      to this instance
514      */
515     private double[] getAbsoluteEulerAngles(final Vector3D axis1, final Vector3D axis2) {
516         // A relative axis-angle rotation sequence is equivalent to an absolute one with the rotation
517         // sequence reversed, meaning we can reuse our relative logic here.
518         return reverseArray(getRelativeEulerAngles(axis1, axis2));
519     }
520 
521     /** Create a new instance from the given quaternion. The quaternion is normalized and
522      * converted to positive polar form (ie, with w &gt;= 0).
523      *
524      * @param quat the quaternion to use for the rotation
525      * @return a new instance built from the given quaternion.
526      * @throws IllegalStateException if the the norm of the given components is zero,
527      *                              NaN, or infinite
528      * @see Quaternion#normalize()
529      * @see Quaternion#positivePolarForm()
530      */
531     public static QuaternionRotation of(final Quaternion quat) {
532         return new QuaternionRotation(quat);
533     }
534 
535     /**
536      * Create a new instance from the given quaternion values. The inputs are
537      * normalized and converted to positive polar form (ie, with w &gt;= 0).
538      *
539      * @param w quaternion scalar component
540      * @param x first quaternion vectorial component
541      * @param y second quaternion vectorial component
542      * @param z third quaternion vectorial component
543      * @return a new instance containing the normalized quaterion components
544      * @throws IllegalStateException if the the norm of the given components is zero,
545      *                              NaN, or infinite
546      * @see Quaternion#normalize()
547      * @see Quaternion#positivePolarForm()
548      */
549     public static QuaternionRotation of(final double w,
550                                         final double x,
551                                         final double y,
552                                         final double z) {
553         return of(Quaternion.of(w, x, y, z));
554     }
555 
556     /** Return an instance representing a rotation of zero.
557      * @return instance representing a rotation of zero.
558      */
559     public static QuaternionRotation identity() {
560         return IDENTITY_INSTANCE;
561     }
562 
563     /** Create a new instance representing a rotation of {@code angle} radians around
564      * {@code axis}.
565      *
566      * <p>
567      * Rotation direction follows the right-hand rule, meaning that if one
568      * places their right hand such that the thumb points in the direction of the vector,
569      * the curl of the fingers indicates the direction of rotation.
570      * </p>
571      *
572      * <p>
573      * Note that the returned quaternion will represent the defined rotation but the values
574      * returned by {@link #getAxis()} and {@link #getAngle()} may not match the ones given here.
575      * This is because the axis and angle are normalized such that the axis has unit length,
576      * and the angle lies in the range {@code [0, pi]}. Depending on the inputs, the axis may
577      * need to be inverted in order for the angle to lie in this range.
578      * </p>
579      *
580      * @param axis the axis of rotation
581      * @param angle angle of rotation in radians
582      * @return a new instance representing the defined rotation
583      *
584      * @throws IllegalArgumentException if the given axis cannot be normalized or the angle is NaN or infinite
585      */
586     public static QuaternionRotation fromAxisAngle(final Vector3D axis, final double angle) {
587         // reference formula:
588         // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
589         final Vector3D normAxis = axis.normalize();
590 
591         if (!Double.isFinite(angle)) {
592             throw new IllegalArgumentException("Invalid angle: " + angle);
593         }
594 
595         final double halfAngle = 0.5 * angle;
596         final double sinHalfAngle = Math.sin(halfAngle);
597 
598         final double w = Math.cos(halfAngle);
599         final double x = sinHalfAngle * normAxis.getX();
600         final double y = sinHalfAngle * normAxis.getY();
601         final double z = sinHalfAngle * normAxis.getZ();
602 
603         return of(w, x, y, z);
604     }
605 
606     /** Return an instance that rotates the first vector to the second.
607      *
608      * <p>Except for a possible scale factor, if the returned instance is
609      * applied to vector {@code u}, it will produce the vector {@code v}. There are an
610      * infinite number of such rotations; this method chooses the one with the smallest
611      * associated angle, meaning the one whose axis is orthogonal to the {@code (u, v)}
612      * plane. If {@code u} and {@code v} are collinear, an arbitrary rotation axis is
613      * chosen.</p>
614      *
615      * @param u origin vector
616      * @param v target vector
617      * @return a new instance that rotates {@code u} to point in the direction of {@code v}
618      * @throws IllegalArgumentException if either vector has a norm of zero, NaN, or infinity
619      */
620     public static QuaternionRotation createVectorRotation(final Vector3D u, final Vector3D v) {
621 
622         final double normProduct  = Vectors.checkedNorm(u) * Vectors.checkedNorm(v);
623         final double dot = u.dot(v);
624 
625         if (dot < ANTIPARALLEL_DOT_THRESHOLD * normProduct) {
626             // Special case where u1 = -u2:
627             // create a pi angle rotation around
628             // an arbitrary unit vector orthogonal to u1
629             final Vector3D axis = u.orthogonal();
630 
631             return of(0,
632                       axis.getX(),
633                       axis.getY(),
634                       axis.getZ());
635         }
636 
637         // General case:
638         // (u1, u2) defines a plane so rotate around the normal of the plane
639 
640         // w must equal cos(theta/2); we can calculate this directly using values
641         // we already have with the identity cos(theta/2) = sqrt((1 + cos(theta)) / 2)
642         // and the fact that dot = norm(u1) * norm(u2) * cos(theta).
643         final double w = Math.sqrt(0.5 * (1.0 + (dot / normProduct)));
644 
645         // The cross product u1 x u2 must be normalized and then multiplied by
646         // sin(theta/2) in order to set the vectorial part of the quaternion. To
647         // accomplish this, we'll use the following:
648         //
649         // 1) norm(a x b) = norm(a) * norm(b) * sin(theta)
650         // 2) sin(theta/2) = sqrt((1 - cos(theta)) / 2)
651         //
652         // Our full, combined normalization and sine half angle term factor then becomes:
653         //
654         // sqrt((1 - cos(theta)) / 2) / (norm(u1) * norm(u2) * sin(theta))
655         //
656         // This can be simplified to the expression below.
657         final double vectorialScaleFactor = 1.0 / (2.0 * w * normProduct);
658         final Vector3D axis = u.cross(v);
659 
660         return of(w,
661                   vectorialScaleFactor * axis.getX(),
662                   vectorialScaleFactor * axis.getY(),
663                   vectorialScaleFactor * axis.getZ());
664     }
665 
666     /** Return an instance that rotates the basis defined by the first two vectors into the basis
667      * defined by the second two.
668      *
669      * <p>
670      * The given basis vectors do not have to be directly orthogonal. A right-handed orthonormal
671      * basis is created from each pair by normalizing the first vector, making the second vector
672      * orthogonal to the first, and then taking the cross product. A rotation is then calculated
673      * that rotates the first to the second.
674      * </p>
675      *
676      * @param u1 first vector of the source basis
677      * @param u2 second vector of the source basis
678      * @param v1 first vector of the target basis
679      * @param v2 second vector of the target basis
680      * @return an instance that rotates the source basis to the target basis
681      * @throws IllegalArgumentException if any of the input vectors cannot be normalized
682      *      or the vectors defining either basis are collinear
683      */
684     public static QuaternionRotation createBasisRotation(final Vector3D u1, final Vector3D u2,
685             final Vector3D v1, final Vector3D v2) {
686 
687         // calculate orthonormalized bases
688         final Vector3D a = u1.normalize();
689         final Vector3D b = a.orthogonal(u2);
690         final Vector3D c = a.cross(b);
691 
692         final Vector3D d = v1.normalize();
693         final Vector3D e = d.orthogonal(v2);
694         final Vector3D f = d.cross(e);
695 
696         // create an orthogonal rotation matrix representing the change of basis; this matrix will
697         // be the multiplication of the matrix composed of the column vectors d, e, f and the
698         // inverse of the matrix composed of the column vectors a, b, c (which is simply the transpose since
699         // it's orthogonal).
700         final double m00 = Vectors.linearCombination(d.getX(), a.getX(), e.getX(), b.getX(), f.getX(), c.getX());
701         final double m01 = Vectors.linearCombination(d.getX(), a.getY(), e.getX(), b.getY(), f.getX(), c.getY());
702         final double m02 = Vectors.linearCombination(d.getX(), a.getZ(), e.getX(), b.getZ(), f.getX(), c.getZ());
703 
704         final double m10 = Vectors.linearCombination(d.getY(), a.getX(), e.getY(), b.getX(), f.getY(), c.getX());
705         final double m11 = Vectors.linearCombination(d.getY(), a.getY(), e.getY(), b.getY(), f.getY(), c.getY());
706         final double m12 = Vectors.linearCombination(d.getY(), a.getZ(), e.getY(), b.getZ(), f.getY(), c.getZ());
707 
708         final double m20 = Vectors.linearCombination(d.getZ(), a.getX(), e.getZ(), b.getX(), f.getZ(), c.getX());
709         final double m21 = Vectors.linearCombination(d.getZ(), a.getY(), e.getZ(), b.getY(), f.getZ(), c.getY());
710         final double m22 = Vectors.linearCombination(d.getZ(), a.getZ(), e.getZ(), b.getZ(), f.getZ(), c.getZ());
711 
712 
713         return orthogonalRotationMatrixToQuaternion(
714                     m00, m01, m02,
715                     m10, m11, m12,
716                     m20, m21, m22
717                 );
718     }
719 
720     /** Create a new instance equivalent to the given sequence of axis-angle rotations.
721      * @param sequence the axis-angle rotation sequence to convert to a quaternion rotation
722      * @return instance representing a rotation equivalent to the given axis-angle sequence
723      */
724     public static QuaternionRotation fromAxisAngleSequence(final AxisAngleSequence sequence) {
725         final AxisSequence axes = sequence.getAxisSequence();
726 
727         final QuaternionRotation q1 = fromAxisAngle(axes.getAxis1(), sequence.getAngle1());
728         final QuaternionRotation q2 = fromAxisAngle(axes.getAxis2(), sequence.getAngle2());
729         final QuaternionRotation q3 = fromAxisAngle(axes.getAxis3(), sequence.getAngle3());
730 
731         if (sequence.getReferenceFrame() == AxisReferenceFrame.ABSOLUTE) {
732             return q3.multiply(q2).multiply(q1);
733         }
734 
735         return q1.multiply(q2).multiply(q3);
736     }
737 
738     /** Create an instance from an orthogonal rotation matrix.
739      *
740      * @param m00 matrix entry <code>m<sub>0,0</sub></code>
741      * @param m01 matrix entry <code>m<sub>0,1</sub></code>
742      * @param m02 matrix entry <code>m<sub>0,2</sub></code>
743      * @param m10 matrix entry <code>m<sub>1,0</sub></code>
744      * @param m11 matrix entry <code>m<sub>1,1</sub></code>
745      * @param m12 matrix entry <code>m<sub>1,2</sub></code>
746      * @param m20 matrix entry <code>m<sub>2,0</sub></code>
747      * @param m21 matrix entry <code>m<sub>2,1</sub></code>
748      * @param m22 matrix entry <code>m<sub>2,2</sub></code>
749      * @return an instance representing the same 3D rotation as the given matrix
750      */
751     private static QuaternionRotation orthogonalRotationMatrixToQuaternion(
752             final double m00, final double m01, final double m02,
753             final double m10, final double m11, final double m12,
754             final double m20, final double m21, final double m22) {
755 
756         // reference formula:
757         // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/
758 
759         // The overall approach here is to take the equations for converting a quaternion to
760         // a matrix along with the fact that 1 = x^2 + y^2 + z^2 + w^2 for a normalized quaternion
761         // and solve for the various terms. This can theoretically be done using just the diagonal
762         // terms from the matrix. However, there are a few issues with this:
763         // 1) The term that we end up taking the square root of may be negative.
764         // 2) It's ambiguous as to whether we should use a plus or minus for the value of the
765         //    square root.
766         // We'll address these concerns by only calculating a single term from one of the diagonal
767         // elements and then calculate the rest from the non-diagonals, which do not involve
768         // a square root. This solves the first issue since we can make sure to choose a diagonal
769         // element that will not cause us to take a square root of a negative number. The second
770         // issue is solved since only the relative signs between the quaternion terms are important
771         // (q and -q represent the same 3D rotation). It therefore doesn't matter whether we choose
772         // a plus or minus for our initial square root solution.
773 
774         final double trace = m00 + m11 + m22;
775 
776         final double w;
777         final double x;
778         final double y;
779         final double z;
780 
781         if (trace > 0) {
782             // let s = 4*w
783             final double s = 2.0 * Math.sqrt(1.0 + trace);
784             final double sinv = 1.0 / s;
785 
786             x = (m21 - m12) * sinv;
787             y = (m02 - m20) * sinv;
788             z = (m10 - m01) * sinv;
789             w = 0.25 * s;
790         } else if ((m00 > m11) && (m00 > m22)) {
791             // let s = 4*x
792             final double s = 2.0 * Math.sqrt(1.0 + m00 - m11 - m22);
793             final double sinv = 1.0 / s;
794 
795             x = 0.25 * s;
796             y = (m01 + m10) * sinv;
797             z = (m02 + m20) * sinv;
798             w = (m21 - m12) * sinv;
799         } else if (m11 > m22) {
800             // let s = 4*y
801             final double s = 2.0 * Math.sqrt(1.0 + m11 - m00 - m22);
802             final double sinv = 1.0 / s;
803 
804             x = (m01 + m10) * sinv;
805             y = 0.25 * s;
806             z = (m21 + m12) * sinv;
807             w = (m02 - m20) * sinv;
808         } else {
809             // let s = 4*z
810             final double s = 2.0 * Math.sqrt(1.0 + m22 - m00 - m11);
811             final double sinv = 1.0 / s;
812 
813             x = (m02 + m20) * sinv;
814             y = (m21 + m12) * sinv;
815             z = 0.25 * s;
816             w = (m10 - m01) * sinv;
817         }
818 
819         return of(w, x, y, z);
820     }
821 
822     /** Reverse the elements in {@code arr}. The array is returned.
823      * @param arr the array to reverse
824      * @return the input array with the elements reversed
825      */
826     private static double[] reverseArray(final double[] arr) {
827 
828         final int len = arr.length;
829         double temp;
830 
831         int i;
832         int j;
833 
834         for (i = 0, j = len - 1; i < len / 2; ++i, --j) {
835             temp = arr[i];
836             arr[i] = arr[j];
837             arr[j] = temp;
838         }
839 
840         return arr;
841     }
842 }