1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.apache.commons.geometry.spherical.twod; 18 19 import java.util.Comparator; 20 21 import org.apache.commons.geometry.core.Point; 22 import org.apache.commons.geometry.core.internal.SimpleTupleFormat; 23 import org.apache.commons.geometry.euclidean.threed.SphericalCoordinates; 24 import org.apache.commons.geometry.euclidean.threed.Vector3D; 25 import org.apache.commons.geometry.euclidean.threed.rotation.QuaternionRotation; 26 import org.apache.commons.numbers.core.Precision; 27 28 /** This class represents a point on the 2-sphere. 29 * <p>Instances of this class are guaranteed to be immutable.</p> 30 */ 31 public final class Point2S implements Point<Point2S> { 32 33 /** +I (coordinates: ( azimuth = 0, polar = pi/2 )). */ 34 public static final Point2S PLUS_I = new Point2S(0, 0.5 * Math.PI, Vector3D.Unit.PLUS_X); 35 36 /** +J (coordinates: ( azimuth = pi/2, polar = pi/2 ))). */ 37 public static final Point2S PLUS_J = new Point2S(0.5 * Math.PI, 0.5 * Math.PI, Vector3D.Unit.PLUS_Y); 38 39 /** +K (coordinates: ( azimuth = any angle, polar = 0 )). */ 40 public static final Point2S PLUS_K = new Point2S(0, 0, Vector3D.Unit.PLUS_Z); 41 42 /** -I (coordinates: ( azimuth = pi, polar = pi/2 )). */ 43 public static final Point2S MINUS_I = new Point2S(Math.PI, 0.5 * Math.PI, Vector3D.Unit.MINUS_X); 44 45 /** -J (coordinates: ( azimuth = 3pi/2, polar = pi/2 )). */ 46 public static final Point2S MINUS_J = new Point2S(1.5 * Math.PI, 0.5 * Math.PI, Vector3D.Unit.MINUS_Y); 47 48 /** -K (coordinates: ( azimuth = any angle, polar = pi )). */ 49 public static final Point2S MINUS_K = new Point2S(0, Math.PI, Vector3D.Unit.MINUS_Z); 50 51 /** A point with all coordinates set to NaN. */ 52 public static final Point2S NaN = new Point2S(Double.NaN, Double.NaN, null); 53 54 /** Comparator that sorts points in component-wise ascending order, first sorting 55 * by polar value and then by azimuth value. Points are only considered equal if 56 * their components match exactly. Null arguments are evaluated as being greater 57 * than non-null arguments. 58 */ 59 public static final Comparator<Point2S> POLAR_AZIMUTH_ASCENDING_ORDER = (a, b) -> { 60 int cmp = 0; 61 62 if (a != null && b != null) { 63 cmp = Double.compare(a.getPolar(), b.getPolar()); 64 65 if (cmp == 0) { 66 cmp = Double.compare(a.getAzimuth(), b.getAzimuth()); 67 } 68 } else if (a != null) { 69 cmp = -1; 70 } else if (b != null) { 71 cmp = 1; 72 } 73 74 return cmp; 75 }; 76 /** Azimuthal angle in the x-y plane. */ 77 private final double azimuth; 78 79 /** Polar angle. */ 80 private final double polar; 81 82 /** Corresponding 3D normalized vector. */ 83 private final Vector3D.Unit vector; 84 85 /** Build a point from its internal components. 86 * @param azimuth azimuthal angle in the x-y plane 87 * @param polar polar angle 88 * @param vector corresponding vector; if null, the vector is computed 89 */ 90 private Point2S(final double azimuth, final double polar, final Vector3D.Unit vector) { 91 this.azimuth = SphericalCoordinates.normalizeAzimuth(azimuth); 92 this.polar = SphericalCoordinates.normalizePolar(polar); 93 this.vector = (vector != null) ? 94 vector : 95 computeVector(azimuth, polar); 96 } 97 98 /** Get the azimuth angle in the x-y plane in the range {@code [0, 2pi)}. 99 * @return azimuth angle in the x-y plane in the range {@code [0, 2pi)}. 100 * @see Point2S#of(double, double) 101 */ 102 public double getAzimuth() { 103 return azimuth; 104 } 105 106 /** Get the polar angle in the range {@code [0, pi)}. 107 * @return polar angle in the range {@code [0, pi)}. 108 * @see Point2S#of(double, double) 109 */ 110 public double getPolar() { 111 return polar; 112 } 113 114 /** Get the corresponding normalized vector in 3D Euclidean space. 115 * This value will be null if the spherical coordinates of the point 116 * are infinite or NaN. 117 * @return normalized vector 118 */ 119 public Vector3D.Unit getVector() { 120 return vector; 121 } 122 123 /** {@inheritDoc} */ 124 @Override 125 public int getDimension() { 126 return 2; 127 } 128 129 /** {@inheritDoc} */ 130 @Override 131 public boolean isNaN() { 132 return Double.isNaN(azimuth) || Double.isNaN(polar); 133 } 134 135 /** {@inheritDoc} */ 136 @Override 137 public boolean isInfinite() { 138 return !isNaN() && (Double.isInfinite(azimuth) || Double.isInfinite(polar)); 139 } 140 141 /** {@inheritDoc} */ 142 @Override 143 public boolean isFinite() { 144 return Double.isFinite(azimuth) && Double.isFinite(polar); 145 } 146 147 /** Get the point exactly opposite this point on the sphere. The returned 148 * point is {@code pi} distance away from the current instance. 149 * @return the point exactly opposite this point on the sphere 150 */ 151 public Point2S antipodal() { 152 return from(vector.negate()); 153 } 154 155 /** {@inheritDoc} */ 156 @Override 157 public double distance(final Point2S point) { 158 return distance(this, point); 159 } 160 161 /** Spherically interpolate a point along the shortest arc between this point and 162 * the given point. The parameter {@code t} controls the interpolation and is expected 163 * to be in the range {@code [0, 1]}, with {@code 0} returning a point equivalent to the 164 * current instance {@code 1} returning a point equivalent to the given instance. If the 165 * points are antipodal, then an arbitrary arc is chosen from the infinite number available. 166 * @param other other point to interpolate with 167 * @param t interpolation parameter 168 * @return spherically interpolated point 169 * @see QuaternionRotation#slerp(QuaternionRotation) 170 * @see QuaternionRotation#createVectorRotation(Vector3D, Vector3D) 171 */ 172 public Point2S slerp(final Point2S other, final double t) { 173 final QuaternionRotation start = QuaternionRotation.identity(); 174 final QuaternionRotation end = QuaternionRotation.createVectorRotation(getVector(), other.getVector()); 175 176 final QuaternionRotation quat = start.slerp(end).apply(t); 177 178 return Point2S.from(quat.apply(getVector())); 179 } 180 181 /** Return true if this point should be considered equivalent to the argument using the 182 * given precision context. This will be true if the distance between the points is 183 * equivalent to zero as evaluated by the precision context. 184 * @param point point to compare with 185 * @param precision precision context used to perform floating point comparisons 186 * @return true if this point should be considered equivalent to the argument using the 187 * given precision context 188 */ 189 public boolean eq(final Point2S point, final Precision.DoubleEquivalence precision) { 190 return precision.eqZero(distance(point)); 191 } 192 193 /** Get a hashCode for the point. 194 * . 195 * <p>All NaN values have the same hash code.</p> 196 * 197 * @return a hash code value for this object 198 */ 199 @Override 200 public int hashCode() { 201 if (isNaN()) { 202 return 542; 203 } 204 return 134 * (37 * Double.hashCode(azimuth) + Double.hashCode(polar)); 205 } 206 207 /** Test for the equality of two points. 208 * 209 * <p>If all spherical coordinates of two points are exactly the same, and none are 210 * <code>Double.NaN</code>, the two points are considered to be equal. Note 211 * that the comparison is made using the azimuth and polar coordinates only; the 212 * corresponding 3D vectors are not compared. This is significant at the poles, 213 * where an infinite number of points share the same underlying 3D vector but may 214 * have different spherical coordinates. For example, the points {@code (0, 0)} 215 * and {@code (1, 0)} (both located at a pole but with different azimuths) will 216 * <em>not</em> be considered equal by this method, even though they share the 217 * exact same underlying 3D vector.</p> 218 * 219 * <p> 220 * <code>NaN</code> coordinates are considered to affect the point globally 221 * and be equals to each other - i.e, if either (or all) coordinates of the 222 * point are equal to <code>Double.NaN</code>, the point is equal to 223 * {@link #NaN}. 224 * </p> 225 * 226 * @param other Object to test for equality to this 227 * @return true if two points on the 2-sphere objects are exactly equal, false if 228 * object is null, not an instance of Point2S, or 229 * not equal to this Point2S instance 230 */ 231 @Override 232 public boolean equals(final Object other) { 233 if (this == other) { 234 return true; 235 } 236 if (!(other instanceof Point2S)) { 237 return false; 238 } 239 240 final Point2S rhs = (Point2S) other; 241 if (rhs.isNaN()) { 242 return this.isNaN(); 243 } 244 245 return Double.compare(azimuth, rhs.azimuth) == 0 && 246 Double.compare(polar, rhs.polar) == 0; 247 } 248 249 /** {@inheritDoc} */ 250 @Override 251 public String toString() { 252 return SimpleTupleFormat.getDefault().format(getAzimuth(), getPolar()); 253 } 254 255 /** Build a vector from its spherical coordinates. 256 * @param azimuth azimuthal angle in the x-y plane 257 * @param polar polar angle 258 * @return point instance with the given coordinates 259 * @see #getAzimuth() 260 * @see #getPolar() 261 */ 262 public static Point2S of(final double azimuth, final double polar) { 263 return new Point2S(azimuth, polar, null); 264 } 265 266 /** Build a point from its underlying 3D vector. 267 * @param vector 3D vector 268 * @return point instance with the coordinates determined by the given 3D vector 269 * @exception IllegalStateException if vector norm is zero 270 */ 271 public static Point2S from(final Vector3D vector) { 272 final SphericalCoordinates coords = SphericalCoordinates.fromCartesian(vector); 273 274 return new Point2S(coords.getAzimuth(), coords.getPolar(), vector.normalize()); 275 } 276 277 /** Parses the given string and returns a new point instance. The expected string 278 * format is the same as that returned by {@link #toString()}. 279 * @param str the string to parse 280 * @return point instance represented by the string 281 * @throws IllegalArgumentException if the given string has an invalid format 282 */ 283 public static Point2S parse(final String str) { 284 return SimpleTupleFormat.getDefault().parse(str, Point2S::of); 285 } 286 287 /** Compute the distance (angular separation) between two points. 288 * @param p1 first vector 289 * @param p2 second vector 290 * @return the angular separation between p1 and p2 291 */ 292 public static double distance(final Point2S p1, final Point2S p2) { 293 return p1.vector.angle(p2.vector); 294 } 295 296 /** Compute the 3D Euclidean vector associated with the given spherical coordinates. 297 * Null is returned if the coordinates are infinite or NaN. 298 * @param azimuth azimuth value 299 * @param polar polar value 300 * @return the 3D Euclidean vector associated with the given spherical coordinates 301 * or null if either of the arguments are infinite or NaN. 302 */ 303 private static Vector3D.Unit computeVector(final double azimuth, final double polar) { 304 if (Double.isFinite(azimuth) && Double.isFinite(polar)) { 305 return SphericalCoordinates.toCartesian(1, azimuth, polar).normalize(); 306 } 307 return null; 308 } 309 }