1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.lang3;
18
19 import java.util.ArrayList;
20 import java.util.Collection;
21 import java.util.Collections;
22 import java.util.List;
23 import java.util.Set;
24 import java.util.function.BiConsumer;
25 import java.util.function.BinaryOperator;
26 import java.util.function.Consumer;
27 import java.util.function.Function;
28 import java.util.function.Predicate;
29 import java.util.function.Supplier;
30 import java.util.stream.Collector;
31 import java.util.stream.Collectors;
32 import java.util.stream.Stream;
33
34 import org.apache.commons.lang3.Functions.FailableConsumer;
35 import org.apache.commons.lang3.Functions.FailableFunction;
36 import org.apache.commons.lang3.Functions.FailablePredicate;
37
38 /**
39 * Provides utility functions, and classes for working with the
40 * {@code java.util.stream} package, or more generally, with Java 8 lambdas. More
41 * specifically, it attempts to address the fact that lambdas are supposed
42 * not to throw Exceptions, at least not checked Exceptions, AKA instances
43 * of {@link Exception}. This enforces the use of constructs like
44 * <pre>{@code
45 * Consumer<java.lang.reflect.Method> consumer = m -> {
46 * try {
47 * m.invoke(o, args);
48 * } catch (Throwable t) {
49 * throw Functions.rethrow(t);
50 * }
51 * };
52 * stream.forEach(consumer);
53 * }</pre>
54 * Using a {@link FailableStream}, this can be rewritten as follows:
55 * <pre>{@code
56 * Streams.failable(stream).forEach(m -> m.invoke(o, args));
57 * }</pre>
58 * Obviously, the second version is much more concise and the spirit of
59 * Lambda expressions is met better than in the first version.
60 *
61 * @see Stream
62 * @see Functions
63 * @since 3.10
64 * @deprecated Use {@link org.apache.commons.lang3.stream.Streams}.
65 */
66 @Deprecated
67 public class Streams {
68
69 /**
70 * A Collector type for arrays.
71 *
72 * @param <O> The array type.
73 * @deprecated Use {@link org.apache.commons.lang3.stream.Streams.ArrayCollector}.
74 */
75 @Deprecated
76 public static class ArrayCollector<O> implements Collector<O, List<O>, O[]> {
77 private static final Set<Characteristics> characteristics = Collections.emptySet();
78 private final Class<O> elementType;
79
80 /**
81 * Constructs a new instance for the given element type.
82 *
83 * @param elementType The element type.
84 */
85 public ArrayCollector(final Class<O> elementType) {
86 this.elementType = elementType;
87 }
88
89 @Override
90 public BiConsumer<List<O>, O> accumulator() {
91 return List::add;
92 }
93
94 @Override
95 public Set<Characteristics> characteristics() {
96 return characteristics;
97 }
98
99 @Override
100 public BinaryOperator<List<O>> combiner() {
101 return (left, right) -> {
102 left.addAll(right);
103 return left;
104 };
105 }
106
107 @Override
108 public Function<List<O>, O[]> finisher() {
109 return list -> list.toArray(ArrayUtils.newInstance(elementType, list.size()));
110 }
111
112 @Override
113 public Supplier<List<O>> supplier() {
114 return ArrayList::new;
115 }
116 }
117
118 /**
119 * A reduced, and simplified version of a {@link Stream} with
120 * failable method signatures.
121 * @param <O> The streams element type.
122 * @deprecated Use {@link org.apache.commons.lang3.stream.Streams.FailableStream}.
123 */
124 @Deprecated
125 public static class FailableStream<O> {
126
127 private Stream<O> stream;
128 private boolean terminated;
129
130 /**
131 * Constructs a new instance with the given {@code stream}.
132 * @param stream The stream.
133 */
134 public FailableStream(final Stream<O> stream) {
135 this.stream = stream;
136 }
137
138 /**
139 * Returns whether all elements of this stream match the provided predicate.
140 * May not evaluate the predicate on all elements if not necessary for
141 * determining the result. If the stream is empty then {@code true} is
142 * returned and the predicate is not evaluated.
143 *
144 * <p>
145 * This is a short-circuiting terminal operation.
146 * </p>
147 *
148 * <p>
149 * Note
150 * This method evaluates the <em>universal quantification</em> of the
151 * predicate over the elements of the stream (for all x P(x)). If the
152 * stream is empty, the quantification is said to be <em>vacuously
153 * satisfied</em> and is always {@code true} (regardless of P(x)).
154 * </p>
155 *
156 * @param predicate A non-interfering, stateless predicate to apply to
157 * elements of this stream
158 * @return {@code true} If either all elements of the stream match the
159 * provided predicate or the stream is empty, otherwise {@code false}.
160 */
161 public boolean allMatch(final FailablePredicate<O, ?> predicate) {
162 assertNotTerminated();
163 return stream().allMatch(Functions.asPredicate(predicate));
164 }
165
166 /**
167 * Returns whether any elements of this stream match the provided
168 * predicate. May not evaluate the predicate on all elements if not
169 * necessary for determining the result. If the stream is empty then
170 * {@code false} is returned and the predicate is not evaluated.
171 *
172 * <p>
173 * This is a short-circuiting terminal operation.
174 * </p>
175 *
176 * Note
177 * This method evaluates the <em>existential quantification</em> of the
178 * predicate over the elements of the stream (for some x P(x)).
179 *
180 * @param predicate A non-interfering, stateless predicate to apply to
181 * elements of this stream
182 * @return {@code true} if any elements of the stream match the provided
183 * predicate, otherwise {@code false}
184 */
185 public boolean anyMatch(final FailablePredicate<O, ?> predicate) {
186 assertNotTerminated();
187 return stream().anyMatch(Functions.asPredicate(predicate));
188 }
189
190 /**
191 * Throws IllegalStateException if this stream is already terminated.
192 *
193 * @throws IllegalStateException if this stream is already terminated.
194 */
195 protected void assertNotTerminated() {
196 if (terminated) {
197 throw new IllegalStateException("This stream is already terminated.");
198 }
199 }
200
201 /**
202 * Performs a mutable reduction operation on the elements of this stream using a
203 * {@link Collector}. A {@link Collector}
204 * encapsulates the functions used as arguments to
205 * {@link #collect(Supplier, BiConsumer, BiConsumer)}, allowing for reuse of
206 * collection strategies and composition of collect operations such as
207 * multiple-level grouping or partitioning.
208 *
209 * <p>
210 * If the underlying stream is parallel, and the {@link Collector}
211 * is concurrent, and either the stream is unordered or the collector is
212 * unordered, then a concurrent reduction will be performed
213 * (see {@link Collector} for details on concurrent reduction.)
214 * </p>
215 *
216 * <p>
217 * This is an intermediate operation.
218 * </p>
219 *
220 * <p>
221 * When executed in parallel, multiple intermediate results may be
222 * instantiated, populated, and merged so as to maintain isolation of
223 * mutable data structures. Therefore, even when executed in parallel
224 * with non-thread-safe data structures (such as {@link ArrayList}), no
225 * additional synchronization is needed for a parallel reduction.
226 * </p>
227 * <p>
228 * Note
229 * The following will accumulate strings into an ArrayList:
230 * </p>
231 * <pre>{@code
232 * List<String> asList = stringStream.collect(Collectors.toList());
233 * }</pre>
234 *
235 * <p>
236 * The following will classify {@code Person} objects by city:
237 * </p>
238 * <pre>{@code
239 * Map<String, List<Person>> peopleByCity
240 * = personStream.collect(Collectors.groupingBy(Person::getCity));
241 * }</pre>
242 *
243 * <p>
244 * The following will classify {@code Person} objects by state and city,
245 * cascading two {@link Collector}s together:
246 * </p>
247 * <pre>{@code
248 * Map<String, Map<String, List<Person>>> peopleByStateAndCity
249 * = personStream.collect(Collectors.groupingBy(Person::getState,
250 * Collectors.groupingBy(Person::getCity)));
251 * }</pre>
252 *
253 * @param <R> the type of the result
254 * @param <A> the intermediate accumulation type of the {@link Collector}
255 * @param collector the {@link Collector} describing the reduction
256 * @return the result of the reduction
257 * @see #collect(Supplier, BiConsumer, BiConsumer)
258 * @see Collectors
259 */
260 public <A, R> R collect(final Collector<? super O, A, R> collector) {
261 makeTerminated();
262 return stream().collect(collector);
263 }
264
265 /**
266 * Performs a mutable reduction operation on the elements of this FailableStream.
267 * A mutable reduction is one in which the reduced value is a mutable result
268 * container, such as an {@link ArrayList}, and elements are incorporated by updating
269 * the state of the result rather than by replacing the result. This produces a result equivalent to:
270 * <pre>{@code
271 * R result = supplier.get();
272 * for (T element : this stream)
273 * accumulator.accept(result, element);
274 * return result;
275 * }</pre>
276 *
277 * <p>
278 * Like {@link #reduce(Object, BinaryOperator)}, {@code collect} operations
279 * can be parallelized without requiring additional synchronization.
280 * </p>
281 *
282 * <p>
283 * This is an intermediate operation.
284 * </p>
285 *
286 * <p>
287 * Note There are many existing classes in the JDK whose signatures are
288 * well-suited for use with method references as arguments to {@code collect()}.
289 * For example, the following will accumulate strings into an {@link ArrayList}:
290 * </p>
291 * <pre>{@code
292 * List<String> asList = stringStream.collect(ArrayList::new, ArrayList::add,
293 * ArrayList::addAll);
294 * }</pre>
295 *
296 * <p>
297 * The following will take a stream of strings and concatenates them into a
298 * single string:
299 * </p>
300 * <pre>{@code
301 * String concat = stringStream.collect(StringBuilder::new, StringBuilder::append,
302 * StringBuilder::append)
303 * .toString();
304 * }</pre>
305 *
306 * @param <R> type of the result
307 * @param <A> Type of the accumulator.
308 * @param supplier a function that creates a new result container. For a
309 * parallel execution, this function may be called
310 * multiple times and must return a fresh value each time.
311 * @param accumulator An associative, non-interfering, stateless function for
312 * incorporating an additional element into a result
313 * @param combiner An associative, non-interfering, stateless
314 * function for combining two values, which must be compatible with the
315 * accumulator function
316 * @return The result of the reduction
317 */
318 public <A, R> R collect(final Supplier<R> supplier, final BiConsumer<R, ? super O> accumulator, final BiConsumer<R, R> combiner) {
319 makeTerminated();
320 return stream().collect(supplier, accumulator, combiner);
321 }
322
323 /**
324 * Returns a FailableStream consisting of the elements of this stream that match
325 * the given FailablePredicate.
326 *
327 * <p>
328 * This is an intermediate operation.
329 * </p>
330 *
331 * @param predicate a non-interfering, stateless predicate to apply to each
332 * element to determine if it should be included.
333 * @return the new stream
334 */
335 public FailableStream<O> filter(final FailablePredicate<O, ?> predicate) {
336 assertNotTerminated();
337 stream = stream.filter(Functions.asPredicate(predicate));
338 return this;
339 }
340
341 /**
342 * Performs an action for each element of this stream.
343 *
344 * <p>
345 * This is an intermediate operation.
346 * </p>
347 *
348 * <p>
349 * The behavior of this operation is explicitly nondeterministic.
350 * For parallel stream pipelines, this operation does <em>not</em>
351 * guarantee to respect the encounter order of the stream, as doing so
352 * would sacrifice the benefit of parallelism. For any given element, the
353 * action may be performed at whatever time and in whatever thread the
354 * library chooses. If the action accesses shared state, it is
355 * responsible for providing the required synchronization.
356 * </p>
357 *
358 * @param action a non-interfering action to perform on the elements
359 */
360 public void forEach(final FailableConsumer<O, ?> action) {
361 makeTerminated();
362 stream().forEach(Functions.asConsumer(action));
363 }
364
365 /**
366 * Marks this stream as terminated.
367 *
368 * @throws IllegalStateException if this stream is already terminated.
369 */
370 protected void makeTerminated() {
371 assertNotTerminated();
372 terminated = true;
373 }
374
375 /**
376 * Returns a stream consisting of the results of applying the given
377 * function to the elements of this stream.
378 *
379 * <p>
380 * This is an intermediate operation.
381 * </p>
382 *
383 * @param <R> The element type of the new stream
384 * @param mapper A non-interfering, stateless function to apply to each element
385 * @return the new stream
386 */
387 public <R> FailableStream<R> map(final FailableFunction<O, R, ?> mapper) {
388 assertNotTerminated();
389 return new FailableStream<>(stream.map(Functions.asFunction(mapper)));
390 }
391
392 /**
393 * Performs a reduction on the elements of this stream, using the provided
394 * identity value and an associative accumulation function, and returns
395 * the reduced value. This is equivalent to:
396 * <pre>{@code
397 * T result = identity;
398 * for (T element : this stream)
399 * result = accumulator.apply(result, element)
400 * return result;
401 * }</pre>
402 *
403 * but is not constrained to execute sequentially.
404 *
405 * <p>
406 * The {@code identity} value must be an identity for the accumulator
407 * function. This means that for all {@code t},
408 * {@code accumulator.apply(identity, t)} is equal to {@code t}.
409 * The {@code accumulator} function must be an associative function.
410 * </p>
411 *
412 * <p>
413 * This is an intermediate operation.
414 * </p>
415 *
416 * Note Sum, min, max, average, and string concatenation are all special
417 * cases of reduction. Summing a stream of numbers can be expressed as:
418 *
419 * <pre>{@code
420 * Integer sum = integers.reduce(0, (a, b) -> a+b);
421 * }</pre>
422 *
423 * or:
424 *
425 * <pre>{@code
426 * Integer sum = integers.reduce(0, Integer::sum);
427 * }</pre>
428 *
429 * <p>
430 * While this may seem a more roundabout way to perform an aggregation
431 * compared to simply mutating a running total in a loop, reduction
432 * operations parallelize more gracefully, without needing additional
433 * synchronization and with greatly reduced risk of data races.
434 * </p>
435 *
436 * @param identity the identity value for the accumulating function
437 * @param accumulator an associative, non-interfering, stateless
438 * function for combining two values
439 * @return the result of the reduction
440 */
441 public O reduce(final O identity, final BinaryOperator<O> accumulator) {
442 makeTerminated();
443 return stream().reduce(identity, accumulator);
444 }
445
446 /**
447 * Converts the FailableStream into an equivalent stream.
448 * @return A stream, which will return the same elements, which this FailableStream would return.
449 */
450 public Stream<O> stream() {
451 return stream;
452 }
453 }
454
455 /**
456 * Converts the given {@link Collection} into a {@link FailableStream}.
457 * This is basically a simplified, reduced version of the {@link Stream}
458 * class, with the same underlying element stream, except that failable
459 * objects, like {@link FailablePredicate}, {@link FailableFunction}, or
460 * {@link FailableConsumer} may be applied, instead of
461 * {@link Predicate}, {@link Function}, or {@link Consumer}. The idea is
462 * to rewrite a code snippet like this:
463 * <pre>{@code
464 * final List<O> list;
465 * final Method m;
466 * final Function<O,String> mapper = (o) -> {
467 * try {
468 * return (String) m.invoke(o);
469 * } catch (Throwable t) {
470 * throw Functions.rethrow(t);
471 * }
472 * };
473 * final List<String> strList = list.stream()
474 * .map(mapper).collect(Collectors.toList());
475 * }</pre>
476 * as follows:
477 * <pre>{@code
478 * final List<O> list;
479 * final Method m;
480 * final List<String> strList = Functions.stream(list.stream())
481 * .map((o) -> (String) m.invoke(o)).collect(Collectors.toList());
482 * }</pre>
483 * While the second version may not be <em>quite</em> as
484 * efficient (because it depends on the creation of additional,
485 * intermediate objects, of type FailableStream), it is much more
486 * concise, and readable, and meets the spirit of Lambdas better
487 * than the first version.
488 * @param <O> The streams element type.
489 * @param stream The stream, which is being converted.
490 * @return The {@link FailableStream}, which has been created by
491 * converting the stream.
492 */
493 public static <O> FailableStream<O> stream(final Collection<O> stream) {
494 return stream(stream.stream());
495 }
496
497 /**
498 * Converts the given {@link Stream stream} into a {@link FailableStream}.
499 * This is basically a simplified, reduced version of the {@link Stream}
500 * class, with the same underlying element stream, except that failable
501 * objects, like {@link FailablePredicate}, {@link FailableFunction}, or
502 * {@link FailableConsumer} may be applied, instead of
503 * {@link Predicate}, {@link Function}, or {@link Consumer}. The idea is
504 * to rewrite a code snippet like this:
505 * <pre>{@code
506 * final List<O> list;
507 * final Method m;
508 * final Function<O,String> mapper = (o) -> {
509 * try {
510 * return (String) m.invoke(o);
511 * } catch (Throwable t) {
512 * throw Functions.rethrow(t);
513 * }
514 * };
515 * final List<String> strList = list.stream()
516 * .map(mapper).collect(Collectors.toList());
517 * }</pre>
518 * as follows:
519 * <pre>{@code
520 * final List<O> list;
521 * final Method m;
522 * final List<String> strList = Functions.stream(list.stream())
523 * .map((o) -> (String) m.invoke(o)).collect(Collectors.toList());
524 * }</pre>
525 * While the second version may not be <em>quite</em> as
526 * efficient (because it depends on the creation of additional,
527 * intermediate objects, of type FailableStream), it is much more
528 * concise, and readable, and meets the spirit of Lambdas better
529 * than the first version.
530 * @param <O> The streams element type.
531 * @param stream The stream, which is being converted.
532 * @return The {@link FailableStream}, which has been created by
533 * converting the stream.
534 */
535 public static <O> FailableStream<O> stream(final Stream<O> stream) {
536 return new FailableStream<>(stream);
537 }
538
539 /**
540 * Returns a {@link Collector} that accumulates the input elements into a
541 * new array.
542 *
543 * @param pElementType Type of an element in the array.
544 * @param <O> the type of the input elements
545 * @return a {@link Collector} which collects all the input elements into an
546 * array, in encounter order
547 */
548 public static <O> Collector<O, ?, O[]> toArray(final Class<O> pElementType) {
549 return new ArrayCollector<>(pElementType);
550 }
551
552 /**
553 * Constructs a new instance.
554 */
555 public Streams() {
556 // empty
557 }
558 }