View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.lang3;
18  
19  import java.util.ArrayList;
20  import java.util.Collection;
21  import java.util.Collections;
22  import java.util.List;
23  import java.util.Set;
24  import java.util.function.BiConsumer;
25  import java.util.function.BinaryOperator;
26  import java.util.function.Consumer;
27  import java.util.function.Function;
28  import java.util.function.Predicate;
29  import java.util.function.Supplier;
30  import java.util.stream.Collector;
31  import java.util.stream.Collectors;
32  import java.util.stream.Stream;
33  
34  import org.apache.commons.lang3.Functions.FailableConsumer;
35  import org.apache.commons.lang3.Functions.FailableFunction;
36  import org.apache.commons.lang3.Functions.FailablePredicate;
37  
38  /**
39   * Provides utility functions, and classes for working with the
40   * {@code java.util.stream} package, or more generally, with Java 8 lambdas. More
41   * specifically, it attempts to address the fact that lambdas are supposed
42   * not to throw Exceptions, at least not checked Exceptions, AKA instances
43   * of {@link Exception}. This enforces the use of constructs like
44   * <pre>
45   *     Consumer&lt;java.lang.reflect.Method&gt; consumer = m -&gt; {
46   *         try {
47   *             m.invoke(o, args);
48   *         } catch (Throwable t) {
49   *             throw Functions.rethrow(t);
50   *         }
51   *    };
52   *    stream.forEach(consumer);
53   * </pre>
54   * Using a {@link FailableStream}, this can be rewritten as follows:
55   * <pre>
56   *     Streams.failable(stream).forEach((m) -&gt; m.invoke(o, args));
57   * </pre>
58   * Obviously, the second version is much more concise and the spirit of
59   * Lambda expressions is met better than in the first version.
60   *
61   * @see Stream
62   * @see Functions
63   * @since 3.10
64   * @deprecated Use {@link org.apache.commons.lang3.stream.Streams}.
65   */
66  @Deprecated
67  public class Streams {
68  
69      /**
70       * A Collector type for arrays.
71       *
72       * @param <O> The array type.
73       * @deprecated Use {@link org.apache.commons.lang3.stream.Streams.ArrayCollector}.
74       */
75      @Deprecated
76      public static class ArrayCollector<O> implements Collector<O, List<O>, O[]> {
77          private static final Set<Characteristics> characteristics = Collections.emptySet();
78          private final Class<O> elementType;
79  
80          /**
81           * Constructs a new instance for the given element type.
82           *
83           * @param elementType The element type.
84           */
85          public ArrayCollector(final Class<O> elementType) {
86              this.elementType = elementType;
87          }
88  
89          @Override
90          public BiConsumer<List<O>, O> accumulator() {
91              return List::add;
92          }
93  
94          @Override
95          public Set<Characteristics> characteristics() {
96              return characteristics;
97          }
98  
99          @Override
100         public BinaryOperator<List<O>> combiner() {
101             return (left, right) -> {
102                 left.addAll(right);
103                 return left;
104             };
105         }
106 
107         @Override
108         public Function<List<O>, O[]> finisher() {
109             return list -> list.toArray(ArrayUtils.newInstance(elementType, list.size()));
110         }
111 
112         @Override
113         public Supplier<List<O>> supplier() {
114             return ArrayList::new;
115         }
116     }
117 
118     /**
119      * A reduced, and simplified version of a {@link Stream} with
120      * failable method signatures.
121      * @param <O> The streams element type.
122      * @deprecated Use {@link org.apache.commons.lang3.stream.Streams.FailableStream}.
123      */
124     @Deprecated
125     public static class FailableStream<O> {
126 
127         private Stream<O> stream;
128         private boolean terminated;
129 
130         /**
131          * Constructs a new instance with the given {@code stream}.
132          * @param stream The stream.
133          */
134         public FailableStream(final Stream<O> stream) {
135             this.stream = stream;
136         }
137 
138         /**
139          * Returns whether all elements of this stream match the provided predicate.
140          * May not evaluate the predicate on all elements if not necessary for
141          * determining the result.  If the stream is empty then {@code true} is
142          * returned and the predicate is not evaluated.
143          *
144          * <p>
145          * This is a short-circuiting terminal operation.
146          * </p>
147          *
148          * <p>
149          * Note
150          * This method evaluates the <em>universal quantification</em> of the
151          * predicate over the elements of the stream (for all x P(x)).  If the
152          * stream is empty, the quantification is said to be <em>vacuously
153          * satisfied</em> and is always {@code true} (regardless of P(x)).
154          * </p>
155          *
156          * @param predicate A non-interfering, stateless predicate to apply to
157          * elements of this stream
158          * @return {@code true} If either all elements of the stream match the
159          * provided predicate or the stream is empty, otherwise {@code false}.
160          */
161         public boolean allMatch(final FailablePredicate<O, ?> predicate) {
162             assertNotTerminated();
163             return stream().allMatch(Functions.asPredicate(predicate));
164         }
165 
166         /**
167          * Returns whether any elements of this stream match the provided
168          * predicate.  May not evaluate the predicate on all elements if not
169          * necessary for determining the result.  If the stream is empty then
170          * {@code false} is returned and the predicate is not evaluated.
171          *
172          * <p>
173          * This is a short-circuiting terminal operation.
174          * </p>
175          *
176          * Note
177          * This method evaluates the <em>existential quantification</em> of the
178          * predicate over the elements of the stream (for some x P(x)).
179          *
180          * @param predicate A non-interfering, stateless predicate to apply to
181          * elements of this stream
182          * @return {@code true} if any elements of the stream match the provided
183          * predicate, otherwise {@code false}
184          */
185         public boolean anyMatch(final FailablePredicate<O, ?> predicate) {
186             assertNotTerminated();
187             return stream().anyMatch(Functions.asPredicate(predicate));
188         }
189 
190         /**
191          * Throws IllegalStateException if this stream is already terminated.
192          *
193          * @throws IllegalStateException if this stream is already terminated.
194          */
195         protected void assertNotTerminated() {
196             if (terminated) {
197                 throw new IllegalStateException("This stream is already terminated.");
198             }
199         }
200 
201         /**
202          * Performs a mutable reduction operation on the elements of this stream using a
203          * {@link Collector}.  A {@link Collector}
204          * encapsulates the functions used as arguments to
205          * {@link #collect(Supplier, BiConsumer, BiConsumer)}, allowing for reuse of
206          * collection strategies and composition of collect operations such as
207          * multiple-level grouping or partitioning.
208          *
209          * <p>
210          * If the underlying stream is parallel, and the {@link Collector}
211          * is concurrent, and either the stream is unordered or the collector is
212          * unordered, then a concurrent reduction will be performed
213          * (see {@link Collector} for details on concurrent reduction.)
214          * </p>
215          *
216          * <p>
217          * This is an intermediate operation.
218          * </p>
219          *
220          * <p>
221          * When executed in parallel, multiple intermediate results may be
222          * instantiated, populated, and merged so as to maintain isolation of
223          * mutable data structures.  Therefore, even when executed in parallel
224          * with non-thread-safe data structures (such as {@link ArrayList}), no
225          * additional synchronization is needed for a parallel reduction.
226          * </p>
227          * <p>
228          * Note
229          * The following will accumulate strings into an ArrayList:
230          * </p>
231          * <pre>{@code
232          *     List<String> asList = stringStream.collect(Collectors.toList());
233          * }</pre>
234          *
235          * <p>
236          * The following will classify {@code Person} objects by city:
237          * </p>
238          * <pre>{@code
239          *     Map<String, List<Person>> peopleByCity
240          *         = personStream.collect(Collectors.groupingBy(Person::getCity));
241          * }</pre>
242          *
243          * <p>
244          * The following will classify {@code Person} objects by state and city,
245          * cascading two {@link Collector}s together:
246          * </p>
247          * <pre>{@code
248          *     Map<String, Map<String, List<Person>>> peopleByStateAndCity
249          *         = personStream.collect(Collectors.groupingBy(Person::getState,
250          *                                                      Collectors.groupingBy(Person::getCity)));
251          * }</pre>
252          *
253          * @param <R> the type of the result
254          * @param <A> the intermediate accumulation type of the {@link Collector}
255          * @param collector the {@link Collector} describing the reduction
256          * @return the result of the reduction
257          * @see #collect(Supplier, BiConsumer, BiConsumer)
258          * @see Collectors
259          */
260         public <A, R> R collect(final Collector<? super O, A, R> collector) {
261             makeTerminated();
262             return stream().collect(collector);
263         }
264 
265         /**
266          * Performs a mutable reduction operation on the elements of this FailableStream.
267          * A mutable reduction is one in which the reduced value is a mutable result
268          * container, such as an {@link ArrayList}, and elements are incorporated by updating
269          * the state of the result rather than by replacing the result. This produces a result equivalent to:
270          * <pre>{@code
271          *     R result = supplier.get();
272          *     for (T element : this stream)
273          *         accumulator.accept(result, element);
274          *     return result;
275          * }</pre>
276          *
277          * <p>
278          * Like {@link #reduce(Object, BinaryOperator)}, {@code collect} operations
279          * can be parallelized without requiring additional synchronization.
280          * </p>
281          *
282          * <p>
283          * This is an intermediate operation.
284          * </p>
285          *
286          * <p>
287          * Note There are many existing classes in the JDK whose signatures are
288          * well-suited for use with method references as arguments to {@code collect()}.
289          * For example, the following will accumulate strings into an {@link ArrayList}:
290          * </p>
291          * <pre>{@code
292          *     List<String> asList = stringStream.collect(ArrayList::new, ArrayList::add,
293          *                                                ArrayList::addAll);
294          * }</pre>
295          *
296          * <p>
297          * The following will take a stream of strings and concatenates them into a
298          * single string:
299          * </p>
300          * <pre>{@code
301          *     String concat = stringStream.collect(StringBuilder::new, StringBuilder::append,
302          *                                          StringBuilder::append)
303          *                                 .toString();
304          * }</pre>
305          *
306          * @param <R> type of the result
307          * @param <A> Type of the accumulator.
308          * @param supplier a function that creates a new result container. For a
309          *                 parallel execution, this function may be called
310          *                 multiple times and must return a fresh value each time.
311          * @param accumulator An associative, non-interfering, stateless function for
312          *   incorporating an additional element into a result
313          * @param combiner An associative, non-interfering, stateless
314          *   function for combining two values, which must be compatible with the
315          *   accumulator function
316          * @return The result of the reduction
317          */
318         public <A, R> R collect(final Supplier<R> supplier, final BiConsumer<R, ? super O> accumulator, final BiConsumer<R, R> combiner) {
319             makeTerminated();
320             return stream().collect(supplier, accumulator, combiner);
321         }
322 
323         /**
324          * Returns a FailableStream consisting of the elements of this stream that match
325          * the given FailablePredicate.
326          *
327          * <p>
328          * This is an intermediate operation.
329          * </p>
330          *
331          * @param predicate a non-interfering, stateless predicate to apply to each
332          * element to determine if it should be included.
333          * @return the new stream
334          */
335         public FailableStream<O> filter(final FailablePredicate<O, ?> predicate){
336             assertNotTerminated();
337             stream = stream.filter(Functions.asPredicate(predicate));
338             return this;
339         }
340 
341         /**
342          * Performs an action for each element of this stream.
343          *
344          * <p>
345          * This is an intermediate operation.
346          * </p>
347          *
348          * <p>
349          * The behavior of this operation is explicitly nondeterministic.
350          * For parallel stream pipelines, this operation does <em>not</em>
351          * guarantee to respect the encounter order of the stream, as doing so
352          * would sacrifice the benefit of parallelism.  For any given element, the
353          * action may be performed at whatever time and in whatever thread the
354          * library chooses.  If the action accesses shared state, it is
355          * responsible for providing the required synchronization.
356          * </p>
357          *
358          * @param action a non-interfering action to perform on the elements
359          */
360         public void forEach(final FailableConsumer<O, ?> action) {
361             makeTerminated();
362             stream().forEach(Functions.asConsumer(action));
363         }
364 
365         /**
366          * Marks this stream as terminated.
367          *
368          * @throws IllegalStateException if this stream is already terminated.
369          */
370         protected void makeTerminated() {
371             assertNotTerminated();
372             terminated = true;
373         }
374 
375         /**
376          * Returns a stream consisting of the results of applying the given
377          * function to the elements of this stream.
378          *
379          * <p>
380          * This is an intermediate operation.
381          * </p>
382          *
383          * @param <R> The element type of the new stream
384          * @param mapper A non-interfering, stateless function to apply to each element
385          * @return the new stream
386          */
387         public <R> FailableStream<R> map(final FailableFunction<O, R, ?> mapper) {
388             assertNotTerminated();
389             return new FailableStream<>(stream.map(Functions.asFunction(mapper)));
390         }
391 
392         /**
393          * Performs a reduction on the elements of this stream, using the provided
394          * identity value and an associative accumulation function, and returns
395          * the reduced value.  This is equivalent to:
396          * <pre>{@code
397          *     T result = identity;
398          *     for (T element : this stream)
399          *         result = accumulator.apply(result, element)
400          *     return result;
401          * }</pre>
402          *
403          * but is not constrained to execute sequentially.
404          *
405          * <p>
406          * The {@code identity} value must be an identity for the accumulator
407          * function. This means that for all {@code t},
408          * {@code accumulator.apply(identity, t)} is equal to {@code t}.
409          * The {@code accumulator} function must be an associative function.
410          * </p>
411          *
412          * <p>
413          * This is an intermediate operation.
414          * </p>
415          *
416          * Note Sum, min, max, average, and string concatenation are all special
417          * cases of reduction. Summing a stream of numbers can be expressed as:
418          *
419          * <pre>{@code
420          *     Integer sum = integers.reduce(0, (a, b) -> a+b);
421          * }</pre>
422          *
423          * or:
424          *
425          * <pre>{@code
426          *     Integer sum = integers.reduce(0, Integer::sum);
427          * }</pre>
428          *
429          * <p>
430          * While this may seem a more roundabout way to perform an aggregation
431          * compared to simply mutating a running total in a loop, reduction
432          * operations parallelize more gracefully, without needing additional
433          * synchronization and with greatly reduced risk of data races.
434          * </p>
435          *
436          * @param identity the identity value for the accumulating function
437          * @param accumulator an associative, non-interfering, stateless
438          *                    function for combining two values
439          * @return the result of the reduction
440          */
441         public O reduce(final O identity, final BinaryOperator<O> accumulator) {
442             makeTerminated();
443             return stream().reduce(identity, accumulator);
444         }
445 
446         /**
447          * Converts the FailableStream into an equivalent stream.
448          * @return A stream, which will return the same elements, which this FailableStream would return.
449          */
450         public Stream<O> stream() {
451             return stream;
452         }
453     }
454 
455     /**
456      * Converts the given {@link Collection} into a {@link FailableStream}.
457      * This is basically a simplified, reduced version of the {@link Stream}
458      * class, with the same underlying element stream, except that failable
459      * objects, like {@link FailablePredicate}, {@link FailableFunction}, or
460      * {@link FailableConsumer} may be applied, instead of
461      * {@link Predicate}, {@link Function}, or {@link Consumer}. The idea is
462      * to rewrite a code snippet like this:
463      * <pre>
464      *     final List&lt;O&gt; list;
465      *     final Method m;
466      *     final Function&lt;O,String&gt; mapper = (o) -&gt; {
467      *         try {
468      *             return (String) m.invoke(o);
469      *         } catch (Throwable t) {
470      *             throw Functions.rethrow(t);
471      *         }
472      *     };
473      *     final List&lt;String&gt; strList = list.stream()
474      *         .map(mapper).collect(Collectors.toList());
475      *  </pre>
476      *  as follows:
477      *  <pre>
478      *     final List&lt;O&gt; list;
479      *     final Method m;
480      *     final List&lt;String&gt; strList = Functions.stream(list.stream())
481      *         .map((o) -&gt; (String) m.invoke(o)).collect(Collectors.toList());
482      *  </pre>
483      *  While the second version may not be <em>quite</em> as
484      *  efficient (because it depends on the creation of additional,
485      *  intermediate objects, of type FailableStream), it is much more
486      *  concise, and readable, and meets the spirit of Lambdas better
487      *  than the first version.
488      * @param <O> The streams element type.
489      * @param stream The stream, which is being converted.
490      * @return The {@link FailableStream}, which has been created by
491      *   converting the stream.
492      */
493     public static <O> FailableStream<O> stream(final Collection<O> stream) {
494         return stream(stream.stream());
495     }
496 
497     /**
498      * Converts the given {@link Stream stream} into a {@link FailableStream}.
499      * This is basically a simplified, reduced version of the {@link Stream}
500      * class, with the same underlying element stream, except that failable
501      * objects, like {@link FailablePredicate}, {@link FailableFunction}, or
502      * {@link FailableConsumer} may be applied, instead of
503      * {@link Predicate}, {@link Function}, or {@link Consumer}. The idea is
504      * to rewrite a code snippet like this:
505      * <pre>
506      *     final List&lt;O&gt; list;
507      *     final Method m;
508      *     final Function&lt;O,String&gt; mapper = (o) -&gt; {
509      *         try {
510      *             return (String) m.invoke(o);
511      *         } catch (Throwable t) {
512      *             throw Functions.rethrow(t);
513      *         }
514      *     };
515      *     final List&lt;String&gt; strList = list.stream()
516      *         .map(mapper).collect(Collectors.toList());
517      *  </pre>
518      *  as follows:
519      *  <pre>
520      *     final List&lt;O&gt; list;
521      *     final Method m;
522      *     final List&lt;String&gt; strList = Functions.stream(list.stream())
523      *         .map((o) -&gt; (String) m.invoke(o)).collect(Collectors.toList());
524      *  </pre>
525      *  While the second version may not be <em>quite</em> as
526      *  efficient (because it depends on the creation of additional,
527      *  intermediate objects, of type FailableStream), it is much more
528      *  concise, and readable, and meets the spirit of Lambdas better
529      *  than the first version.
530      * @param <O> The streams element type.
531      * @param stream The stream, which is being converted.
532      * @return The {@link FailableStream}, which has been created by
533      *   converting the stream.
534      */
535     public static <O> FailableStream<O> stream(final Stream<O> stream) {
536         return new FailableStream<>(stream);
537     }
538 
539     /**
540      * Returns a {@link Collector} that accumulates the input elements into a
541      * new array.
542      *
543      * @param pElementType Type of an element in the array.
544      * @param <O> the type of the input elements
545      * @return a {@link Collector} which collects all the input elements into an
546      * array, in encounter order
547      */
548     public static <O> Collector<O, ?, O[]> toArray(final Class<O> pElementType) {
549         return new ArrayCollector<>(pElementType);
550     }
551 }