View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.lang3.math;
18  
19  import java.lang.reflect.Array;
20  import java.math.BigDecimal;
21  import java.math.BigInteger;
22  import java.math.RoundingMode;
23  import java.util.Objects;
24  
25  import org.apache.commons.lang3.StringUtils;
26  import org.apache.commons.lang3.Validate;
27  
28  /**
29   * Provides extra functionality for Java Number classes.
30   *
31   * @since 2.0
32   */
33  public class NumberUtils {
34  
35      /** Reusable Long constant for zero. */
36      public static final Long LONG_ZERO = Long.valueOf(0L);
37      /** Reusable Long constant for one. */
38      public static final Long LONG_ONE = Long.valueOf(1L);
39      /** Reusable Long constant for minus one. */
40      public static final Long LONG_MINUS_ONE = Long.valueOf(-1L);
41      /** Reusable Integer constant for zero. */
42      public static final Integer INTEGER_ZERO = Integer.valueOf(0);
43      /** Reusable Integer constant for one. */
44      public static final Integer INTEGER_ONE = Integer.valueOf(1);
45      /** Reusable Integer constant for two */
46      public static final Integer INTEGER_TWO = Integer.valueOf(2);
47      /** Reusable Integer constant for minus one. */
48      public static final Integer INTEGER_MINUS_ONE = Integer.valueOf(-1);
49      /** Reusable Short constant for zero. */
50      public static final Short SHORT_ZERO = Short.valueOf((short) 0);
51      /** Reusable Short constant for one. */
52      public static final Short SHORT_ONE = Short.valueOf((short) 1);
53      /** Reusable Short constant for minus one. */
54      public static final Short SHORT_MINUS_ONE = Short.valueOf((short) -1);
55      /** Reusable Byte constant for zero. */
56      public static final Byte BYTE_ZERO = Byte.valueOf((byte) 0);
57      /** Reusable Byte constant for one. */
58      public static final Byte BYTE_ONE = Byte.valueOf((byte) 1);
59      /** Reusable Byte constant for minus one. */
60      public static final Byte BYTE_MINUS_ONE = Byte.valueOf((byte) -1);
61      /** Reusable Double constant for zero. */
62      public static final Double DOUBLE_ZERO = Double.valueOf(0.0d);
63      /** Reusable Double constant for one. */
64      public static final Double DOUBLE_ONE = Double.valueOf(1.0d);
65      /** Reusable Double constant for minus one. */
66      public static final Double DOUBLE_MINUS_ONE = Double.valueOf(-1.0d);
67      /** Reusable Float constant for zero. */
68      public static final Float FLOAT_ZERO = Float.valueOf(0.0f);
69      /** Reusable Float constant for one. */
70      public static final Float FLOAT_ONE = Float.valueOf(1.0f);
71      /** Reusable Float constant for minus one. */
72      public static final Float FLOAT_MINUS_ONE = Float.valueOf(-1.0f);
73  
74      /**
75       * {@link Integer#MAX_VALUE} as a {@link Long}.
76       *
77       * @since 3.12.0
78       */
79      public static final Long LONG_INT_MAX_VALUE = Long.valueOf(Integer.MAX_VALUE);
80  
81      /**
82       * {@link Integer#MIN_VALUE} as a {@link Long}.
83       *
84       * @since 3.12.0
85       */
86      public static final Long LONG_INT_MIN_VALUE = Long.valueOf(Integer.MIN_VALUE);
87  
88  
89      /**
90       * Compares two {@code byte} values numerically. This is the same functionality as provided in Java 7.
91       *
92       * @param x the first {@code byte} to compare
93       * @param y the second {@code byte} to compare
94       * @return the value {@code 0} if {@code x == y};
95       *         a value less than {@code 0} if {@code x < y}; and
96       *         a value greater than {@code 0} if {@code x > y}
97       * @since 3.4
98       */
99      public static int compare(final byte x, final byte y) {
100         return x - y;
101     }
102 
103     /**
104      * Compares two {@code int} values numerically. This is the same functionality as provided in Java 7.
105      *
106      * @param x the first {@code int} to compare
107      * @param y the second {@code int} to compare
108      * @return the value {@code 0} if {@code x == y};
109      *         a value less than {@code 0} if {@code x < y}; and
110      *         a value greater than {@code 0} if {@code x > y}
111      * @since 3.4
112      */
113     public static int compare(final int x, final int y) {
114         if (x == y) {
115             return 0;
116         }
117         return x < y ? -1 : 1;
118     }
119 
120     /**
121      * Compares to {@code long} values numerically. This is the same functionality as provided in Java 7.
122      *
123      * @param x the first {@code long} to compare
124      * @param y the second {@code long} to compare
125      * @return the value {@code 0} if {@code x == y};
126      *         a value less than {@code 0} if {@code x < y}; and
127      *         a value greater than {@code 0} if {@code x > y}
128      * @since 3.4
129      */
130     public static int compare(final long x, final long y) {
131         if (x == y) {
132             return 0;
133         }
134         return x < y ? -1 : 1;
135     }
136 
137     /**
138      * Compares to {@code short} values numerically. This is the same functionality as provided in Java 7.
139      *
140      * @param x the first {@code short} to compare
141      * @param y the second {@code short} to compare
142      * @return the value {@code 0} if {@code x == y};
143      *         a value less than {@code 0} if {@code x < y}; and
144      *         a value greater than {@code 0} if {@code x > y}
145      * @since 3.4
146      */
147     public static int compare(final short x, final short y) {
148         if (x == y) {
149             return 0;
150         }
151         return x < y ? -1 : 1;
152     }
153 
154     /**
155      * Convert a {@link String} to a {@link BigDecimal}.
156      *
157      * <p>Returns {@code null} if the string is {@code null}.</p>
158      *
159      * @param str  a {@link String} to convert, may be null
160      * @return converted {@link BigDecimal} (or null if the input is null)
161      * @throws NumberFormatException if the value cannot be converted
162      */
163     public static BigDecimal createBigDecimal(final String str) {
164         if (str == null) {
165             return null;
166         }
167         // handle JDK1.3.1 bug where "" throws IndexOutOfBoundsException
168         if (StringUtils.isBlank(str)) {
169             throw new NumberFormatException("A blank string is not a valid number");
170         }
171         return new BigDecimal(str);
172     }
173 
174     /**
175      * Convert a {@link String} to a {@link BigInteger};
176      * since 3.2 it handles hexadecimal (0x or #) and octal (0) notations.
177      *
178      * <p>Returns {@code null} if the string is {@code null}.</p>
179      *
180      * @param str  a {@link String} to convert, may be null
181      * @return converted {@link BigInteger} (or null if the input is null)
182      * @throws NumberFormatException if the value cannot be converted
183      */
184     public static BigInteger createBigInteger(final String str) {
185         if (str == null) {
186             return null;
187         }
188         if (str.isEmpty()) {
189             throw new NumberFormatException("An empty string is not a valid number");
190         }
191         int pos = 0; // offset within string
192         int radix = 10;
193         boolean negate = false; // need to negate later?
194         final char char0 = str.charAt(0);
195         if (char0 == '-') {
196             negate = true;
197             pos = 1;
198         } else if (char0 == '+') {
199             pos = 1;
200         }
201         if (str.startsWith("0x", pos) || str.startsWith("0X", pos)) { // hex
202             radix = 16;
203             pos += 2;
204         } else if (str.startsWith("#", pos)) { // alternative hex (allowed by Long/Integer)
205             radix = 16;
206             pos++;
207         } else if (str.startsWith("0", pos) && str.length() > pos + 1) { // octal; so long as there are additional digits
208             radix = 8;
209             pos++;
210         } // default is to treat as decimal
211 
212         final BigInteger value = new BigInteger(str.substring(pos), radix);
213         return negate ? value.negate() : value;
214     }
215 
216     /**
217      * Convert a {@link String} to a {@link Double}.
218      *
219      * <p>Returns {@code null} if the string is {@code null}.</p>
220      *
221      * @param str  a {@link String} to convert, may be null
222      * @return converted {@link Double} (or null if the input is null)
223      * @throws NumberFormatException if the value cannot be converted
224      */
225     public static Double createDouble(final String str) {
226         if (str == null) {
227             return null;
228         }
229         return Double.valueOf(str);
230     }
231 
232     /**
233      * Convert a {@link String} to a {@link Float}.
234      *
235      * <p>Returns {@code null} if the string is {@code null}.</p>
236      *
237      * @param str  a {@link String} to convert, may be null
238      * @return converted {@link Float} (or null if the input is null)
239      * @throws NumberFormatException if the value cannot be converted
240      */
241     public static Float createFloat(final String str) {
242         if (str == null) {
243             return null;
244         }
245         return Float.valueOf(str);
246     }
247 
248     /**
249      * Convert a {@link String} to a {@link Integer}, handling
250      * hexadecimal (0xhhhh) and octal (0dddd) notations.
251      * N.B. a leading zero means octal; spaces are not trimmed.
252      *
253      * <p>Returns {@code null} if the string is {@code null}.</p>
254      *
255      * @param str  a {@link String} to convert, may be null
256      * @return converted {@link Integer} (or null if the input is null)
257      * @throws NumberFormatException if the value cannot be converted
258      */
259     public static Integer createInteger(final String str) {
260         if (str == null) {
261             return null;
262         }
263         // decode() handles 0xAABD and 0777 (hex and octal) as well.
264         return Integer.decode(str);
265     }
266 
267     /**
268      * Convert a {@link String} to a {@link Long};
269      * since 3.1 it handles hexadecimal (0Xhhhh) and octal (0ddd) notations.
270      * N.B. a leading zero means octal; spaces are not trimmed.
271      *
272      * <p>Returns {@code null} if the string is {@code null}.</p>
273      *
274      * @param str  a {@link String} to convert, may be null
275      * @return converted {@link Long} (or null if the input is null)
276      * @throws NumberFormatException if the value cannot be converted
277      */
278     public static Long createLong(final String str) {
279         if (str == null) {
280             return null;
281         }
282         return Long.decode(str);
283     }
284 
285     /**
286      * Turns a string value into a java.lang.Number.
287      *
288      * <p>If the string starts with {@code 0x} or {@code -0x} (lower or upper case) or {@code #} or {@code -#}, it
289      * will be interpreted as a hexadecimal Integer - or Long, if the number of digits after the
290      * prefix is more than 8 - or BigInteger if there are more than 16 digits.
291      * </p>
292      * <p>Then, the value is examined for a type qualifier on the end, i.e. one of
293      * {@code 'f', 'F', 'd', 'D', 'l', 'L'}.  If it is found, it starts
294      * trying to create successively larger types from the type specified
295      * until one is found that can represent the value.</p>
296      *
297      * <p>If a type specifier is not found, it will check for a decimal point
298      * and then try successively larger types from {@link Integer} to
299      * {@link BigInteger} and from {@link Float} to
300      * {@link BigDecimal}.</p>
301      *
302      * <p>
303      * Integral values with a leading {@code 0} will be interpreted as octal; the returned number will
304      * be Integer, Long or BigDecimal as appropriate.
305      * </p>
306      *
307      * <p>Returns {@code null} if the string is {@code null}.</p>
308      *
309      * <p>This method does not trim the input string, i.e., strings with leading
310      * or trailing spaces will generate NumberFormatExceptions.</p>
311      *
312      * @param str  String containing a number, may be null
313      * @return Number created from the string (or null if the input is null)
314      * @throws NumberFormatException if the value cannot be converted
315      */
316     public static Number createNumber(final String str) {
317         if (str == null) {
318             return null;
319         }
320         if (StringUtils.isBlank(str)) {
321             throw new NumberFormatException("A blank string is not a valid number");
322         }
323         // Need to deal with all possible hex prefixes here
324         final String[] hexPrefixes = {"0x", "0X", "#"};
325         final int length = str.length();
326         final int offset = str.charAt(0) == '+' || str.charAt(0) == '-' ? 1 : 0;
327         int pfxLen = 0;
328         for (final String pfx : hexPrefixes) {
329             if (str.startsWith(pfx, offset)) {
330                 pfxLen += pfx.length() + offset;
331                 break;
332             }
333         }
334         if (pfxLen > 0) { // we have a hex number
335             char firstSigDigit = 0; // strip leading zeroes
336             for (int i = pfxLen; i < length; i++) {
337                 firstSigDigit = str.charAt(i);
338                 if (firstSigDigit != '0') {
339                     break;
340                 }
341                 pfxLen++;
342             }
343             final int hexDigits = length - pfxLen;
344             if (hexDigits > 16 || hexDigits == 16 && firstSigDigit > '7') { // too many for Long
345                 return createBigInteger(str);
346             }
347             if (hexDigits > 8 || hexDigits == 8 && firstSigDigit > '7') { // too many for an int
348                 return createLong(str);
349             }
350             return createInteger(str);
351         }
352         final char lastChar = str.charAt(length - 1);
353         final String mant;
354         final String dec;
355         final String exp;
356         final int decPos = str.indexOf('.');
357         final int expPos = str.indexOf('e') + str.indexOf('E') + 1; // assumes both not present
358         // if both e and E are present, this is caught by the checks on expPos (which prevent IOOBE)
359         // and the parsing which will detect if e or E appear in a number due to using the wrong offset
360 
361         // Detect if the return type has been requested
362         final boolean requestType = !Character.isDigit(lastChar) && lastChar != '.';
363         if (decPos > -1) { // there is a decimal point
364             if (expPos > -1) { // there is an exponent
365                 if (expPos < decPos || expPos > length) { // prevents double exponent causing IOOBE
366                     throw new NumberFormatException(str + " is not a valid number.");
367                 }
368                 dec = str.substring(decPos + 1, expPos);
369             } else {
370                 // No exponent, but there may be a type character to remove
371                 dec = str.substring(decPos + 1, requestType ? length - 1 : length);
372             }
373             mant = getMantissa(str, decPos);
374         } else {
375             if (expPos > -1) {
376                 if (expPos > length) { // prevents double exponent causing IOOBE
377                     throw new NumberFormatException(str + " is not a valid number.");
378                 }
379                 mant = getMantissa(str, expPos);
380             } else {
381                 // No decimal, no exponent, but there may be a type character to remove
382                 mant = getMantissa(str, requestType ? length - 1 : length);
383             }
384             dec = null;
385         }
386         if (requestType) {
387             if (expPos > -1 && expPos < length - 1) {
388                 exp = str.substring(expPos + 1, length - 1);
389             } else {
390                 exp = null;
391             }
392             //Requesting a specific type.
393             final String numeric = str.substring(0, length - 1);
394             switch (lastChar) {
395                 case 'l' :
396                 case 'L' :
397                     if (dec == null
398                         && exp == null
399                         && (!numeric.isEmpty() && numeric.charAt(0) == '-' && isDigits(numeric.substring(1)) || isDigits(numeric))) {
400                         try {
401                             return createLong(numeric);
402                         } catch (final NumberFormatException ignored) {
403                             // Too big for a long
404                         }
405                         return createBigInteger(numeric);
406 
407                     }
408                     throw new NumberFormatException(str + " is not a valid number.");
409                 case 'f' :
410                 case 'F' :
411                     try {
412                         final Float f = createFloat(str);
413                         if (!(f.isInfinite() || f.floatValue() == 0.0F && !isZero(mant, dec))) {
414                             //If it's too big for a float or the float value = 0 and the string
415                             //has non-zeros in it, then float does not have the precision we want
416                             return f;
417                         }
418 
419                     } catch (final NumberFormatException ignored) {
420                         // ignore the bad number
421                     }
422                     //$FALL-THROUGH$
423                 case 'd' :
424                 case 'D' :
425                     try {
426                         final Double d = createDouble(str);
427                         if (!(d.isInfinite() || d.doubleValue() == 0.0D && !isZero(mant, dec))) {
428                             return d;
429                         }
430                     } catch (final NumberFormatException ignored) {
431                         // ignore the bad number
432                     }
433                     try {
434                         return createBigDecimal(numeric);
435                     } catch (final NumberFormatException ignored) {
436                         // ignore the bad number
437                     }
438                     //$FALL-THROUGH$
439                 default :
440                     throw new NumberFormatException(str + " is not a valid number.");
441 
442             }
443         }
444         //User doesn't have a preference on the return type, so let's start
445         //small and go from there...
446         if (expPos > -1 && expPos < length - 1) {
447             exp = str.substring(expPos + 1);
448         } else {
449             exp = null;
450         }
451         if (dec == null && exp == null) { // no decimal point and no exponent
452             //Must be an Integer, Long, Biginteger
453             try {
454                 return createInteger(str);
455             } catch (final NumberFormatException ignored) {
456                 // ignore the bad number
457             }
458             try {
459                 return createLong(str);
460             } catch (final NumberFormatException ignored) {
461                 // ignore the bad number
462             }
463             return createBigInteger(str);
464         }
465 
466         //Must be a Float, Double, BigDecimal
467         try {
468             final Float f = createFloat(str);
469             final Double d = createDouble(str);
470             if (!f.isInfinite()
471                     && !(f.floatValue() == 0.0F && !isZero(mant, dec))
472                     && f.toString().equals(d.toString())) {
473                 return f;
474             }
475             if (!d.isInfinite() && !(d.doubleValue() == 0.0D && !isZero(mant, dec))) {
476                 final BigDecimal b = createBigDecimal(str);
477                 if (b.compareTo(BigDecimal.valueOf(d.doubleValue())) == 0) {
478                     return d;
479                 }
480                 return b;
481             }
482         } catch (final NumberFormatException ignored) {
483             // ignore the bad number
484         }
485         return createBigDecimal(str);
486     }
487 
488      /**
489      * Utility method for {@link #createNumber(java.lang.String)}.
490      *
491      * <p>Returns mantissa of the given number.</p>
492      *
493      * @param str the string representation of the number
494      * @param stopPos the position of the exponent or decimal point
495      * @return mantissa of the given number
496      */
497     private static String getMantissa(final String str, final int stopPos) {
498         final char firstChar = str.charAt(0);
499         final boolean hasSign = firstChar == '-' || firstChar == '+';
500 
501         return hasSign ? str.substring(1, stopPos) : str.substring(0, stopPos);
502     }
503 
504     /**
505      * Utility method for {@link #createNumber(java.lang.String)}.
506      *
507      * <p>Returns {@code true} if s is {@code null} or empty.</p>
508      *
509      * @param str the String to check
510      * @return if it is all zeros or {@code null}
511      */
512     private static boolean isAllZeros(final String str) {
513         if (str == null) {
514             return true;
515         }
516         for (int i = str.length() - 1; i >= 0; i--) {
517             if (str.charAt(i) != '0') {
518                 return false;
519             }
520         }
521         return true;
522     }
523 
524     /**
525      * Checks whether the String is a valid Java number.
526      *
527      * <p>Valid numbers include hexadecimal marked with the {@code 0x} or
528      * {@code 0X} qualifier, octal numbers, scientific notation and
529      * numbers marked with a type qualifier (e.g. 123L).</p>
530      *
531      * <p>Non-hexadecimal strings beginning with a leading zero are
532      * treated as octal values. Thus the string {@code 09} will return
533      * {@code false}, since {@code 9} is not a valid octal value.
534      * However, numbers beginning with {@code 0.} are treated as decimal.</p>
535      *
536      * <p>{@code null} and empty/blank {@link String} will return
537      * {@code false}.</p>
538      *
539      * <p>Note, {@link #createNumber(String)} should return a number for every
540      * input resulting in {@code true}.</p>
541      *
542      * @param str  the {@link String} to check
543      * @return {@code true} if the string is a correctly formatted number
544      * @since 3.5
545      */
546     public static boolean isCreatable(final String str) {
547         if (StringUtils.isEmpty(str)) {
548             return false;
549         }
550         final char[] chars = str.toCharArray();
551         int sz = chars.length;
552         boolean hasExp = false;
553         boolean hasDecPoint = false;
554         boolean allowSigns = false;
555         boolean foundDigit = false;
556         // deal with any possible sign up front
557         final int start = chars[0] == '-' || chars[0] == '+' ? 1 : 0;
558         if (sz > start + 1 && chars[start] == '0' && !StringUtils.contains(str, '.')) { // leading 0, skip if is a decimal number
559             if (chars[start + 1] == 'x' || chars[start + 1] == 'X') { // leading 0x/0X
560                 int i = start + 2;
561                 if (i == sz) {
562                     return false; // str == "0x"
563                 }
564                 // checking hex (it can't be anything else)
565                 for (; i < chars.length; i++) {
566                     if ((chars[i] < '0' || chars[i] > '9')
567                         && (chars[i] < 'a' || chars[i] > 'f')
568                         && (chars[i] < 'A' || chars[i] > 'F')) {
569                         return false;
570                     }
571                 }
572                 return true;
573            }
574             if (Character.isDigit(chars[start + 1])) {
575                    // leading 0, but not hex, must be octal
576                    int i = start + 1;
577                    for (; i < chars.length; i++) {
578                        if (chars[i] < '0' || chars[i] > '7') {
579                            return false;
580                        }
581                    }
582                    return true;
583                }
584         }
585         sz--; // don't want to loop to the last char, check it afterwards
586               // for type qualifiers
587         int i = start;
588         // loop to the next to last char or to the last char if we need another digit to
589         // make a valid number (e.g. chars[0..5] = "1234E")
590         while (i < sz || i < sz + 1 && allowSigns && !foundDigit) {
591             if (chars[i] >= '0' && chars[i] <= '9') {
592                 foundDigit = true;
593                 allowSigns = false;
594 
595             } else if (chars[i] == '.') {
596                 if (hasDecPoint || hasExp) {
597                     // two decimal points or dec in exponent
598                     return false;
599                 }
600                 hasDecPoint = true;
601             } else if (chars[i] == 'e' || chars[i] == 'E') {
602                 // we've already taken care of hex.
603                 if (hasExp) {
604                     // two E's
605                     return false;
606                 }
607                 if (!foundDigit) {
608                     return false;
609                 }
610                 hasExp = true;
611                 allowSigns = true;
612             } else if (chars[i] == '+' || chars[i] == '-') {
613                 if (!allowSigns) {
614                     return false;
615                 }
616                 allowSigns = false;
617                 foundDigit = false; // we need a digit after the E
618             } else {
619                 return false;
620             }
621             i++;
622         }
623         if (i < chars.length) {
624             if (chars[i] >= '0' && chars[i] <= '9') {
625                 // no type qualifier, OK
626                 return true;
627             }
628             if (chars[i] == 'e' || chars[i] == 'E') {
629                 // can't have an E at the last byte
630                 return false;
631             }
632             if (chars[i] == '.') {
633                 if (hasDecPoint || hasExp) {
634                     // two decimal points or dec in exponent
635                     return false;
636                 }
637                 // single trailing decimal point after non-exponent is ok
638                 return foundDigit;
639             }
640             if (!allowSigns
641                 && (chars[i] == 'd'
642                     || chars[i] == 'D'
643                     || chars[i] == 'f'
644                     || chars[i] == 'F')) {
645                 return foundDigit;
646             }
647             if (chars[i] == 'l'
648                 || chars[i] == 'L') {
649                 // not allowing L with an exponent or decimal point
650                 return foundDigit && !hasExp && !hasDecPoint;
651             }
652             // last character is illegal
653             return false;
654         }
655         // allowSigns is true iff the val ends in 'E'
656         // found digit it to make sure weird stuff like '.' and '1E-' doesn't pass
657         return !allowSigns && foundDigit;
658     }
659 
660     /**
661      * Checks whether the {@link String} contains only
662      * digit characters.
663      *
664      * <p>{@code null} and empty String will return
665      * {@code false}.</p>
666      *
667      * @param str  the {@link String} to check
668      * @return {@code true} if str contains only Unicode numeric
669      */
670     public static boolean isDigits(final String str) {
671         return StringUtils.isNumeric(str);
672     }
673 
674     /**
675      * Checks whether the String is a valid Java number.
676      *
677      * <p>Valid numbers include hexadecimal marked with the {@code 0x} or
678      * {@code 0X} qualifier, octal numbers, scientific notation and
679      * numbers marked with a type qualifier (e.g. 123L).</p>
680      *
681      * <p>Non-hexadecimal strings beginning with a leading zero are
682      * treated as octal values. Thus the string {@code 09} will return
683      * {@code false}, since {@code 9} is not a valid octal value.
684      * However, numbers beginning with {@code 0.} are treated as decimal.</p>
685      *
686      * <p>{@code null} and empty/blank {@link String} will return
687      * {@code false}.</p>
688      *
689      * <p>Note, {@link #createNumber(String)} should return a number for every
690      * input resulting in {@code true}.</p>
691      *
692      * @param str  the {@link String} to check
693      * @return {@code true} if the string is a correctly formatted number
694      * @since 3.3 the code supports hexadecimal {@code 0Xhhh} an
695      *        octal {@code 0ddd} validation
696      * @deprecated This feature will be removed in Lang 4,
697      *             use {@link NumberUtils#isCreatable(String)} instead
698      */
699     @Deprecated
700     public static boolean isNumber(final String str) {
701         return isCreatable(str);
702     }
703 
704     /**
705      * Checks whether the given String is a parsable number.
706      *
707      * <p>Parsable numbers include those Strings understood by {@link Integer#parseInt(String)},
708      * {@link Long#parseLong(String)}, {@link Float#parseFloat(String)} or
709      * {@link Double#parseDouble(String)}. This method can be used instead of catching {@link java.text.ParseException}
710      * when calling one of those methods.</p>
711      *
712      * <p>Hexadecimal and scientific notations are <strong>not</strong> considered parsable.
713      * See {@link #isCreatable(String)} on those cases.</p>
714      *
715      * <p>{@code null} and empty String will return {@code false}.</p>
716      *
717      * @param str the String to check.
718      * @return {@code true} if the string is a parsable number.
719      * @since 3.4
720      */
721     public static boolean isParsable(final String str) {
722         if (StringUtils.isEmpty(str)) {
723             return false;
724         }
725         if (str.charAt(str.length() - 1) == '.') {
726             return false;
727         }
728         if (str.charAt(0) == '-') {
729             if (str.length() == 1) {
730                 return false;
731             }
732             return withDecimalsParsing(str, 1);
733         }
734         return withDecimalsParsing(str, 0);
735     }
736 
737     /**
738      * Utility method for {@link #createNumber(java.lang.String)}.
739      *
740      * <p>This will check if the magnitude of the number is zero by checking if there
741      * are only zeros before and after the decimal place.</p>
742      *
743      * <p>Note: It is <strong>assumed</strong> that the input string has been converted
744      * to either a Float or Double with a value of zero when this method is called.
745      * This eliminates invalid input for example {@code ".", ".D", ".e0"}.</p>
746      *
747      * <p>Thus the method only requires checking if both arguments are null, empty or
748      * contain only zeros.</p>
749      *
750      * <p>Given {@code s = mant + "." + dec}:</p>
751      * <ul>
752      * <li>{@code true} if s is {@code "0.0"}
753      * <li>{@code true} if s is {@code "0."}
754      * <li>{@code true} if s is {@code ".0"}
755      * <li>{@code false} otherwise (this assumes {@code "."} is not possible)
756      * </ul>
757      *
758      * @param mant the mantissa decimal digits before the decimal point (sign must be removed; never null)
759      * @param dec the decimal digits after the decimal point (exponent and type specifier removed;
760      *            can be null)
761      * @return true if the magnitude is zero
762      */
763     private static boolean isZero(final String mant, final String dec) {
764         return isAllZeros(mant) && isAllZeros(dec);
765     }
766 
767     /**
768      * Returns the maximum value in an array.
769      *
770      * @param array  an array, must not be null or empty
771      * @return the maximum value in the array
772      * @throws NullPointerException if {@code array} is {@code null}
773      * @throws IllegalArgumentException if {@code array} is empty
774      * @since 3.4 Changed signature from max(byte[]) to max(byte...)
775      */
776     public static byte max(final byte... array) {
777         // Validates input
778         validateArray(array);
779 
780         // Finds and returns max
781         byte max = array[0];
782         for (int i = 1; i < array.length; i++) {
783             if (array[i] > max) {
784                 max = array[i];
785             }
786         }
787 
788         return max;
789     }
790 
791     /**
792      * Gets the maximum of three {@code byte} values.
793      *
794      * @param a  value 1
795      * @param b  value 2
796      * @param c  value 3
797      * @return  the largest of the values
798      */
799     public static byte max(byte a, final byte b, final byte c) {
800         if (b > a) {
801             a = b;
802         }
803         if (c > a) {
804             a = c;
805         }
806         return a;
807     }
808 
809     /**
810      * Returns the maximum value in an array.
811      *
812      * @param array  an array, must not be null or empty
813      * @return the maximum value in the array
814      * @throws NullPointerException if {@code array} is {@code null}
815      * @throws IllegalArgumentException if {@code array} is empty
816      * @see IEEE754rUtils#max(double[]) IEEE754rUtils for a version of this method that handles NaN differently
817      * @since 3.4 Changed signature from max(double[]) to max(double...)
818      */
819     public static double max(final double... array) {
820         // Validates input
821         validateArray(array);
822 
823         // Finds and returns max
824         double max = array[0];
825         for (int j = 1; j < array.length; j++) {
826             if (Double.isNaN(array[j])) {
827                 return Double.NaN;
828             }
829             if (array[j] > max) {
830                 max = array[j];
831             }
832         }
833 
834         return max;
835     }
836 
837     /**
838      * Gets the maximum of three {@code double} values.
839      *
840      * <p>If any value is {@code NaN}, {@code NaN} is
841      * returned. Infinity is handled.</p>
842      *
843      * @param a  value 1
844      * @param b  value 2
845      * @param c  value 3
846      * @return  the largest of the values
847      * @see IEEE754rUtils#max(double, double, double) for a version of this method that handles NaN differently
848      */
849     public static double max(final double a, final double b, final double c) {
850         return Math.max(Math.max(a, b), c);
851     }
852 
853     /**
854      * Returns the maximum value in an array.
855      *
856      * @param array  an array, must not be null or empty
857      * @return the maximum value in the array
858      * @throws NullPointerException if {@code array} is {@code null}
859      * @throws IllegalArgumentException if {@code array} is empty
860      * @see IEEE754rUtils#max(float[]) IEEE754rUtils for a version of this method that handles NaN differently
861      * @since 3.4 Changed signature from max(float[]) to max(float...)
862      */
863     public static float max(final float... array) {
864         // Validates input
865         validateArray(array);
866 
867         // Finds and returns max
868         float max = array[0];
869         for (int j = 1; j < array.length; j++) {
870             if (Float.isNaN(array[j])) {
871                 return Float.NaN;
872             }
873             if (array[j] > max) {
874                 max = array[j];
875             }
876         }
877 
878         return max;
879     }
880 
881     // must handle Long, Float, Integer, Float, Short,
882     //                  BigDecimal, BigInteger and Byte
883     // useful methods:
884     // Byte.decode(String)
885     // Byte.valueOf(String, int radix)
886     // Byte.valueOf(String)
887     // Double.valueOf(String)
888     // Float.valueOf(String)
889     // Float.valueOf(String)
890     // Integer.valueOf(String, int radix)
891     // Integer.valueOf(String)
892     // Integer.decode(String)
893     // Integer.getInteger(String)
894     // Integer.getInteger(String, int val)
895     // Integer.getInteger(String, Integer val)
896     // Integer.valueOf(String)
897     // Double.valueOf(String)
898     // new Byte(String)
899     // Long.valueOf(String)
900     // Long.getLong(String)
901     // Long.getLong(String, int)
902     // Long.getLong(String, Integer)
903     // Long.valueOf(String, int)
904     // Long.valueOf(String)
905     // Short.valueOf(String)
906     // Short.decode(String)
907     // Short.valueOf(String, int)
908     // Short.valueOf(String)
909     // new BigDecimal(String)
910     // new BigInteger(String)
911     // new BigInteger(String, int radix)
912     // Possible inputs:
913     // 45 45.5 45E7 4.5E7 Hex Oct Binary xxxF xxxD xxxf xxxd
914     // plus minus everything. Prolly more. A lot are not separable.
915 
916     /**
917      * Gets the maximum of three {@code float} values.
918      *
919      * <p>If any value is {@code NaN}, {@code NaN} is
920      * returned. Infinity is handled.</p>
921      *
922      * @param a  value 1
923      * @param b  value 2
924      * @param c  value 3
925      * @return  the largest of the values
926      * @see IEEE754rUtils#max(float, float, float) for a version of this method that handles NaN differently
927      */
928     public static float max(final float a, final float b, final float c) {
929         return Math.max(Math.max(a, b), c);
930     }
931 
932     /**
933      * Returns the maximum value in an array.
934      *
935      * @param array  an array, must not be null or empty
936      * @return the maximum value in the array
937      * @throws NullPointerException if {@code array} is {@code null}
938      * @throws IllegalArgumentException if {@code array} is empty
939      * @since 3.4 Changed signature from max(int[]) to max(int...)
940      */
941     public static int max(final int... array) {
942         // Validates input
943         validateArray(array);
944 
945         // Finds and returns max
946         int max = array[0];
947         for (int j = 1; j < array.length; j++) {
948             if (array[j] > max) {
949                 max = array[j];
950             }
951         }
952 
953         return max;
954     }
955 
956     /**
957      * Gets the maximum of three {@code int} values.
958      *
959      * @param a  value 1
960      * @param b  value 2
961      * @param c  value 3
962      * @return  the largest of the values
963      */
964     public static int max(int a, final int b, final int c) {
965         if (b > a) {
966             a = b;
967         }
968         if (c > a) {
969             a = c;
970         }
971         return a;
972     }
973 
974     /**
975      * Returns the maximum value in an array.
976      *
977      * @param array  an array, must not be null or empty
978      * @return the maximum value in the array
979      * @throws NullPointerException if {@code array} is {@code null}
980      * @throws IllegalArgumentException if {@code array} is empty
981      * @since 3.4 Changed signature from max(long[]) to max(long...)
982      */
983     public static long max(final long... array) {
984         // Validates input
985         validateArray(array);
986 
987         // Finds and returns max
988         long max = array[0];
989         for (int j = 1; j < array.length; j++) {
990             if (array[j] > max) {
991                 max = array[j];
992             }
993         }
994 
995         return max;
996     }
997 
998     // 3 param max
999     /**
1000      * Gets the maximum of three {@code long} values.
1001      *
1002      * @param a  value 1
1003      * @param b  value 2
1004      * @param c  value 3
1005      * @return  the largest of the values
1006      */
1007     public static long max(long a, final long b, final long c) {
1008         if (b > a) {
1009             a = b;
1010         }
1011         if (c > a) {
1012             a = c;
1013         }
1014         return a;
1015     }
1016 
1017     /**
1018      * Returns the maximum value in an array.
1019      *
1020      * @param array  an array, must not be null or empty
1021      * @return the maximum value in the array
1022      * @throws NullPointerException if {@code array} is {@code null}
1023      * @throws IllegalArgumentException if {@code array} is empty
1024      * @since 3.4 Changed signature from max(short[]) to max(short...)
1025      */
1026     public static short max(final short... array) {
1027         // Validates input
1028         validateArray(array);
1029 
1030         // Finds and returns max
1031         short max = array[0];
1032         for (int i = 1; i < array.length; i++) {
1033             if (array[i] > max) {
1034                 max = array[i];
1035             }
1036         }
1037 
1038         return max;
1039     }
1040 
1041     /**
1042      * Gets the maximum of three {@code short} values.
1043      *
1044      * @param a  value 1
1045      * @param b  value 2
1046      * @param c  value 3
1047      * @return  the largest of the values
1048      */
1049     public static short max(short a, final short b, final short c) {
1050         if (b > a) {
1051             a = b;
1052         }
1053         if (c > a) {
1054             a = c;
1055         }
1056         return a;
1057     }
1058 
1059     /**
1060      * Returns the minimum value in an array.
1061      *
1062      * @param array  an array, must not be null or empty
1063      * @return the minimum value in the array
1064      * @throws NullPointerException if {@code array} is {@code null}
1065      * @throws IllegalArgumentException if {@code array} is empty
1066      * @since 3.4 Changed signature from min(byte[]) to min(byte...)
1067      */
1068     public static byte min(final byte... array) {
1069         // Validates input
1070         validateArray(array);
1071 
1072         // Finds and returns min
1073         byte min = array[0];
1074         for (int i = 1; i < array.length; i++) {
1075             if (array[i] < min) {
1076                 min = array[i];
1077             }
1078         }
1079 
1080         return min;
1081     }
1082 
1083     /**
1084      * Gets the minimum of three {@code byte} values.
1085      *
1086      * @param a  value 1
1087      * @param b  value 2
1088      * @param c  value 3
1089      * @return  the smallest of the values
1090      */
1091     public static byte min(byte a, final byte b, final byte c) {
1092         if (b < a) {
1093             a = b;
1094         }
1095         if (c < a) {
1096             a = c;
1097         }
1098         return a;
1099     }
1100 
1101     /**
1102      * Returns the minimum value in an array.
1103      *
1104      * @param array  an array, must not be null or empty
1105      * @return the minimum value in the array
1106      * @throws NullPointerException if {@code array} is {@code null}
1107      * @throws IllegalArgumentException if {@code array} is empty
1108      * @see IEEE754rUtils#min(double[]) IEEE754rUtils for a version of this method that handles NaN differently
1109      * @since 3.4 Changed signature from min(double[]) to min(double...)
1110      */
1111     public static double min(final double... array) {
1112         // Validates input
1113         validateArray(array);
1114 
1115         // Finds and returns min
1116         double min = array[0];
1117         for (int i = 1; i < array.length; i++) {
1118             if (Double.isNaN(array[i])) {
1119                 return Double.NaN;
1120             }
1121             if (array[i] < min) {
1122                 min = array[i];
1123             }
1124         }
1125 
1126         return min;
1127     }
1128 
1129     /**
1130      * Gets the minimum of three {@code double} values.
1131      *
1132      * <p>If any value is {@code NaN}, {@code NaN} is
1133      * returned. Infinity is handled.</p>
1134      *
1135      * @param a  value 1
1136      * @param b  value 2
1137      * @param c  value 3
1138      * @return  the smallest of the values
1139      * @see IEEE754rUtils#min(double, double, double) for a version of this method that handles NaN differently
1140      */
1141     public static double min(final double a, final double b, final double c) {
1142         return Math.min(Math.min(a, b), c);
1143     }
1144 
1145     /**
1146      * Returns the minimum value in an array.
1147      *
1148      * @param array  an array, must not be null or empty
1149      * @return the minimum value in the array
1150      * @throws NullPointerException if {@code array} is {@code null}
1151      * @throws IllegalArgumentException if {@code array} is empty
1152      * @see IEEE754rUtils#min(float[]) IEEE754rUtils for a version of this method that handles NaN differently
1153      * @since 3.4 Changed signature from min(float[]) to min(float...)
1154      */
1155     public static float min(final float... array) {
1156         // Validates input
1157         validateArray(array);
1158 
1159         // Finds and returns min
1160         float min = array[0];
1161         for (int i = 1; i < array.length; i++) {
1162             if (Float.isNaN(array[i])) {
1163                 return Float.NaN;
1164             }
1165             if (array[i] < min) {
1166                 min = array[i];
1167             }
1168         }
1169 
1170         return min;
1171     }
1172 
1173     /**
1174      * Gets the minimum of three {@code float} values.
1175      *
1176      * <p>If any value is {@code NaN}, {@code NaN} is
1177      * returned. Infinity is handled.</p>
1178      *
1179      * @param a  value 1
1180      * @param b  value 2
1181      * @param c  value 3
1182      * @return  the smallest of the values
1183      * @see IEEE754rUtils#min(float, float, float) for a version of this method that handles NaN differently
1184      */
1185     public static float min(final float a, final float b, final float c) {
1186         return Math.min(Math.min(a, b), c);
1187     }
1188 
1189     /**
1190      * Returns the minimum value in an array.
1191      *
1192      * @param array  an array, must not be null or empty
1193      * @return the minimum value in the array
1194      * @throws NullPointerException if {@code array} is {@code null}
1195      * @throws IllegalArgumentException if {@code array} is empty
1196      * @since 3.4 Changed signature from min(int[]) to min(int...)
1197      */
1198     public static int min(final int... array) {
1199         // Validates input
1200         validateArray(array);
1201 
1202         // Finds and returns min
1203         int min = array[0];
1204         for (int j = 1; j < array.length; j++) {
1205             if (array[j] < min) {
1206                 min = array[j];
1207             }
1208         }
1209 
1210         return min;
1211     }
1212 
1213      /**
1214      * Gets the minimum of three {@code int} values.
1215      *
1216      * @param a  value 1
1217      * @param b  value 2
1218      * @param c  value 3
1219      * @return  the smallest of the values
1220      */
1221     public static int min(int a, final int b, final int c) {
1222         if (b < a) {
1223             a = b;
1224         }
1225         if (c < a) {
1226             a = c;
1227         }
1228         return a;
1229     }
1230 
1231     /**
1232      * Returns the minimum value in an array.
1233      *
1234      * @param array  an array, must not be null or empty
1235      * @return the minimum value in the array
1236      * @throws NullPointerException if {@code array} is {@code null}
1237      * @throws IllegalArgumentException if {@code array} is empty
1238      * @since 3.4 Changed signature from min(long[]) to min(long...)
1239      */
1240     public static long min(final long... array) {
1241         // Validates input
1242         validateArray(array);
1243 
1244         // Finds and returns min
1245         long min = array[0];
1246         for (int i = 1; i < array.length; i++) {
1247             if (array[i] < min) {
1248                 min = array[i];
1249             }
1250         }
1251 
1252         return min;
1253     }
1254 
1255     // 3 param min
1256     /**
1257      * Gets the minimum of three {@code long} values.
1258      *
1259      * @param a  value 1
1260      * @param b  value 2
1261      * @param c  value 3
1262      * @return  the smallest of the values
1263      */
1264     public static long min(long a, final long b, final long c) {
1265         if (b < a) {
1266             a = b;
1267         }
1268         if (c < a) {
1269             a = c;
1270         }
1271         return a;
1272     }
1273 
1274     /**
1275      * Returns the minimum value in an array.
1276      *
1277      * @param array  an array, must not be null or empty
1278      * @return the minimum value in the array
1279      * @throws NullPointerException if {@code array} is {@code null}
1280      * @throws IllegalArgumentException if {@code array} is empty
1281      * @since 3.4 Changed signature from min(short[]) to min(short...)
1282      */
1283     public static short min(final short... array) {
1284         // Validates input
1285         validateArray(array);
1286 
1287         // Finds and returns min
1288         short min = array[0];
1289         for (int i = 1; i < array.length; i++) {
1290             if (array[i] < min) {
1291                 min = array[i];
1292             }
1293         }
1294 
1295         return min;
1296     }
1297 
1298     /**
1299      * Gets the minimum of three {@code short} values.
1300      *
1301      * @param a  value 1
1302      * @param b  value 2
1303      * @param c  value 3
1304      * @return  the smallest of the values
1305      */
1306     public static short min(short a, final short b, final short c) {
1307         if (b < a) {
1308             a = b;
1309         }
1310         if (c < a) {
1311             a = c;
1312         }
1313         return a;
1314     }
1315 
1316     /**
1317      * Convert a {@link String} to a {@code byte}, returning
1318      * {@code zero} if the conversion fails.
1319      *
1320      * <p>If the string is {@code null}, {@code zero} is returned.</p>
1321      *
1322      * <pre>
1323      *   NumberUtils.toByte(null) = 0
1324      *   NumberUtils.toByte("")   = 0
1325      *   NumberUtils.toByte("1")  = 1
1326      * </pre>
1327      *
1328      * @param str  the string to convert, may be null
1329      * @return the byte represented by the string, or {@code zero} if
1330      *  conversion fails
1331      * @since 2.5
1332      */
1333     public static byte toByte(final String str) {
1334         return toByte(str, (byte) 0);
1335     }
1336 
1337     /**
1338      * Convert a {@link String} to a {@code byte}, returning a
1339      * default value if the conversion fails.
1340      *
1341      * <p>If the string is {@code null}, the default value is returned.</p>
1342      *
1343      * <pre>
1344      *   NumberUtils.toByte(null, 1) = 1
1345      *   NumberUtils.toByte("", 1)   = 1
1346      *   NumberUtils.toByte("1", 0)  = 1
1347      * </pre>
1348      *
1349      * @param str  the string to convert, may be null
1350      * @param defaultValue  the default value
1351      * @return the byte represented by the string, or the default if conversion fails
1352      * @since 2.5
1353      */
1354     public static byte toByte(final String str, final byte defaultValue) {
1355         if (str == null) {
1356             return defaultValue;
1357         }
1358         try {
1359             return Byte.parseByte(str);
1360         } catch (final NumberFormatException nfe) {
1361             return defaultValue;
1362         }
1363     }
1364 
1365     /**
1366      * Convert a {@link BigDecimal} to a {@code double}.
1367      *
1368      * <p>If the {@link BigDecimal} {@code value} is
1369      * {@code null}, then the specified default value is returned.</p>
1370      *
1371      * <pre>
1372      *   NumberUtils.toDouble(null)                     = 0.0d
1373      *   NumberUtils.toDouble(BigDecimal.valueOf(8.5d)) = 8.5d
1374      * </pre>
1375      *
1376      * @param value the {@link BigDecimal} to convert, may be {@code null}.
1377      * @return the double represented by the {@link BigDecimal} or
1378      *  {@code 0.0d} if the {@link BigDecimal} is {@code null}.
1379      * @since 3.8
1380      */
1381     public static double toDouble(final BigDecimal value) {
1382         return toDouble(value, 0.0d);
1383     }
1384 
1385     /**
1386      * Convert a {@link BigDecimal} to a {@code double}.
1387      *
1388      * <p>If the {@link BigDecimal} {@code value} is
1389      * {@code null}, then the specified default value is returned.</p>
1390      *
1391      * <pre>
1392      *   NumberUtils.toDouble(null, 1.1d)                     = 1.1d
1393      *   NumberUtils.toDouble(BigDecimal.valueOf(8.5d), 1.1d) = 8.5d
1394      * </pre>
1395      *
1396      * @param value the {@link BigDecimal} to convert, may be {@code null}.
1397      * @param defaultValue the default value
1398      * @return the double represented by the {@link BigDecimal} or the
1399      *  defaultValue if the {@link BigDecimal} is {@code null}.
1400      * @since 3.8
1401      */
1402     public static double toDouble(final BigDecimal value, final double defaultValue) {
1403         return value == null ? defaultValue : value.doubleValue();
1404     }
1405 
1406     /**
1407      * Convert a {@link String} to a {@code double}, returning
1408      * {@code 0.0d} if the conversion fails.
1409      *
1410      * <p>If the string {@code str} is {@code null},
1411      * {@code 0.0d} is returned.</p>
1412      *
1413      * <pre>
1414      *   NumberUtils.toDouble(null)   = 0.0d
1415      *   NumberUtils.toDouble("")     = 0.0d
1416      *   NumberUtils.toDouble("1.5")  = 1.5d
1417      * </pre>
1418      *
1419      * @param str the string to convert, may be {@code null}
1420      * @return the double represented by the string, or {@code 0.0d}
1421      *  if conversion fails
1422      * @since 2.1
1423      */
1424     public static double toDouble(final String str) {
1425         return toDouble(str, 0.0d);
1426     }
1427 
1428     /**
1429      * Convert a {@link String} to a {@code double}, returning a
1430      * default value if the conversion fails.
1431      *
1432      * <p>If the string {@code str} is {@code null}, the default
1433      * value is returned.</p>
1434      *
1435      * <pre>
1436      *   NumberUtils.toDouble(null, 1.1d)   = 1.1d
1437      *   NumberUtils.toDouble("", 1.1d)     = 1.1d
1438      *   NumberUtils.toDouble("1.5", 0.0d)  = 1.5d
1439      * </pre>
1440      *
1441      * @param str the string to convert, may be {@code null}
1442      * @param defaultValue the default value
1443      * @return the double represented by the string, or defaultValue
1444      *  if conversion fails
1445      * @since 2.1
1446      */
1447     public static double toDouble(final String str, final double defaultValue) {
1448       if (str == null) {
1449           return defaultValue;
1450       }
1451       try {
1452           return Double.parseDouble(str);
1453       } catch (final NumberFormatException nfe) {
1454           return defaultValue;
1455       }
1456     }
1457 
1458     /**
1459      * Convert a {@link String} to a {@code float}, returning
1460      * {@code 0.0f} if the conversion fails.
1461      *
1462      * <p>If the string {@code str} is {@code null},
1463      * {@code 0.0f} is returned.</p>
1464      *
1465      * <pre>
1466      *   NumberUtils.toFloat(null)   = 0.0f
1467      *   NumberUtils.toFloat("")     = 0.0f
1468      *   NumberUtils.toFloat("1.5")  = 1.5f
1469      * </pre>
1470      *
1471      * @param str the string to convert, may be {@code null}
1472      * @return the float represented by the string, or {@code 0.0f}
1473      *  if conversion fails
1474      * @since 2.1
1475      */
1476     public static float toFloat(final String str) {
1477         return toFloat(str, 0.0f);
1478     }
1479 
1480     /**
1481      * Convert a {@link String} to a {@code float}, returning a
1482      * default value if the conversion fails.
1483      *
1484      * <p>If the string {@code str} is {@code null}, the default
1485      * value is returned.</p>
1486      *
1487      * <pre>
1488      *   NumberUtils.toFloat(null, 1.1f)   = 1.0f
1489      *   NumberUtils.toFloat("", 1.1f)     = 1.1f
1490      *   NumberUtils.toFloat("1.5", 0.0f)  = 1.5f
1491      * </pre>
1492      *
1493      * @param str the string to convert, may be {@code null}
1494      * @param defaultValue the default value
1495      * @return the float represented by the string, or defaultValue
1496      *  if conversion fails
1497      * @since 2.1
1498      */
1499     public static float toFloat(final String str, final float defaultValue) {
1500       if (str == null) {
1501           return defaultValue;
1502       }
1503       try {
1504           return Float.parseFloat(str);
1505       } catch (final NumberFormatException nfe) {
1506           return defaultValue;
1507       }
1508     }
1509 
1510     /**
1511      * Convert a {@link String} to an {@code int}, returning
1512      * {@code zero} if the conversion fails.
1513      *
1514      * <p>If the string is {@code null}, {@code zero} is returned.</p>
1515      *
1516      * <pre>
1517      *   NumberUtils.toInt(null) = 0
1518      *   NumberUtils.toInt("")   = 0
1519      *   NumberUtils.toInt("1")  = 1
1520      * </pre>
1521      *
1522      * @param str  the string to convert, may be null
1523      * @return the int represented by the string, or {@code zero} if
1524      *  conversion fails
1525      * @since 2.1
1526      */
1527     public static int toInt(final String str) {
1528         return toInt(str, 0);
1529     }
1530 
1531     /**
1532      * Convert a {@link String} to an {@code int}, returning a
1533      * default value if the conversion fails.
1534      *
1535      * <p>If the string is {@code null}, the default value is returned.</p>
1536      *
1537      * <pre>
1538      *   NumberUtils.toInt(null, 1) = 1
1539      *   NumberUtils.toInt("", 1)   = 1
1540      *   NumberUtils.toInt("1", 0)  = 1
1541      * </pre>
1542      *
1543      * @param str  the string to convert, may be null
1544      * @param defaultValue  the default value
1545      * @return the int represented by the string, or the default if conversion fails
1546      * @since 2.1
1547      */
1548     public static int toInt(final String str, final int defaultValue) {
1549         if (str == null) {
1550             return defaultValue;
1551         }
1552         try {
1553             return Integer.parseInt(str);
1554         } catch (final NumberFormatException nfe) {
1555             return defaultValue;
1556         }
1557     }
1558 
1559     /**
1560      * Convert a {@link String} to a {@code long}, returning
1561      * {@code zero} if the conversion fails.
1562      *
1563      * <p>If the string is {@code null}, {@code zero} is returned.</p>
1564      *
1565      * <pre>
1566      *   NumberUtils.toLong(null) = 0L
1567      *   NumberUtils.toLong("")   = 0L
1568      *   NumberUtils.toLong("1")  = 1L
1569      * </pre>
1570      *
1571      * @param str  the string to convert, may be null
1572      * @return the long represented by the string, or {@code 0} if
1573      *  conversion fails
1574      * @since 2.1
1575      */
1576     public static long toLong(final String str) {
1577         return toLong(str, 0L);
1578     }
1579 
1580     /**
1581      * Convert a {@link String} to a {@code long}, returning a
1582      * default value if the conversion fails.
1583      *
1584      * <p>If the string is {@code null}, the default value is returned.</p>
1585      *
1586      * <pre>
1587      *   NumberUtils.toLong(null, 1L) = 1L
1588      *   NumberUtils.toLong("", 1L)   = 1L
1589      *   NumberUtils.toLong("1", 0L)  = 1L
1590      * </pre>
1591      *
1592      * @param str  the string to convert, may be null
1593      * @param defaultValue  the default value
1594      * @return the long represented by the string, or the default if conversion fails
1595      * @since 2.1
1596      */
1597     public static long toLong(final String str, final long defaultValue) {
1598         if (str == null) {
1599             return defaultValue;
1600         }
1601         try {
1602             return Long.parseLong(str);
1603         } catch (final NumberFormatException nfe) {
1604             return defaultValue;
1605         }
1606     }
1607 
1608     /**
1609      * Convert a {@link BigDecimal} to a {@link BigDecimal} with a scale of
1610      * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied
1611      * {@code value} is null, then {@code BigDecimal.ZERO} is returned.
1612      *
1613      * <p>Note, the scale of a {@link BigDecimal} is the number of digits to the right of the
1614      * decimal point.</p>
1615      *
1616      * @param value the {@link BigDecimal} to convert, may be null.
1617      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1618      * @since 3.8
1619      */
1620     public static BigDecimal toScaledBigDecimal(final BigDecimal value) {
1621         return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN);
1622     }
1623 
1624     /**
1625      * Convert a {@link BigDecimal} to a {@link BigDecimal} whose scale is the
1626      * specified value with a {@link RoundingMode} applied. If the input {@code value}
1627      * is {@code null}, we simply return {@code BigDecimal.ZERO}.
1628      *
1629      * @param value the {@link BigDecimal} to convert, may be null.
1630      * @param scale the number of digits to the right of the decimal point.
1631      * @param roundingMode a rounding behavior for numerical operations capable of
1632      *  discarding precision.
1633      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1634      * @since 3.8
1635      */
1636     public static BigDecimal toScaledBigDecimal(final BigDecimal value, final int scale, final RoundingMode roundingMode) {
1637         if (value == null) {
1638             return BigDecimal.ZERO;
1639         }
1640         return value.setScale(
1641             scale,
1642             roundingMode == null ? RoundingMode.HALF_EVEN : roundingMode
1643         );
1644     }
1645 
1646     /**
1647      * Convert a {@link Double} to a {@link BigDecimal} with a scale of
1648      * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied
1649      * {@code value} is null, then {@code BigDecimal.ZERO} is returned.
1650      *
1651      * <p>Note, the scale of a {@link BigDecimal} is the number of digits to the right of the
1652      * decimal point.</p>
1653      *
1654      * @param value the {@link Double} to convert, may be null.
1655      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1656      * @since 3.8
1657      */
1658     public static BigDecimal toScaledBigDecimal(final Double value) {
1659         return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN);
1660     }
1661 
1662     /**
1663      * Convert a {@link Double} to a {@link BigDecimal} whose scale is the
1664      * specified value with a {@link RoundingMode} applied. If the input {@code value}
1665      * is {@code null}, we simply return {@code BigDecimal.ZERO}.
1666      *
1667      * @param value the {@link Double} to convert, may be null.
1668      * @param scale the number of digits to the right of the decimal point.
1669      * @param roundingMode a rounding behavior for numerical operations capable of
1670      *  discarding precision.
1671      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1672      * @since 3.8
1673      */
1674     public static BigDecimal toScaledBigDecimal(final Double value, final int scale, final RoundingMode roundingMode) {
1675         if (value == null) {
1676             return BigDecimal.ZERO;
1677         }
1678         return toScaledBigDecimal(
1679             BigDecimal.valueOf(value),
1680             scale,
1681             roundingMode
1682         );
1683     }
1684 
1685     /**
1686      * Convert a {@link Float} to a {@link BigDecimal} with a scale of
1687      * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied
1688      * {@code value} is null, then {@code BigDecimal.ZERO} is returned.
1689      *
1690      * <p>Note, the scale of a {@link BigDecimal} is the number of digits to the right of the
1691      * decimal point.</p>
1692      *
1693      * @param value the {@link Float} to convert, may be null.
1694      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1695      * @since 3.8
1696      */
1697     public static BigDecimal toScaledBigDecimal(final Float value) {
1698         return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN);
1699     }
1700 
1701     /**
1702      * Convert a {@link Float} to a {@link BigDecimal} whose scale is the
1703      * specified value with a {@link RoundingMode} applied. If the input {@code value}
1704      * is {@code null}, we simply return {@code BigDecimal.ZERO}.
1705      *
1706      * @param value the {@link Float} to convert, may be null.
1707      * @param scale the number of digits to the right of the decimal point.
1708      * @param roundingMode a rounding behavior for numerical operations capable of
1709      *  discarding precision.
1710      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1711      * @since 3.8
1712      */
1713     public static BigDecimal toScaledBigDecimal(final Float value, final int scale, final RoundingMode roundingMode) {
1714         if (value == null) {
1715             return BigDecimal.ZERO;
1716         }
1717         return toScaledBigDecimal(
1718             BigDecimal.valueOf(value),
1719             scale,
1720             roundingMode
1721         );
1722     }
1723 
1724     /**
1725      * Convert a {@link String} to a {@link BigDecimal} with a scale of
1726      * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied
1727      * {@code value} is null, then {@code BigDecimal.ZERO} is returned.
1728      *
1729      * <p>Note, the scale of a {@link BigDecimal} is the number of digits to the right of the
1730      * decimal point.</p>
1731      *
1732      * @param value the {@link String} to convert, may be null.
1733      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1734      * @since 3.8
1735      */
1736     public static BigDecimal toScaledBigDecimal(final String value) {
1737         return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN);
1738     }
1739 
1740     /**
1741      * Convert a {@link String} to a {@link BigDecimal} whose scale is the
1742      * specified value with a {@link RoundingMode} applied. If the input {@code value}
1743      * is {@code null}, we simply return {@code BigDecimal.ZERO}.
1744      *
1745      * @param value the {@link String} to convert, may be null.
1746      * @param scale the number of digits to the right of the decimal point.
1747      * @param roundingMode a rounding behavior for numerical operations capable of
1748      *  discarding precision.
1749      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1750      * @since 3.8
1751      */
1752     public static BigDecimal toScaledBigDecimal(final String value, final int scale, final RoundingMode roundingMode) {
1753         if (value == null) {
1754             return BigDecimal.ZERO;
1755         }
1756         return toScaledBigDecimal(
1757             createBigDecimal(value),
1758             scale,
1759             roundingMode
1760         );
1761     }
1762 
1763     /**
1764      * Convert a {@link String} to a {@code short}, returning
1765      * {@code zero} if the conversion fails.
1766      *
1767      * <p>If the string is {@code null}, {@code zero} is returned.</p>
1768      *
1769      * <pre>
1770      *   NumberUtils.toShort(null) = 0
1771      *   NumberUtils.toShort("")   = 0
1772      *   NumberUtils.toShort("1")  = 1
1773      * </pre>
1774      *
1775      * @param str  the string to convert, may be null
1776      * @return the short represented by the string, or {@code zero} if
1777      *  conversion fails
1778      * @since 2.5
1779      */
1780     public static short toShort(final String str) {
1781         return toShort(str, (short) 0);
1782     }
1783 
1784     /**
1785      * Convert a {@link String} to an {@code short}, returning a
1786      * default value if the conversion fails.
1787      *
1788      * <p>If the string is {@code null}, the default value is returned.</p>
1789      *
1790      * <pre>
1791      *   NumberUtils.toShort(null, 1) = 1
1792      *   NumberUtils.toShort("", 1)   = 1
1793      *   NumberUtils.toShort("1", 0)  = 1
1794      * </pre>
1795      *
1796      * @param str  the string to convert, may be null
1797      * @param defaultValue  the default value
1798      * @return the short represented by the string, or the default if conversion fails
1799      * @since 2.5
1800      */
1801     public static short toShort(final String str, final short defaultValue) {
1802         if (str == null) {
1803             return defaultValue;
1804         }
1805         try {
1806             return Short.parseShort(str);
1807         } catch (final NumberFormatException nfe) {
1808             return defaultValue;
1809         }
1810     }
1811 
1812     /**
1813      * Checks if the specified array is neither null nor empty.
1814      *
1815      * @param array  the array to check
1816      * @throws IllegalArgumentException if {@code array} is empty
1817      * @throws NullPointerException if {@code array} is {@code null}
1818      */
1819     private static void validateArray(final Object array) {
1820         Objects.requireNonNull(array, "array");
1821         Validate.isTrue(Array.getLength(array) != 0, "Array cannot be empty.");
1822     }
1823 
1824     private static boolean withDecimalsParsing(final String str, final int beginIdx) {
1825         int decimalPoints = 0;
1826         for (int i = beginIdx; i < str.length(); i++) {
1827             final boolean isDecimalPoint = str.charAt(i) == '.';
1828             if (isDecimalPoint) {
1829                 decimalPoints++;
1830             }
1831             if (decimalPoints > 1) {
1832                 return false;
1833             }
1834             if (!isDecimalPoint && !Character.isDigit(str.charAt(i))) {
1835                 return false;
1836             }
1837         }
1838         return true;
1839     }
1840 
1841     /**
1842      * {@link NumberUtils} instances should NOT be constructed in standard programming.
1843      * Instead, the class should be used as {@code NumberUtils.toInt("6");}.
1844      *
1845      * <p>This constructor is public to permit tools that require a JavaBean instance
1846      * to operate.</p>
1847      */
1848     public NumberUtils() {
1849     }
1850 }