View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.lang3.math;
18  
19  import java.lang.reflect.Array;
20  import java.math.BigDecimal;
21  import java.math.BigInteger;
22  import java.math.RoundingMode;
23  import java.util.Objects;
24  
25  import org.apache.commons.lang3.StringUtils;
26  import org.apache.commons.lang3.Validate;
27  
28  /**
29   * Provides extra functionality for Java Number classes.
30   *
31   * @since 2.0
32   */
33  public class NumberUtils {
34  
35      /** Reusable Long constant for zero. */
36      public static final Long LONG_ZERO = Long.valueOf(0L);
37      /** Reusable Long constant for one. */
38      public static final Long LONG_ONE = Long.valueOf(1L);
39      /** Reusable Long constant for minus one. */
40      public static final Long LONG_MINUS_ONE = Long.valueOf(-1L);
41      /** Reusable Integer constant for zero. */
42      public static final Integer INTEGER_ZERO = Integer.valueOf(0);
43      /** Reusable Integer constant for one. */
44      public static final Integer INTEGER_ONE = Integer.valueOf(1);
45      /** Reusable Integer constant for two */
46      public static final Integer INTEGER_TWO = Integer.valueOf(2);
47      /** Reusable Integer constant for minus one. */
48      public static final Integer INTEGER_MINUS_ONE = Integer.valueOf(-1);
49      /** Reusable Short constant for zero. */
50      public static final Short SHORT_ZERO = Short.valueOf((short) 0);
51      /** Reusable Short constant for one. */
52      public static final Short SHORT_ONE = Short.valueOf((short) 1);
53      /** Reusable Short constant for minus one. */
54      public static final Short SHORT_MINUS_ONE = Short.valueOf((short) -1);
55      /** Reusable Byte constant for zero. */
56      public static final Byte BYTE_ZERO = Byte.valueOf((byte) 0);
57      /** Reusable Byte constant for one. */
58      public static final Byte BYTE_ONE = Byte.valueOf((byte) 1);
59      /** Reusable Byte constant for minus one. */
60      public static final Byte BYTE_MINUS_ONE = Byte.valueOf((byte) -1);
61      /** Reusable Double constant for zero. */
62      public static final Double DOUBLE_ZERO = Double.valueOf(0.0d);
63      /** Reusable Double constant for one. */
64      public static final Double DOUBLE_ONE = Double.valueOf(1.0d);
65      /** Reusable Double constant for minus one. */
66      public static final Double DOUBLE_MINUS_ONE = Double.valueOf(-1.0d);
67      /** Reusable Float constant for zero. */
68      public static final Float FLOAT_ZERO = Float.valueOf(0.0f);
69      /** Reusable Float constant for one. */
70      public static final Float FLOAT_ONE = Float.valueOf(1.0f);
71      /** Reusable Float constant for minus one. */
72      public static final Float FLOAT_MINUS_ONE = Float.valueOf(-1.0f);
73  
74      /**
75       * {@link Integer#MAX_VALUE} as a {@link Long}.
76       *
77       * @since 3.12.0
78       */
79      public static final Long LONG_INT_MAX_VALUE = Long.valueOf(Integer.MAX_VALUE);
80  
81      /**
82       * {@link Integer#MIN_VALUE} as a {@link Long}.
83       *
84       * @since 3.12.0
85       */
86      public static final Long LONG_INT_MIN_VALUE = Long.valueOf(Integer.MIN_VALUE);
87  
88  
89      /**
90       * {@link NumberUtils} instances should NOT be constructed in standard programming.
91       * Instead, the class should be used as {@code NumberUtils.toInt("6");}.
92       *
93       * <p>This constructor is public to permit tools that require a JavaBean instance
94       * to operate.</p>
95       */
96      public NumberUtils() {
97      }
98  
99      /**
100      * Convert a {@link String} to an {@code int}, returning
101      * {@code zero} if the conversion fails.
102      *
103      * <p>If the string is {@code null}, {@code zero} is returned.</p>
104      *
105      * <pre>
106      *   NumberUtils.toInt(null) = 0
107      *   NumberUtils.toInt("")   = 0
108      *   NumberUtils.toInt("1")  = 1
109      * </pre>
110      *
111      * @param str  the string to convert, may be null
112      * @return the int represented by the string, or {@code zero} if
113      *  conversion fails
114      * @since 2.1
115      */
116     public static int toInt(final String str) {
117         return toInt(str, 0);
118     }
119 
120     /**
121      * Convert a {@link String} to an {@code int}, returning a
122      * default value if the conversion fails.
123      *
124      * <p>If the string is {@code null}, the default value is returned.</p>
125      *
126      * <pre>
127      *   NumberUtils.toInt(null, 1) = 1
128      *   NumberUtils.toInt("", 1)   = 1
129      *   NumberUtils.toInt("1", 0)  = 1
130      * </pre>
131      *
132      * @param str  the string to convert, may be null
133      * @param defaultValue  the default value
134      * @return the int represented by the string, or the default if conversion fails
135      * @since 2.1
136      */
137     public static int toInt(final String str, final int defaultValue) {
138         if (str == null) {
139             return defaultValue;
140         }
141         try {
142             return Integer.parseInt(str);
143         } catch (final NumberFormatException nfe) {
144             return defaultValue;
145         }
146     }
147 
148     /**
149      * Convert a {@link String} to a {@code long}, returning
150      * {@code zero} if the conversion fails.
151      *
152      * <p>If the string is {@code null}, {@code zero} is returned.</p>
153      *
154      * <pre>
155      *   NumberUtils.toLong(null) = 0L
156      *   NumberUtils.toLong("")   = 0L
157      *   NumberUtils.toLong("1")  = 1L
158      * </pre>
159      *
160      * @param str  the string to convert, may be null
161      * @return the long represented by the string, or {@code 0} if
162      *  conversion fails
163      * @since 2.1
164      */
165     public static long toLong(final String str) {
166         return toLong(str, 0L);
167     }
168 
169     /**
170      * Convert a {@link String} to a {@code long}, returning a
171      * default value if the conversion fails.
172      *
173      * <p>If the string is {@code null}, the default value is returned.</p>
174      *
175      * <pre>
176      *   NumberUtils.toLong(null, 1L) = 1L
177      *   NumberUtils.toLong("", 1L)   = 1L
178      *   NumberUtils.toLong("1", 0L)  = 1L
179      * </pre>
180      *
181      * @param str  the string to convert, may be null
182      * @param defaultValue  the default value
183      * @return the long represented by the string, or the default if conversion fails
184      * @since 2.1
185      */
186     public static long toLong(final String str, final long defaultValue) {
187         if (str == null) {
188             return defaultValue;
189         }
190         try {
191             return Long.parseLong(str);
192         } catch (final NumberFormatException nfe) {
193             return defaultValue;
194         }
195     }
196 
197     /**
198      * Convert a {@link String} to a {@code float}, returning
199      * {@code 0.0f} if the conversion fails.
200      *
201      * <p>If the string {@code str} is {@code null},
202      * {@code 0.0f} is returned.</p>
203      *
204      * <pre>
205      *   NumberUtils.toFloat(null)   = 0.0f
206      *   NumberUtils.toFloat("")     = 0.0f
207      *   NumberUtils.toFloat("1.5")  = 1.5f
208      * </pre>
209      *
210      * @param str the string to convert, may be {@code null}
211      * @return the float represented by the string, or {@code 0.0f}
212      *  if conversion fails
213      * @since 2.1
214      */
215     public static float toFloat(final String str) {
216         return toFloat(str, 0.0f);
217     }
218 
219     /**
220      * Convert a {@link String} to a {@code float}, returning a
221      * default value if the conversion fails.
222      *
223      * <p>If the string {@code str} is {@code null}, the default
224      * value is returned.</p>
225      *
226      * <pre>
227      *   NumberUtils.toFloat(null, 1.1f)   = 1.0f
228      *   NumberUtils.toFloat("", 1.1f)     = 1.1f
229      *   NumberUtils.toFloat("1.5", 0.0f)  = 1.5f
230      * </pre>
231      *
232      * @param str the string to convert, may be {@code null}
233      * @param defaultValue the default value
234      * @return the float represented by the string, or defaultValue
235      *  if conversion fails
236      * @since 2.1
237      */
238     public static float toFloat(final String str, final float defaultValue) {
239       if (str == null) {
240           return defaultValue;
241       }
242       try {
243           return Float.parseFloat(str);
244       } catch (final NumberFormatException nfe) {
245           return defaultValue;
246       }
247     }
248 
249     /**
250      * Convert a {@link String} to a {@code double}, returning
251      * {@code 0.0d} if the conversion fails.
252      *
253      * <p>If the string {@code str} is {@code null},
254      * {@code 0.0d} is returned.</p>
255      *
256      * <pre>
257      *   NumberUtils.toDouble(null)   = 0.0d
258      *   NumberUtils.toDouble("")     = 0.0d
259      *   NumberUtils.toDouble("1.5")  = 1.5d
260      * </pre>
261      *
262      * @param str the string to convert, may be {@code null}
263      * @return the double represented by the string, or {@code 0.0d}
264      *  if conversion fails
265      * @since 2.1
266      */
267     public static double toDouble(final String str) {
268         return toDouble(str, 0.0d);
269     }
270 
271     /**
272      * Convert a {@link String} to a {@code double}, returning a
273      * default value if the conversion fails.
274      *
275      * <p>If the string {@code str} is {@code null}, the default
276      * value is returned.</p>
277      *
278      * <pre>
279      *   NumberUtils.toDouble(null, 1.1d)   = 1.1d
280      *   NumberUtils.toDouble("", 1.1d)     = 1.1d
281      *   NumberUtils.toDouble("1.5", 0.0d)  = 1.5d
282      * </pre>
283      *
284      * @param str the string to convert, may be {@code null}
285      * @param defaultValue the default value
286      * @return the double represented by the string, or defaultValue
287      *  if conversion fails
288      * @since 2.1
289      */
290     public static double toDouble(final String str, final double defaultValue) {
291       if (str == null) {
292           return defaultValue;
293       }
294       try {
295           return Double.parseDouble(str);
296       } catch (final NumberFormatException nfe) {
297           return defaultValue;
298       }
299     }
300 
301     /**
302      * Convert a {@link BigDecimal} to a {@code double}.
303      *
304      * <p>If the {@link BigDecimal} {@code value} is
305      * {@code null}, then the specified default value is returned.</p>
306      *
307      * <pre>
308      *   NumberUtils.toDouble(null)                     = 0.0d
309      *   NumberUtils.toDouble(BigDecimal.valueOf(8.5d)) = 8.5d
310      * </pre>
311      *
312      * @param value the {@link BigDecimal} to convert, may be {@code null}.
313      * @return the double represented by the {@link BigDecimal} or
314      *  {@code 0.0d} if the {@link BigDecimal} is {@code null}.
315      * @since 3.8
316      */
317     public static double toDouble(final BigDecimal value) {
318         return toDouble(value, 0.0d);
319     }
320 
321     /**
322      * Convert a {@link BigDecimal} to a {@code double}.
323      *
324      * <p>If the {@link BigDecimal} {@code value} is
325      * {@code null}, then the specified default value is returned.</p>
326      *
327      * <pre>
328      *   NumberUtils.toDouble(null, 1.1d)                     = 1.1d
329      *   NumberUtils.toDouble(BigDecimal.valueOf(8.5d), 1.1d) = 8.5d
330      * </pre>
331      *
332      * @param value the {@link BigDecimal} to convert, may be {@code null}.
333      * @param defaultValue the default value
334      * @return the double represented by the {@link BigDecimal} or the
335      *  defaultValue if the {@link BigDecimal} is {@code null}.
336      * @since 3.8
337      */
338     public static double toDouble(final BigDecimal value, final double defaultValue) {
339         return value == null ? defaultValue : value.doubleValue();
340     }
341 
342      /**
343      * Convert a {@link String} to a {@code byte}, returning
344      * {@code zero} if the conversion fails.
345      *
346      * <p>If the string is {@code null}, {@code zero} is returned.</p>
347      *
348      * <pre>
349      *   NumberUtils.toByte(null) = 0
350      *   NumberUtils.toByte("")   = 0
351      *   NumberUtils.toByte("1")  = 1
352      * </pre>
353      *
354      * @param str  the string to convert, may be null
355      * @return the byte represented by the string, or {@code zero} if
356      *  conversion fails
357      * @since 2.5
358      */
359     public static byte toByte(final String str) {
360         return toByte(str, (byte) 0);
361     }
362 
363     /**
364      * Convert a {@link String} to a {@code byte}, returning a
365      * default value if the conversion fails.
366      *
367      * <p>If the string is {@code null}, the default value is returned.</p>
368      *
369      * <pre>
370      *   NumberUtils.toByte(null, 1) = 1
371      *   NumberUtils.toByte("", 1)   = 1
372      *   NumberUtils.toByte("1", 0)  = 1
373      * </pre>
374      *
375      * @param str  the string to convert, may be null
376      * @param defaultValue  the default value
377      * @return the byte represented by the string, or the default if conversion fails
378      * @since 2.5
379      */
380     public static byte toByte(final String str, final byte defaultValue) {
381         if (str == null) {
382             return defaultValue;
383         }
384         try {
385             return Byte.parseByte(str);
386         } catch (final NumberFormatException nfe) {
387             return defaultValue;
388         }
389     }
390 
391     /**
392      * Convert a {@link String} to a {@code short}, returning
393      * {@code zero} if the conversion fails.
394      *
395      * <p>If the string is {@code null}, {@code zero} is returned.</p>
396      *
397      * <pre>
398      *   NumberUtils.toShort(null) = 0
399      *   NumberUtils.toShort("")   = 0
400      *   NumberUtils.toShort("1")  = 1
401      * </pre>
402      *
403      * @param str  the string to convert, may be null
404      * @return the short represented by the string, or {@code zero} if
405      *  conversion fails
406      * @since 2.5
407      */
408     public static short toShort(final String str) {
409         return toShort(str, (short) 0);
410     }
411 
412     /**
413      * Convert a {@link String} to an {@code short}, returning a
414      * default value if the conversion fails.
415      *
416      * <p>If the string is {@code null}, the default value is returned.</p>
417      *
418      * <pre>
419      *   NumberUtils.toShort(null, 1) = 1
420      *   NumberUtils.toShort("", 1)   = 1
421      *   NumberUtils.toShort("1", 0)  = 1
422      * </pre>
423      *
424      * @param str  the string to convert, may be null
425      * @param defaultValue  the default value
426      * @return the short represented by the string, or the default if conversion fails
427      * @since 2.5
428      */
429     public static short toShort(final String str, final short defaultValue) {
430         if (str == null) {
431             return defaultValue;
432         }
433         try {
434             return Short.parseShort(str);
435         } catch (final NumberFormatException nfe) {
436             return defaultValue;
437         }
438     }
439 
440     /**
441      * Convert a {@link BigDecimal} to a {@link BigDecimal} with a scale of
442      * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied
443      * {@code value} is null, then {@code BigDecimal.ZERO} is returned.
444      *
445      * <p>Note, the scale of a {@link BigDecimal} is the number of digits to the right of the
446      * decimal point.</p>
447      *
448      * @param value the {@link BigDecimal} to convert, may be null.
449      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
450      * @since 3.8
451      */
452     public static BigDecimal toScaledBigDecimal(final BigDecimal value) {
453         return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN);
454     }
455 
456     /**
457      * Convert a {@link BigDecimal} to a {@link BigDecimal} whose scale is the
458      * specified value with a {@link RoundingMode} applied. If the input {@code value}
459      * is {@code null}, we simply return {@code BigDecimal.ZERO}.
460      *
461      * @param value the {@link BigDecimal} to convert, may be null.
462      * @param scale the number of digits to the right of the decimal point.
463      * @param roundingMode a rounding behavior for numerical operations capable of
464      *  discarding precision.
465      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
466      * @since 3.8
467      */
468     public static BigDecimal toScaledBigDecimal(final BigDecimal value, final int scale, final RoundingMode roundingMode) {
469         if (value == null) {
470             return BigDecimal.ZERO;
471         }
472         return value.setScale(
473             scale,
474             roundingMode == null ? RoundingMode.HALF_EVEN : roundingMode
475         );
476     }
477 
478     /**
479      * Convert a {@link Float} to a {@link BigDecimal} with a scale of
480      * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied
481      * {@code value} is null, then {@code BigDecimal.ZERO} is returned.
482      *
483      * <p>Note, the scale of a {@link BigDecimal} is the number of digits to the right of the
484      * decimal point.</p>
485      *
486      * @param value the {@link Float} to convert, may be null.
487      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
488      * @since 3.8
489      */
490     public static BigDecimal toScaledBigDecimal(final Float value) {
491         return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN);
492     }
493 
494     /**
495      * Convert a {@link Float} to a {@link BigDecimal} whose scale is the
496      * specified value with a {@link RoundingMode} applied. If the input {@code value}
497      * is {@code null}, we simply return {@code BigDecimal.ZERO}.
498      *
499      * @param value the {@link Float} to convert, may be null.
500      * @param scale the number of digits to the right of the decimal point.
501      * @param roundingMode a rounding behavior for numerical operations capable of
502      *  discarding precision.
503      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
504      * @since 3.8
505      */
506     public static BigDecimal toScaledBigDecimal(final Float value, final int scale, final RoundingMode roundingMode) {
507         if (value == null) {
508             return BigDecimal.ZERO;
509         }
510         return toScaledBigDecimal(
511             BigDecimal.valueOf(value),
512             scale,
513             roundingMode
514         );
515     }
516 
517     /**
518      * Convert a {@link Double} to a {@link BigDecimal} with a scale of
519      * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied
520      * {@code value} is null, then {@code BigDecimal.ZERO} is returned.
521      *
522      * <p>Note, the scale of a {@link BigDecimal} is the number of digits to the right of the
523      * decimal point.</p>
524      *
525      * @param value the {@link Double} to convert, may be null.
526      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
527      * @since 3.8
528      */
529     public static BigDecimal toScaledBigDecimal(final Double value) {
530         return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN);
531     }
532 
533     /**
534      * Convert a {@link Double} to a {@link BigDecimal} whose scale is the
535      * specified value with a {@link RoundingMode} applied. If the input {@code value}
536      * is {@code null}, we simply return {@code BigDecimal.ZERO}.
537      *
538      * @param value the {@link Double} to convert, may be null.
539      * @param scale the number of digits to the right of the decimal point.
540      * @param roundingMode a rounding behavior for numerical operations capable of
541      *  discarding precision.
542      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
543      * @since 3.8
544      */
545     public static BigDecimal toScaledBigDecimal(final Double value, final int scale, final RoundingMode roundingMode) {
546         if (value == null) {
547             return BigDecimal.ZERO;
548         }
549         return toScaledBigDecimal(
550             BigDecimal.valueOf(value),
551             scale,
552             roundingMode
553         );
554     }
555 
556     /**
557      * Convert a {@link String} to a {@link BigDecimal} with a scale of
558      * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied
559      * {@code value} is null, then {@code BigDecimal.ZERO} is returned.
560      *
561      * <p>Note, the scale of a {@link BigDecimal} is the number of digits to the right of the
562      * decimal point.</p>
563      *
564      * @param value the {@link String} to convert, may be null.
565      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
566      * @since 3.8
567      */
568     public static BigDecimal toScaledBigDecimal(final String value) {
569         return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN);
570     }
571 
572     /**
573      * Convert a {@link String} to a {@link BigDecimal} whose scale is the
574      * specified value with a {@link RoundingMode} applied. If the input {@code value}
575      * is {@code null}, we simply return {@code BigDecimal.ZERO}.
576      *
577      * @param value the {@link String} to convert, may be null.
578      * @param scale the number of digits to the right of the decimal point.
579      * @param roundingMode a rounding behavior for numerical operations capable of
580      *  discarding precision.
581      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
582      * @since 3.8
583      */
584     public static BigDecimal toScaledBigDecimal(final String value, final int scale, final RoundingMode roundingMode) {
585         if (value == null) {
586             return BigDecimal.ZERO;
587         }
588         return toScaledBigDecimal(
589             createBigDecimal(value),
590             scale,
591             roundingMode
592         );
593     }
594 
595     // must handle Long, Float, Integer, Float, Short,
596     //                  BigDecimal, BigInteger and Byte
597     // useful methods:
598     // Byte.decode(String)
599     // Byte.valueOf(String, int radix)
600     // Byte.valueOf(String)
601     // Double.valueOf(String)
602     // Float.valueOf(String)
603     // Float.valueOf(String)
604     // Integer.valueOf(String, int radix)
605     // Integer.valueOf(String)
606     // Integer.decode(String)
607     // Integer.getInteger(String)
608     // Integer.getInteger(String, int val)
609     // Integer.getInteger(String, Integer val)
610     // Integer.valueOf(String)
611     // Double.valueOf(String)
612     // new Byte(String)
613     // Long.valueOf(String)
614     // Long.getLong(String)
615     // Long.getLong(String, int)
616     // Long.getLong(String, Integer)
617     // Long.valueOf(String, int)
618     // Long.valueOf(String)
619     // Short.valueOf(String)
620     // Short.decode(String)
621     // Short.valueOf(String, int)
622     // Short.valueOf(String)
623     // new BigDecimal(String)
624     // new BigInteger(String)
625     // new BigInteger(String, int radix)
626     // Possible inputs:
627     // 45 45.5 45E7 4.5E7 Hex Oct Binary xxxF xxxD xxxf xxxd
628     // plus minus everything. Prolly more. A lot are not separable.
629 
630     /**
631      * Turns a string value into a java.lang.Number.
632      *
633      * <p>If the string starts with {@code 0x} or {@code -0x} (lower or upper case) or {@code #} or {@code -#}, it
634      * will be interpreted as a hexadecimal Integer - or Long, if the number of digits after the
635      * prefix is more than 8 - or BigInteger if there are more than 16 digits.
636      * </p>
637      * <p>Then, the value is examined for a type qualifier on the end, i.e. one of
638      * {@code 'f', 'F', 'd', 'D', 'l', 'L'}.  If it is found, it starts
639      * trying to create successively larger types from the type specified
640      * until one is found that can represent the value.</p>
641      *
642      * <p>If a type specifier is not found, it will check for a decimal point
643      * and then try successively larger types from {@link Integer} to
644      * {@link BigInteger} and from {@link Float} to
645      * {@link BigDecimal}.</p>
646      *
647      * <p>
648      * Integral values with a leading {@code 0} will be interpreted as octal; the returned number will
649      * be Integer, Long or BigDecimal as appropriate.
650      * </p>
651      *
652      * <p>Returns {@code null} if the string is {@code null}.</p>
653      *
654      * <p>This method does not trim the input string, i.e., strings with leading
655      * or trailing spaces will generate NumberFormatExceptions.</p>
656      *
657      * @param str  String containing a number, may be null
658      * @return Number created from the string (or null if the input is null)
659      * @throws NumberFormatException if the value cannot be converted
660      */
661     public static Number createNumber(final String str) {
662         if (str == null) {
663             return null;
664         }
665         if (StringUtils.isBlank(str)) {
666             throw new NumberFormatException("A blank string is not a valid number");
667         }
668         // Need to deal with all possible hex prefixes here
669         final String[] hexPrefixes = {"0x", "0X", "#"};
670         final int length = str.length();
671         final int offset = str.charAt(0) == '+' || str.charAt(0) == '-' ? 1 : 0;
672         int pfxLen = 0;
673         for (final String pfx : hexPrefixes) {
674             if (str.startsWith(pfx, offset)) {
675                 pfxLen += pfx.length() + offset;
676                 break;
677             }
678         }
679         if (pfxLen > 0) { // we have a hex number
680             char firstSigDigit = 0; // strip leading zeroes
681             for (int i = pfxLen; i < length; i++) {
682                 firstSigDigit = str.charAt(i);
683                 if (firstSigDigit != '0') {
684                     break;
685                 }
686                 pfxLen++;
687             }
688             final int hexDigits = length - pfxLen;
689             if (hexDigits > 16 || hexDigits == 16 && firstSigDigit > '7') { // too many for Long
690                 return createBigInteger(str);
691             }
692             if (hexDigits > 8 || hexDigits == 8 && firstSigDigit > '7') { // too many for an int
693                 return createLong(str);
694             }
695             return createInteger(str);
696         }
697         final char lastChar = str.charAt(length - 1);
698         final String mant;
699         final String dec;
700         final String exp;
701         final int decPos = str.indexOf('.');
702         final int expPos = str.indexOf('e') + str.indexOf('E') + 1; // assumes both not present
703         // if both e and E are present, this is caught by the checks on expPos (which prevent IOOBE)
704         // and the parsing which will detect if e or E appear in a number due to using the wrong offset
705 
706         // Detect if the return type has been requested
707         final boolean requestType = !Character.isDigit(lastChar) && lastChar != '.';
708         if (decPos > -1) { // there is a decimal point
709             if (expPos > -1) { // there is an exponent
710                 if (expPos < decPos || expPos > length) { // prevents double exponent causing IOOBE
711                     throw new NumberFormatException(str + " is not a valid number.");
712                 }
713                 dec = str.substring(decPos + 1, expPos);
714             } else {
715                 // No exponent, but there may be a type character to remove
716                 dec = str.substring(decPos + 1, requestType ? length - 1 : length);
717             }
718             mant = getMantissa(str, decPos);
719         } else {
720             if (expPos > -1) {
721                 if (expPos > length) { // prevents double exponent causing IOOBE
722                     throw new NumberFormatException(str + " is not a valid number.");
723                 }
724                 mant = getMantissa(str, expPos);
725             } else {
726                 // No decimal, no exponent, but there may be a type character to remove
727                 mant = getMantissa(str, requestType ? length - 1 : length);
728             }
729             dec = null;
730         }
731         if (requestType) {
732             if (expPos > -1 && expPos < length - 1) {
733                 exp = str.substring(expPos + 1, length - 1);
734             } else {
735                 exp = null;
736             }
737             //Requesting a specific type.
738             final String numeric = str.substring(0, length - 1);
739             switch (lastChar) {
740                 case 'l' :
741                 case 'L' :
742                     if (dec == null
743                         && exp == null
744                         && (!numeric.isEmpty() && numeric.charAt(0) == '-' && isDigits(numeric.substring(1)) || isDigits(numeric))) {
745                         try {
746                             return createLong(numeric);
747                         } catch (final NumberFormatException ignored) {
748                             // Too big for a long
749                         }
750                         return createBigInteger(numeric);
751 
752                     }
753                     throw new NumberFormatException(str + " is not a valid number.");
754                 case 'f' :
755                 case 'F' :
756                     try {
757                         final Float f = createFloat(str);
758                         if (!(f.isInfinite() || f.floatValue() == 0.0F && !isZero(mant, dec))) {
759                             //If it's too big for a float or the float value = 0 and the string
760                             //has non-zeros in it, then float does not have the precision we want
761                             return f;
762                         }
763 
764                     } catch (final NumberFormatException ignored) {
765                         // ignore the bad number
766                     }
767                     //$FALL-THROUGH$
768                 case 'd' :
769                 case 'D' :
770                     try {
771                         final Double d = createDouble(str);
772                         if (!(d.isInfinite() || d.doubleValue() == 0.0D && !isZero(mant, dec))) {
773                             return d;
774                         }
775                     } catch (final NumberFormatException ignored) {
776                         // ignore the bad number
777                     }
778                     try {
779                         return createBigDecimal(numeric);
780                     } catch (final NumberFormatException ignored) {
781                         // ignore the bad number
782                     }
783                     //$FALL-THROUGH$
784                 default :
785                     throw new NumberFormatException(str + " is not a valid number.");
786 
787             }
788         }
789         //User doesn't have a preference on the return type, so let's start
790         //small and go from there...
791         if (expPos > -1 && expPos < length - 1) {
792             exp = str.substring(expPos + 1);
793         } else {
794             exp = null;
795         }
796         if (dec == null && exp == null) { // no decimal point and no exponent
797             //Must be an Integer, Long, Biginteger
798             try {
799                 return createInteger(str);
800             } catch (final NumberFormatException ignored) {
801                 // ignore the bad number
802             }
803             try {
804                 return createLong(str);
805             } catch (final NumberFormatException ignored) {
806                 // ignore the bad number
807             }
808             return createBigInteger(str);
809         }
810 
811         //Must be a Float, Double, BigDecimal
812         try {
813             final Float f = createFloat(str);
814             final Double d = createDouble(str);
815             if (!f.isInfinite()
816                     && !(f.floatValue() == 0.0F && !isZero(mant, dec))
817                     && f.toString().equals(d.toString())) {
818                 return f;
819             }
820             if (!d.isInfinite() && !(d.doubleValue() == 0.0D && !isZero(mant, dec))) {
821                 final BigDecimal b = createBigDecimal(str);
822                 if (b.compareTo(BigDecimal.valueOf(d.doubleValue())) == 0) {
823                     return d;
824                 }
825                 return b;
826             }
827         } catch (final NumberFormatException ignored) {
828             // ignore the bad number
829         }
830         return createBigDecimal(str);
831     }
832 
833     /**
834      * Utility method for {@link #createNumber(java.lang.String)}.
835      *
836      * <p>Returns mantissa of the given number.</p>
837      *
838      * @param str the string representation of the number
839      * @param stopPos the position of the exponent or decimal point
840      * @return mantissa of the given number
841      */
842     private static String getMantissa(final String str, final int stopPos) {
843         final char firstChar = str.charAt(0);
844         final boolean hasSign = firstChar == '-' || firstChar == '+';
845 
846         return hasSign ? str.substring(1, stopPos) : str.substring(0, stopPos);
847     }
848 
849     /**
850      * Utility method for {@link #createNumber(java.lang.String)}.
851      *
852      * <p>This will check if the magnitude of the number is zero by checking if there
853      * are only zeros before and after the decimal place.</p>
854      *
855      * <p>Note: It is <strong>assumed</strong> that the input string has been converted
856      * to either a Float or Double with a value of zero when this method is called.
857      * This eliminates invalid input for example {@code ".", ".D", ".e0"}.</p>
858      *
859      * <p>Thus the method only requires checking if both arguments are null, empty or
860      * contain only zeros.</p>
861      *
862      * <p>Given {@code s = mant + "." + dec}:</p>
863      * <ul>
864      * <li>{@code true} if s is {@code "0.0"}
865      * <li>{@code true} if s is {@code "0."}
866      * <li>{@code true} if s is {@code ".0"}
867      * <li>{@code false} otherwise (this assumes {@code "."} is not possible)
868      * </ul>
869      *
870      * @param mant the mantissa decimal digits before the decimal point (sign must be removed; never null)
871      * @param dec the decimal digits after the decimal point (exponent and type specifier removed;
872      *            can be null)
873      * @return true if the magnitude is zero
874      */
875     private static boolean isZero(final String mant, final String dec) {
876         return isAllZeros(mant) && isAllZeros(dec);
877     }
878 
879     /**
880      * Utility method for {@link #createNumber(java.lang.String)}.
881      *
882      * <p>Returns {@code true} if s is {@code null} or empty.</p>
883      *
884      * @param str the String to check
885      * @return if it is all zeros or {@code null}
886      */
887     private static boolean isAllZeros(final String str) {
888         if (str == null) {
889             return true;
890         }
891         for (int i = str.length() - 1; i >= 0; i--) {
892             if (str.charAt(i) != '0') {
893                 return false;
894             }
895         }
896         return true;
897     }
898 
899     /**
900      * Convert a {@link String} to a {@link Float}.
901      *
902      * <p>Returns {@code null} if the string is {@code null}.</p>
903      *
904      * @param str  a {@link String} to convert, may be null
905      * @return converted {@link Float} (or null if the input is null)
906      * @throws NumberFormatException if the value cannot be converted
907      */
908     public static Float createFloat(final String str) {
909         if (str == null) {
910             return null;
911         }
912         return Float.valueOf(str);
913     }
914 
915     /**
916      * Convert a {@link String} to a {@link Double}.
917      *
918      * <p>Returns {@code null} if the string is {@code null}.</p>
919      *
920      * @param str  a {@link String} to convert, may be null
921      * @return converted {@link Double} (or null if the input is null)
922      * @throws NumberFormatException if the value cannot be converted
923      */
924     public static Double createDouble(final String str) {
925         if (str == null) {
926             return null;
927         }
928         return Double.valueOf(str);
929     }
930 
931     /**
932      * Convert a {@link String} to a {@link Integer}, handling
933      * hex (0xhhhh) and octal (0dddd) notations.
934      * N.B. a leading zero means octal; spaces are not trimmed.
935      *
936      * <p>Returns {@code null} if the string is {@code null}.</p>
937      *
938      * @param str  a {@link String} to convert, may be null
939      * @return converted {@link Integer} (or null if the input is null)
940      * @throws NumberFormatException if the value cannot be converted
941      */
942     public static Integer createInteger(final String str) {
943         if (str == null) {
944             return null;
945         }
946         // decode() handles 0xAABD and 0777 (hex and octal) as well.
947         return Integer.decode(str);
948     }
949 
950     /**
951      * Convert a {@link String} to a {@link Long};
952      * since 3.1 it handles hex (0Xhhhh) and octal (0ddd) notations.
953      * N.B. a leading zero means octal; spaces are not trimmed.
954      *
955      * <p>Returns {@code null} if the string is {@code null}.</p>
956      *
957      * @param str  a {@link String} to convert, may be null
958      * @return converted {@link Long} (or null if the input is null)
959      * @throws NumberFormatException if the value cannot be converted
960      */
961     public static Long createLong(final String str) {
962         if (str == null) {
963             return null;
964         }
965         return Long.decode(str);
966     }
967 
968     /**
969      * Convert a {@link String} to a {@link BigInteger};
970      * since 3.2 it handles hex (0x or #) and octal (0) notations.
971      *
972      * <p>Returns {@code null} if the string is {@code null}.</p>
973      *
974      * @param str  a {@link String} to convert, may be null
975      * @return converted {@link BigInteger} (or null if the input is null)
976      * @throws NumberFormatException if the value cannot be converted
977      */
978     public static BigInteger createBigInteger(final String str) {
979         if (str == null) {
980             return null;
981         }
982         if (str.isEmpty()) {
983             throw new NumberFormatException("An empty string is not a valid number");
984         }
985         int pos = 0; // offset within string
986         int radix = 10;
987         boolean negate = false; // need to negate later?
988         final char char0 = str.charAt(0);
989         if (char0 == '-') {
990             negate = true;
991             pos = 1;
992         } else if (char0 == '+') {
993             pos = 1;
994         }
995         if (str.startsWith("0x", pos) || str.startsWith("0X", pos)) { // hex
996             radix = 16;
997             pos += 2;
998         } else if (str.startsWith("#", pos)) { // alternative hex (allowed by Long/Integer)
999             radix = 16;
1000             pos++;
1001         } else if (str.startsWith("0", pos) && str.length() > pos + 1) { // octal; so long as there are additional digits
1002             radix = 8;
1003             pos++;
1004         } // default is to treat as decimal
1005 
1006         final BigInteger value = new BigInteger(str.substring(pos), radix);
1007         return negate ? value.negate() : value;
1008     }
1009 
1010     /**
1011      * Convert a {@link String} to a {@link BigDecimal}.
1012      *
1013      * <p>Returns {@code null} if the string is {@code null}.</p>
1014      *
1015      * @param str  a {@link String} to convert, may be null
1016      * @return converted {@link BigDecimal} (or null if the input is null)
1017      * @throws NumberFormatException if the value cannot be converted
1018      */
1019     public static BigDecimal createBigDecimal(final String str) {
1020         if (str == null) {
1021             return null;
1022         }
1023         // handle JDK1.3.1 bug where "" throws IndexOutOfBoundsException
1024         if (StringUtils.isBlank(str)) {
1025             throw new NumberFormatException("A blank string is not a valid number");
1026         }
1027         return new BigDecimal(str);
1028     }
1029 
1030     /**
1031      * Returns the minimum value in an array.
1032      *
1033      * @param array  an array, must not be null or empty
1034      * @return the minimum value in the array
1035      * @throws NullPointerException if {@code array} is {@code null}
1036      * @throws IllegalArgumentException if {@code array} is empty
1037      * @since 3.4 Changed signature from min(long[]) to min(long...)
1038      */
1039     public static long min(final long... array) {
1040         // Validates input
1041         validateArray(array);
1042 
1043         // Finds and returns min
1044         long min = array[0];
1045         for (int i = 1; i < array.length; i++) {
1046             if (array[i] < min) {
1047                 min = array[i];
1048             }
1049         }
1050 
1051         return min;
1052     }
1053 
1054     /**
1055      * Returns the minimum value in an array.
1056      *
1057      * @param array  an array, must not be null or empty
1058      * @return the minimum value in the array
1059      * @throws NullPointerException if {@code array} is {@code null}
1060      * @throws IllegalArgumentException if {@code array} is empty
1061      * @since 3.4 Changed signature from min(int[]) to min(int...)
1062      */
1063     public static int min(final int... array) {
1064         // Validates input
1065         validateArray(array);
1066 
1067         // Finds and returns min
1068         int min = array[0];
1069         for (int j = 1; j < array.length; j++) {
1070             if (array[j] < min) {
1071                 min = array[j];
1072             }
1073         }
1074 
1075         return min;
1076     }
1077 
1078     /**
1079      * Returns the minimum value in an array.
1080      *
1081      * @param array  an array, must not be null or empty
1082      * @return the minimum value in the array
1083      * @throws NullPointerException if {@code array} is {@code null}
1084      * @throws IllegalArgumentException if {@code array} is empty
1085      * @since 3.4 Changed signature from min(short[]) to min(short...)
1086      */
1087     public static short min(final short... array) {
1088         // Validates input
1089         validateArray(array);
1090 
1091         // Finds and returns min
1092         short min = array[0];
1093         for (int i = 1; i < array.length; i++) {
1094             if (array[i] < min) {
1095                 min = array[i];
1096             }
1097         }
1098 
1099         return min;
1100     }
1101 
1102     /**
1103      * Returns the minimum value in an array.
1104      *
1105      * @param array  an array, must not be null or empty
1106      * @return the minimum value in the array
1107      * @throws NullPointerException if {@code array} is {@code null}
1108      * @throws IllegalArgumentException if {@code array} is empty
1109      * @since 3.4 Changed signature from min(byte[]) to min(byte...)
1110      */
1111     public static byte min(final byte... array) {
1112         // Validates input
1113         validateArray(array);
1114 
1115         // Finds and returns min
1116         byte min = array[0];
1117         for (int i = 1; i < array.length; i++) {
1118             if (array[i] < min) {
1119                 min = array[i];
1120             }
1121         }
1122 
1123         return min;
1124     }
1125 
1126      /**
1127      * Returns the minimum value in an array.
1128      *
1129      * @param array  an array, must not be null or empty
1130      * @return the minimum value in the array
1131      * @throws NullPointerException if {@code array} is {@code null}
1132      * @throws IllegalArgumentException if {@code array} is empty
1133      * @see IEEE754rUtils#min(double[]) IEEE754rUtils for a version of this method that handles NaN differently
1134      * @since 3.4 Changed signature from min(double[]) to min(double...)
1135      */
1136     public static double min(final double... array) {
1137         // Validates input
1138         validateArray(array);
1139 
1140         // Finds and returns min
1141         double min = array[0];
1142         for (int i = 1; i < array.length; i++) {
1143             if (Double.isNaN(array[i])) {
1144                 return Double.NaN;
1145             }
1146             if (array[i] < min) {
1147                 min = array[i];
1148             }
1149         }
1150 
1151         return min;
1152     }
1153 
1154     /**
1155      * Returns the minimum value in an array.
1156      *
1157      * @param array  an array, must not be null or empty
1158      * @return the minimum value in the array
1159      * @throws NullPointerException if {@code array} is {@code null}
1160      * @throws IllegalArgumentException if {@code array} is empty
1161      * @see IEEE754rUtils#min(float[]) IEEE754rUtils for a version of this method that handles NaN differently
1162      * @since 3.4 Changed signature from min(float[]) to min(float...)
1163      */
1164     public static float min(final float... array) {
1165         // Validates input
1166         validateArray(array);
1167 
1168         // Finds and returns min
1169         float min = array[0];
1170         for (int i = 1; i < array.length; i++) {
1171             if (Float.isNaN(array[i])) {
1172                 return Float.NaN;
1173             }
1174             if (array[i] < min) {
1175                 min = array[i];
1176             }
1177         }
1178 
1179         return min;
1180     }
1181 
1182     /**
1183      * Returns the maximum value in an array.
1184      *
1185      * @param array  an array, must not be null or empty
1186      * @return the maximum value in the array
1187      * @throws NullPointerException if {@code array} is {@code null}
1188      * @throws IllegalArgumentException if {@code array} is empty
1189      * @since 3.4 Changed signature from max(long[]) to max(long...)
1190      */
1191     public static long max(final long... array) {
1192         // Validates input
1193         validateArray(array);
1194 
1195         // Finds and returns max
1196         long max = array[0];
1197         for (int j = 1; j < array.length; j++) {
1198             if (array[j] > max) {
1199                 max = array[j];
1200             }
1201         }
1202 
1203         return max;
1204     }
1205 
1206     /**
1207      * Returns the maximum value in an array.
1208      *
1209      * @param array  an array, must not be null or empty
1210      * @return the maximum value in the array
1211      * @throws NullPointerException if {@code array} is {@code null}
1212      * @throws IllegalArgumentException if {@code array} is empty
1213      * @since 3.4 Changed signature from max(int[]) to max(int...)
1214      */
1215     public static int max(final int... array) {
1216         // Validates input
1217         validateArray(array);
1218 
1219         // Finds and returns max
1220         int max = array[0];
1221         for (int j = 1; j < array.length; j++) {
1222             if (array[j] > max) {
1223                 max = array[j];
1224             }
1225         }
1226 
1227         return max;
1228     }
1229 
1230     /**
1231      * Returns the maximum value in an array.
1232      *
1233      * @param array  an array, must not be null or empty
1234      * @return the maximum value in the array
1235      * @throws NullPointerException if {@code array} is {@code null}
1236      * @throws IllegalArgumentException if {@code array} is empty
1237      * @since 3.4 Changed signature from max(short[]) to max(short...)
1238      */
1239     public static short max(final short... array) {
1240         // Validates input
1241         validateArray(array);
1242 
1243         // Finds and returns max
1244         short max = array[0];
1245         for (int i = 1; i < array.length; i++) {
1246             if (array[i] > max) {
1247                 max = array[i];
1248             }
1249         }
1250 
1251         return max;
1252     }
1253 
1254     /**
1255      * Returns the maximum value in an array.
1256      *
1257      * @param array  an array, must not be null or empty
1258      * @return the maximum value in the array
1259      * @throws NullPointerException if {@code array} is {@code null}
1260      * @throws IllegalArgumentException if {@code array} is empty
1261      * @since 3.4 Changed signature from max(byte[]) to max(byte...)
1262      */
1263     public static byte max(final byte... array) {
1264         // Validates input
1265         validateArray(array);
1266 
1267         // Finds and returns max
1268         byte max = array[0];
1269         for (int i = 1; i < array.length; i++) {
1270             if (array[i] > max) {
1271                 max = array[i];
1272             }
1273         }
1274 
1275         return max;
1276     }
1277 
1278     /**
1279      * Returns the maximum value in an array.
1280      *
1281      * @param array  an array, must not be null or empty
1282      * @return the maximum value in the array
1283      * @throws NullPointerException if {@code array} is {@code null}
1284      * @throws IllegalArgumentException if {@code array} is empty
1285      * @see IEEE754rUtils#max(double[]) IEEE754rUtils for a version of this method that handles NaN differently
1286      * @since 3.4 Changed signature from max(double[]) to max(double...)
1287      */
1288     public static double max(final double... array) {
1289         // Validates input
1290         validateArray(array);
1291 
1292         // Finds and returns max
1293         double max = array[0];
1294         for (int j = 1; j < array.length; j++) {
1295             if (Double.isNaN(array[j])) {
1296                 return Double.NaN;
1297             }
1298             if (array[j] > max) {
1299                 max = array[j];
1300             }
1301         }
1302 
1303         return max;
1304     }
1305 
1306     /**
1307      * Returns the maximum value in an array.
1308      *
1309      * @param array  an array, must not be null or empty
1310      * @return the maximum value in the array
1311      * @throws NullPointerException if {@code array} is {@code null}
1312      * @throws IllegalArgumentException if {@code array} is empty
1313      * @see IEEE754rUtils#max(float[]) IEEE754rUtils for a version of this method that handles NaN differently
1314      * @since 3.4 Changed signature from max(float[]) to max(float...)
1315      */
1316     public static float max(final float... array) {
1317         // Validates input
1318         validateArray(array);
1319 
1320         // Finds and returns max
1321         float max = array[0];
1322         for (int j = 1; j < array.length; j++) {
1323             if (Float.isNaN(array[j])) {
1324                 return Float.NaN;
1325             }
1326             if (array[j] > max) {
1327                 max = array[j];
1328             }
1329         }
1330 
1331         return max;
1332     }
1333 
1334     /**
1335      * Checks if the specified array is neither null nor empty.
1336      *
1337      * @param array  the array to check
1338      * @throws IllegalArgumentException if {@code array} is empty
1339      * @throws NullPointerException if {@code array} is {@code null}
1340      */
1341     private static void validateArray(final Object array) {
1342         Objects.requireNonNull(array, "array");
1343         Validate.isTrue(Array.getLength(array) != 0, "Array cannot be empty.");
1344     }
1345 
1346     // 3 param min
1347     /**
1348      * Gets the minimum of three {@code long} values.
1349      *
1350      * @param a  value 1
1351      * @param b  value 2
1352      * @param c  value 3
1353      * @return  the smallest of the values
1354      */
1355     public static long min(long a, final long b, final long c) {
1356         if (b < a) {
1357             a = b;
1358         }
1359         if (c < a) {
1360             a = c;
1361         }
1362         return a;
1363     }
1364 
1365     /**
1366      * Gets the minimum of three {@code int} values.
1367      *
1368      * @param a  value 1
1369      * @param b  value 2
1370      * @param c  value 3
1371      * @return  the smallest of the values
1372      */
1373     public static int min(int a, final int b, final int c) {
1374         if (b < a) {
1375             a = b;
1376         }
1377         if (c < a) {
1378             a = c;
1379         }
1380         return a;
1381     }
1382 
1383     /**
1384      * Gets the minimum of three {@code short} values.
1385      *
1386      * @param a  value 1
1387      * @param b  value 2
1388      * @param c  value 3
1389      * @return  the smallest of the values
1390      */
1391     public static short min(short a, final short b, final short c) {
1392         if (b < a) {
1393             a = b;
1394         }
1395         if (c < a) {
1396             a = c;
1397         }
1398         return a;
1399     }
1400 
1401     /**
1402      * Gets the minimum of three {@code byte} values.
1403      *
1404      * @param a  value 1
1405      * @param b  value 2
1406      * @param c  value 3
1407      * @return  the smallest of the values
1408      */
1409     public static byte min(byte a, final byte b, final byte c) {
1410         if (b < a) {
1411             a = b;
1412         }
1413         if (c < a) {
1414             a = c;
1415         }
1416         return a;
1417     }
1418 
1419     /**
1420      * Gets the minimum of three {@code double} values.
1421      *
1422      * <p>If any value is {@code NaN}, {@code NaN} is
1423      * returned. Infinity is handled.</p>
1424      *
1425      * @param a  value 1
1426      * @param b  value 2
1427      * @param c  value 3
1428      * @return  the smallest of the values
1429      * @see IEEE754rUtils#min(double, double, double) for a version of this method that handles NaN differently
1430      */
1431     public static double min(final double a, final double b, final double c) {
1432         return Math.min(Math.min(a, b), c);
1433     }
1434 
1435     /**
1436      * Gets the minimum of three {@code float} values.
1437      *
1438      * <p>If any value is {@code NaN}, {@code NaN} is
1439      * returned. Infinity is handled.</p>
1440      *
1441      * @param a  value 1
1442      * @param b  value 2
1443      * @param c  value 3
1444      * @return  the smallest of the values
1445      * @see IEEE754rUtils#min(float, float, float) for a version of this method that handles NaN differently
1446      */
1447     public static float min(final float a, final float b, final float c) {
1448         return Math.min(Math.min(a, b), c);
1449     }
1450 
1451     // 3 param max
1452     /**
1453      * Gets the maximum of three {@code long} values.
1454      *
1455      * @param a  value 1
1456      * @param b  value 2
1457      * @param c  value 3
1458      * @return  the largest of the values
1459      */
1460     public static long max(long a, final long b, final long c) {
1461         if (b > a) {
1462             a = b;
1463         }
1464         if (c > a) {
1465             a = c;
1466         }
1467         return a;
1468     }
1469 
1470     /**
1471      * Gets the maximum of three {@code int} values.
1472      *
1473      * @param a  value 1
1474      * @param b  value 2
1475      * @param c  value 3
1476      * @return  the largest of the values
1477      */
1478     public static int max(int a, final int b, final int c) {
1479         if (b > a) {
1480             a = b;
1481         }
1482         if (c > a) {
1483             a = c;
1484         }
1485         return a;
1486     }
1487 
1488     /**
1489      * Gets the maximum of three {@code short} values.
1490      *
1491      * @param a  value 1
1492      * @param b  value 2
1493      * @param c  value 3
1494      * @return  the largest of the values
1495      */
1496     public static short max(short a, final short b, final short c) {
1497         if (b > a) {
1498             a = b;
1499         }
1500         if (c > a) {
1501             a = c;
1502         }
1503         return a;
1504     }
1505 
1506     /**
1507      * Gets the maximum of three {@code byte} values.
1508      *
1509      * @param a  value 1
1510      * @param b  value 2
1511      * @param c  value 3
1512      * @return  the largest of the values
1513      */
1514     public static byte max(byte a, final byte b, final byte c) {
1515         if (b > a) {
1516             a = b;
1517         }
1518         if (c > a) {
1519             a = c;
1520         }
1521         return a;
1522     }
1523 
1524     /**
1525      * Gets the maximum of three {@code double} values.
1526      *
1527      * <p>If any value is {@code NaN}, {@code NaN} is
1528      * returned. Infinity is handled.</p>
1529      *
1530      * @param a  value 1
1531      * @param b  value 2
1532      * @param c  value 3
1533      * @return  the largest of the values
1534      * @see IEEE754rUtils#max(double, double, double) for a version of this method that handles NaN differently
1535      */
1536     public static double max(final double a, final double b, final double c) {
1537         return Math.max(Math.max(a, b), c);
1538     }
1539 
1540     /**
1541      * Gets the maximum of three {@code float} values.
1542      *
1543      * <p>If any value is {@code NaN}, {@code NaN} is
1544      * returned. Infinity is handled.</p>
1545      *
1546      * @param a  value 1
1547      * @param b  value 2
1548      * @param c  value 3
1549      * @return  the largest of the values
1550      * @see IEEE754rUtils#max(float, float, float) for a version of this method that handles NaN differently
1551      */
1552     public static float max(final float a, final float b, final float c) {
1553         return Math.max(Math.max(a, b), c);
1554     }
1555 
1556     /**
1557      * Checks whether the {@link String} contains only
1558      * digit characters.
1559      *
1560      * <p>{@code null} and empty String will return
1561      * {@code false}.</p>
1562      *
1563      * @param str  the {@link String} to check
1564      * @return {@code true} if str contains only Unicode numeric
1565      */
1566     public static boolean isDigits(final String str) {
1567         return StringUtils.isNumeric(str);
1568     }
1569 
1570     /**
1571      * Checks whether the String is a valid Java number.
1572      *
1573      * <p>Valid numbers include hexadecimal marked with the {@code 0x} or
1574      * {@code 0X} qualifier, octal numbers, scientific notation and
1575      * numbers marked with a type qualifier (e.g. 123L).</p>
1576      *
1577      * <p>Non-hexadecimal strings beginning with a leading zero are
1578      * treated as octal values. Thus the string {@code 09} will return
1579      * {@code false}, since {@code 9} is not a valid octal value.
1580      * However, numbers beginning with {@code 0.} are treated as decimal.</p>
1581      *
1582      * <p>{@code null} and empty/blank {@link String} will return
1583      * {@code false}.</p>
1584      *
1585      * <p>Note, {@link #createNumber(String)} should return a number for every
1586      * input resulting in {@code true}.</p>
1587      *
1588      * @param str  the {@link String} to check
1589      * @return {@code true} if the string is a correctly formatted number
1590      * @since 3.3 the code supports hex {@code 0Xhhh} an
1591      *        octal {@code 0ddd} validation
1592      * @deprecated This feature will be removed in Lang 4,
1593      *             use {@link NumberUtils#isCreatable(String)} instead
1594      */
1595     @Deprecated
1596     public static boolean isNumber(final String str) {
1597         return isCreatable(str);
1598     }
1599 
1600     /**
1601      * Checks whether the String is a valid Java number.
1602      *
1603      * <p>Valid numbers include hexadecimal marked with the {@code 0x} or
1604      * {@code 0X} qualifier, octal numbers, scientific notation and
1605      * numbers marked with a type qualifier (e.g. 123L).</p>
1606      *
1607      * <p>Non-hexadecimal strings beginning with a leading zero are
1608      * treated as octal values. Thus the string {@code 09} will return
1609      * {@code false}, since {@code 9} is not a valid octal value.
1610      * However, numbers beginning with {@code 0.} are treated as decimal.</p>
1611      *
1612      * <p>{@code null} and empty/blank {@link String} will return
1613      * {@code false}.</p>
1614      *
1615      * <p>Note, {@link #createNumber(String)} should return a number for every
1616      * input resulting in {@code true}.</p>
1617      *
1618      * @param str  the {@link String} to check
1619      * @return {@code true} if the string is a correctly formatted number
1620      * @since 3.5
1621      */
1622     public static boolean isCreatable(final String str) {
1623         if (StringUtils.isEmpty(str)) {
1624             return false;
1625         }
1626         final char[] chars = str.toCharArray();
1627         int sz = chars.length;
1628         boolean hasExp = false;
1629         boolean hasDecPoint = false;
1630         boolean allowSigns = false;
1631         boolean foundDigit = false;
1632         // deal with any possible sign up front
1633         final int start = chars[0] == '-' || chars[0] == '+' ? 1 : 0;
1634         if (sz > start + 1 && chars[start] == '0' && !StringUtils.contains(str, '.')) { // leading 0, skip if is a decimal number
1635             if (chars[start + 1] == 'x' || chars[start + 1] == 'X') { // leading 0x/0X
1636                 int i = start + 2;
1637                 if (i == sz) {
1638                     return false; // str == "0x"
1639                 }
1640                 // checking hex (it can't be anything else)
1641                 for (; i < chars.length; i++) {
1642                     if ((chars[i] < '0' || chars[i] > '9')
1643                         && (chars[i] < 'a' || chars[i] > 'f')
1644                         && (chars[i] < 'A' || chars[i] > 'F')) {
1645                         return false;
1646                     }
1647                 }
1648                 return true;
1649            }
1650             if (Character.isDigit(chars[start + 1])) {
1651                    // leading 0, but not hex, must be octal
1652                    int i = start + 1;
1653                    for (; i < chars.length; i++) {
1654                        if (chars[i] < '0' || chars[i] > '7') {
1655                            return false;
1656                        }
1657                    }
1658                    return true;
1659                }
1660         }
1661         sz--; // don't want to loop to the last char, check it afterwards
1662               // for type qualifiers
1663         int i = start;
1664         // loop to the next to last char or to the last char if we need another digit to
1665         // make a valid number (e.g. chars[0..5] = "1234E")
1666         while (i < sz || i < sz + 1 && allowSigns && !foundDigit) {
1667             if (chars[i] >= '0' && chars[i] <= '9') {
1668                 foundDigit = true;
1669                 allowSigns = false;
1670 
1671             } else if (chars[i] == '.') {
1672                 if (hasDecPoint || hasExp) {
1673                     // two decimal points or dec in exponent
1674                     return false;
1675                 }
1676                 hasDecPoint = true;
1677             } else if (chars[i] == 'e' || chars[i] == 'E') {
1678                 // we've already taken care of hex.
1679                 if (hasExp) {
1680                     // two E's
1681                     return false;
1682                 }
1683                 if (!foundDigit) {
1684                     return false;
1685                 }
1686                 hasExp = true;
1687                 allowSigns = true;
1688             } else if (chars[i] == '+' || chars[i] == '-') {
1689                 if (!allowSigns) {
1690                     return false;
1691                 }
1692                 allowSigns = false;
1693                 foundDigit = false; // we need a digit after the E
1694             } else {
1695                 return false;
1696             }
1697             i++;
1698         }
1699         if (i < chars.length) {
1700             if (chars[i] >= '0' && chars[i] <= '9') {
1701                 // no type qualifier, OK
1702                 return true;
1703             }
1704             if (chars[i] == 'e' || chars[i] == 'E') {
1705                 // can't have an E at the last byte
1706                 return false;
1707             }
1708             if (chars[i] == '.') {
1709                 if (hasDecPoint || hasExp) {
1710                     // two decimal points or dec in exponent
1711                     return false;
1712                 }
1713                 // single trailing decimal point after non-exponent is ok
1714                 return foundDigit;
1715             }
1716             if (!allowSigns
1717                 && (chars[i] == 'd'
1718                     || chars[i] == 'D'
1719                     || chars[i] == 'f'
1720                     || chars[i] == 'F')) {
1721                 return foundDigit;
1722             }
1723             if (chars[i] == 'l'
1724                 || chars[i] == 'L') {
1725                 // not allowing L with an exponent or decimal point
1726                 return foundDigit && !hasExp && !hasDecPoint;
1727             }
1728             // last character is illegal
1729             return false;
1730         }
1731         // allowSigns is true iff the val ends in 'E'
1732         // found digit it to make sure weird stuff like '.' and '1E-' doesn't pass
1733         return !allowSigns && foundDigit;
1734     }
1735 
1736     /**
1737      * Checks whether the given String is a parsable number.
1738      *
1739      * <p>Parsable numbers include those Strings understood by {@link Integer#parseInt(String)},
1740      * {@link Long#parseLong(String)}, {@link Float#parseFloat(String)} or
1741      * {@link Double#parseDouble(String)}. This method can be used instead of catching {@link java.text.ParseException}
1742      * when calling one of those methods.</p>
1743      *
1744      * <p>Hexadecimal and scientific notations are <strong>not</strong> considered parsable.
1745      * See {@link #isCreatable(String)} on those cases.</p>
1746      *
1747      * <p>{@code null} and empty String will return {@code false}.</p>
1748      *
1749      * @param str the String to check.
1750      * @return {@code true} if the string is a parsable number.
1751      * @since 3.4
1752      */
1753     public static boolean isParsable(final String str) {
1754         if (StringUtils.isEmpty(str)) {
1755             return false;
1756         }
1757         if (str.charAt(str.length() - 1) == '.') {
1758             return false;
1759         }
1760         if (str.charAt(0) == '-') {
1761             if (str.length() == 1) {
1762                 return false;
1763             }
1764             return withDecimalsParsing(str, 1);
1765         }
1766         return withDecimalsParsing(str, 0);
1767     }
1768 
1769     private static boolean withDecimalsParsing(final String str, final int beginIdx) {
1770         int decimalPoints = 0;
1771         for (int i = beginIdx; i < str.length(); i++) {
1772             final boolean isDecimalPoint = str.charAt(i) == '.';
1773             if (isDecimalPoint) {
1774                 decimalPoints++;
1775             }
1776             if (decimalPoints > 1) {
1777                 return false;
1778             }
1779             if (!isDecimalPoint && !Character.isDigit(str.charAt(i))) {
1780                 return false;
1781             }
1782         }
1783         return true;
1784     }
1785 
1786     /**
1787      * Compares two {@code int} values numerically. This is the same functionality as provided in Java 7.
1788      *
1789      * @param x the first {@code int} to compare
1790      * @param y the second {@code int} to compare
1791      * @return the value {@code 0} if {@code x == y};
1792      *         a value less than {@code 0} if {@code x < y}; and
1793      *         a value greater than {@code 0} if {@code x > y}
1794      * @since 3.4
1795      */
1796     public static int compare(final int x, final int y) {
1797         if (x == y) {
1798             return 0;
1799         }
1800         return x < y ? -1 : 1;
1801     }
1802 
1803     /**
1804      * Compares to {@code long} values numerically. This is the same functionality as provided in Java 7.
1805      *
1806      * @param x the first {@code long} to compare
1807      * @param y the second {@code long} to compare
1808      * @return the value {@code 0} if {@code x == y};
1809      *         a value less than {@code 0} if {@code x < y}; and
1810      *         a value greater than {@code 0} if {@code x > y}
1811      * @since 3.4
1812      */
1813     public static int compare(final long x, final long y) {
1814         if (x == y) {
1815             return 0;
1816         }
1817         return x < y ? -1 : 1;
1818     }
1819 
1820     /**
1821      * Compares to {@code short} values numerically. This is the same functionality as provided in Java 7.
1822      *
1823      * @param x the first {@code short} to compare
1824      * @param y the second {@code short} to compare
1825      * @return the value {@code 0} if {@code x == y};
1826      *         a value less than {@code 0} if {@code x < y}; and
1827      *         a value greater than {@code 0} if {@code x > y}
1828      * @since 3.4
1829      */
1830     public static int compare(final short x, final short y) {
1831         if (x == y) {
1832             return 0;
1833         }
1834         return x < y ? -1 : 1;
1835     }
1836 
1837     /**
1838      * Compares two {@code byte} values numerically. This is the same functionality as provided in Java 7.
1839      *
1840      * @param x the first {@code byte} to compare
1841      * @param y the second {@code byte} to compare
1842      * @return the value {@code 0} if {@code x == y};
1843      *         a value less than {@code 0} if {@code x < y}; and
1844      *         a value greater than {@code 0} if {@code x > y}
1845      * @since 3.4
1846      */
1847     public static int compare(final byte x, final byte y) {
1848         return x - y;
1849     }
1850 }