View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.lang3.math;
18  
19  import java.lang.reflect.Array;
20  import java.math.BigDecimal;
21  import java.math.BigInteger;
22  import java.math.RoundingMode;
23  import java.util.Objects;
24  
25  import org.apache.commons.lang3.StringUtils;
26  import org.apache.commons.lang3.Validate;
27  
28  /**
29   * Provides extra functionality for Java Number classes.
30   *
31   * @since 2.0
32   */
33  public class NumberUtils {
34  
35      /** Reusable Long constant for zero. */
36      public static final Long LONG_ZERO = Long.valueOf(0L);
37      /** Reusable Long constant for one. */
38      public static final Long LONG_ONE = Long.valueOf(1L);
39      /** Reusable Long constant for minus one. */
40      public static final Long LONG_MINUS_ONE = Long.valueOf(-1L);
41      /** Reusable Integer constant for zero. */
42      public static final Integer INTEGER_ZERO = Integer.valueOf(0);
43      /** Reusable Integer constant for one. */
44      public static final Integer INTEGER_ONE = Integer.valueOf(1);
45      /** Reusable Integer constant for two */
46      public static final Integer INTEGER_TWO = Integer.valueOf(2);
47      /** Reusable Integer constant for minus one. */
48      public static final Integer INTEGER_MINUS_ONE = Integer.valueOf(-1);
49      /** Reusable Short constant for zero. */
50      public static final Short SHORT_ZERO = Short.valueOf((short) 0);
51      /** Reusable Short constant for one. */
52      public static final Short SHORT_ONE = Short.valueOf((short) 1);
53      /** Reusable Short constant for minus one. */
54      public static final Short SHORT_MINUS_ONE = Short.valueOf((short) -1);
55      /** Reusable Byte constant for zero. */
56      public static final Byte BYTE_ZERO = Byte.valueOf((byte) 0);
57      /** Reusable Byte constant for one. */
58      public static final Byte BYTE_ONE = Byte.valueOf((byte) 1);
59      /** Reusable Byte constant for minus one. */
60      public static final Byte BYTE_MINUS_ONE = Byte.valueOf((byte) -1);
61      /** Reusable Double constant for zero. */
62      public static final Double DOUBLE_ZERO = Double.valueOf(0.0d);
63      /** Reusable Double constant for one. */
64      public static final Double DOUBLE_ONE = Double.valueOf(1.0d);
65      /** Reusable Double constant for minus one. */
66      public static final Double DOUBLE_MINUS_ONE = Double.valueOf(-1.0d);
67      /** Reusable Float constant for zero. */
68      public static final Float FLOAT_ZERO = Float.valueOf(0.0f);
69      /** Reusable Float constant for one. */
70      public static final Float FLOAT_ONE = Float.valueOf(1.0f);
71      /** Reusable Float constant for minus one. */
72      public static final Float FLOAT_MINUS_ONE = Float.valueOf(-1.0f);
73  
74      /**
75       * {@link Integer#MAX_VALUE} as a {@link Long}.
76       *
77       * @since 3.12.0
78       */
79      public static final Long LONG_INT_MAX_VALUE = Long.valueOf(Integer.MAX_VALUE);
80  
81      /**
82       * {@link Integer#MIN_VALUE} as a {@link Long}.
83       *
84       * @since 3.12.0
85       */
86      public static final Long LONG_INT_MIN_VALUE = Long.valueOf(Integer.MIN_VALUE);
87  
88      /**
89       * Compares two {@code byte} values numerically. This is the same functionality as provided in Java 7.
90       *
91       * @param x the first {@code byte} to compare
92       * @param y the second {@code byte} to compare
93       * @return the value {@code 0} if {@code x == y};
94       *         a value less than {@code 0} if {@code x < y}; and
95       *         a value greater than {@code 0} if {@code x > y}
96       * @since 3.4
97       */
98      public static int compare(final byte x, final byte y) {
99          return x - y;
100     }
101 
102     /**
103      * Compares two {@code int} values numerically. This is the same functionality as provided in Java 7.
104      *
105      * @param x the first {@code int} to compare
106      * @param y the second {@code int} to compare
107      * @return the value {@code 0} if {@code x == y};
108      *         a value less than {@code 0} if {@code x < y}; and
109      *         a value greater than {@code 0} if {@code x > y}
110      * @since 3.4
111      */
112     public static int compare(final int x, final int y) {
113         if (x == y) {
114             return 0;
115         }
116         return x < y ? -1 : 1;
117     }
118 
119     /**
120      * Compares to {@code long} values numerically. This is the same functionality as provided in Java 7.
121      *
122      * @param x the first {@code long} to compare
123      * @param y the second {@code long} to compare
124      * @return the value {@code 0} if {@code x == y};
125      *         a value less than {@code 0} if {@code x < y}; and
126      *         a value greater than {@code 0} if {@code x > y}
127      * @since 3.4
128      */
129     public static int compare(final long x, final long y) {
130         if (x == y) {
131             return 0;
132         }
133         return x < y ? -1 : 1;
134     }
135 
136     /**
137      * Compares to {@code short} values numerically. This is the same functionality as provided in Java 7.
138      *
139      * @param x the first {@code short} to compare
140      * @param y the second {@code short} to compare
141      * @return the value {@code 0} if {@code x == y};
142      *         a value less than {@code 0} if {@code x < y}; and
143      *         a value greater than {@code 0} if {@code x > y}
144      * @since 3.4
145      */
146     public static int compare(final short x, final short y) {
147         if (x == y) {
148             return 0;
149         }
150         return x < y ? -1 : 1;
151     }
152 
153     /**
154      * Creates a {@link BigDecimal} from a {@link String}.
155      *
156      * <p>Returns {@code null} if the string is {@code null}.</p>
157      *
158      * @param str  a {@link String} to convert, may be null
159      * @return converted {@link BigDecimal} (or null if the input is null)
160      * @throws NumberFormatException if the value cannot be converted
161      */
162     public static BigDecimal createBigDecimal(final String str) {
163         if (str == null) {
164             return null;
165         }
166         // handle JDK1.3.1 bug where "" throws IndexOutOfBoundsException
167         if (StringUtils.isBlank(str)) {
168             throw new NumberFormatException("A blank string is not a valid number");
169         }
170         return new BigDecimal(str);
171     }
172 
173     /**
174      * Creates a {@link BigInteger} from a {@link String}.
175      *
176      * Handles hexadecimal (0x or #) and octal (0) notations.
177      *
178      * <p>Returns {@code null} if the string is {@code null}.</p>
179      *
180      * @param str  a {@link String} to convert, may be null
181      * @return converted {@link BigInteger} (or null if the input is null)
182      * @throws NumberFormatException if the value cannot be converted
183      * @since 3.2
184      */
185     public static BigInteger createBigInteger(final String str) {
186         if (str == null) {
187             return null;
188         }
189         if (str.isEmpty()) {
190             throw new NumberFormatException("An empty string is not a valid number");
191         }
192         int pos = 0; // offset within string
193         int radix = 10;
194         boolean negate = false; // need to negate later?
195         final char char0 = str.charAt(0);
196         if (char0 == '-') {
197             negate = true;
198             pos = 1;
199         } else if (char0 == '+') {
200             pos = 1;
201         }
202         if (str.startsWith("0x", pos) || str.startsWith("0X", pos)) { // hex
203             radix = 16;
204             pos += 2;
205         } else if (str.startsWith("#", pos)) { // alternative hex (allowed by Long/Integer)
206             radix = 16;
207             pos++;
208         } else if (str.startsWith("0", pos) && str.length() > pos + 1) { // octal; so long as there are additional digits
209             radix = 8;
210             pos++;
211         } // default is to treat as decimal
212 
213         final BigInteger value = new BigInteger(str.substring(pos), radix);
214         return negate ? value.negate() : value;
215     }
216 
217     /**
218      * Creates a {@link Double} from a {@link String}.
219      *
220      * <p>Returns {@code null} if the string is {@code null}.</p>
221      *
222      * @param str  a {@link String} to convert, may be null
223      * @return converted {@link Double} (or null if the input is null)
224      * @throws NumberFormatException if the value cannot be converted
225      */
226     public static Double createDouble(final String str) {
227         if (str == null) {
228             return null;
229         }
230         return Double.valueOf(str);
231     }
232 
233     /**
234      * Creates a {@link Float} from a {@link String}.
235      *
236      * <p>Returns {@code null} if the string is {@code null}.</p>
237      *
238      * @param str  a {@link String} to convert, may be null
239      * @return converted {@link Float} (or null if the input is null)
240      * @throws NumberFormatException if the value cannot be converted
241      */
242     public static Float createFloat(final String str) {
243         if (str == null) {
244             return null;
245         }
246         return Float.valueOf(str);
247     }
248 
249     /**
250      * Creates an {@link Integer} from a {@link String}.
251      *
252      * Handles hexadecimal (0xhhhh) and octal (0dddd) notations.
253      * N.B. a leading zero means octal; spaces are not trimmed.
254      *
255      * <p>Returns {@code null} if the string is {@code null}.</p>
256      *
257      * @param str  a {@link String} to convert, may be null
258      * @return converted {@link Integer} (or null if the input is null)
259      * @throws NumberFormatException if the value cannot be converted
260      */
261     public static Integer createInteger(final String str) {
262         if (str == null) {
263             return null;
264         }
265         // decode() handles 0xAABD and 0777 (hex and octal) as well.
266         return Integer.decode(str);
267     }
268 
269     /**
270      * Creates a {@link Long} from a {@link String}.
271      *
272      * Handles hexadecimal (0Xhhhh) and octal (0ddd) notations.
273      * N.B. a leading zero means octal; spaces are not trimmed.
274      *
275      * <p>Returns {@code null} if the string is {@code null}.</p>
276      *
277      * @param str  a {@link String} to convert, may be null
278      * @return converted {@link Long} (or null if the input is null)
279      * @throws NumberFormatException if the value cannot be converted
280      * @since 3.1
281      */
282     public static Long createLong(final String str) {
283         if (str == null) {
284             return null;
285         }
286         return Long.decode(str);
287     }
288 
289     /**
290      * Creates a {@link Number} from a {@link String}.
291      *
292      * <p>If the string starts with {@code 0x} or {@code -0x} (lower or upper case) or {@code #} or {@code -#}, it
293      * will be interpreted as a hexadecimal Integer - or Long, if the number of digits after the
294      * prefix is more than 8 - or BigInteger if there are more than 16 digits.
295      * </p>
296      * <p>Then, the value is examined for a type qualifier on the end, i.e. one of
297      * {@code 'f', 'F', 'd', 'D', 'l', 'L'}.  If it is found, it starts
298      * trying to create successively larger types from the type specified
299      * until one is found that can represent the value.</p>
300      *
301      * <p>If a type specifier is not found, it will check for a decimal point
302      * and then try successively larger types from {@link Integer} to
303      * {@link BigInteger} and from {@link Float} to
304      * {@link BigDecimal}.</p>
305      *
306      * <p>
307      * Integral values with a leading {@code 0} will be interpreted as octal; the returned number will
308      * be Integer, Long or BigDecimal as appropriate.
309      * </p>
310      *
311      * <p>Returns {@code null} if the string is {@code null}.</p>
312      *
313      * <p>This method does not trim the input string, i.e., strings with leading
314      * or trailing spaces will generate NumberFormatExceptions.</p>
315      *
316      * @param str  String containing a number, may be null
317      * @return Number created from the string (or null if the input is null)
318      * @throws NumberFormatException if the value cannot be converted
319      */
320     public static Number createNumber(final String str) {
321         if (str == null) {
322             return null;
323         }
324         if (StringUtils.isBlank(str)) {
325             throw new NumberFormatException("A blank string is not a valid number");
326         }
327         // Need to deal with all possible hex prefixes here
328         final String[] hexPrefixes = {"0x", "0X", "#"};
329         final int length = str.length();
330         final int offset = str.charAt(0) == '+' || str.charAt(0) == '-' ? 1 : 0;
331         int pfxLen = 0;
332         for (final String pfx : hexPrefixes) {
333             if (str.startsWith(pfx, offset)) {
334                 pfxLen += pfx.length() + offset;
335                 break;
336             }
337         }
338         if (pfxLen > 0) { // we have a hex number
339             char firstSigDigit = 0; // strip leading zeroes
340             for (int i = pfxLen; i < length; i++) {
341                 firstSigDigit = str.charAt(i);
342                 if (firstSigDigit != '0') {
343                     break;
344                 }
345                 pfxLen++;
346             }
347             final int hexDigits = length - pfxLen;
348             if (hexDigits > 16 || hexDigits == 16 && firstSigDigit > '7') { // too many for Long
349                 return createBigInteger(str);
350             }
351             if (hexDigits > 8 || hexDigits == 8 && firstSigDigit > '7') { // too many for an int
352                 return createLong(str);
353             }
354             return createInteger(str);
355         }
356         final char lastChar = str.charAt(length - 1);
357         final String mant;
358         final String dec;
359         final String exp;
360         final int decPos = str.indexOf('.');
361         final int expPos = str.indexOf('e') + str.indexOf('E') + 1; // assumes both not present
362         // if both e and E are present, this is caught by the checks on expPos (which prevent IOOBE)
363         // and the parsing which will detect if e or E appear in a number due to using the wrong offset
364 
365         // Detect if the return type has been requested
366         final boolean requestType = !Character.isDigit(lastChar) && lastChar != '.';
367         if (decPos > -1) { // there is a decimal point
368             if (expPos > -1) { // there is an exponent
369                 if (expPos <= decPos || expPos > length) { // prevents double exponent causing IOOBE
370                     throw new NumberFormatException(str + " is not a valid number.");
371                 }
372                 dec = str.substring(decPos + 1, expPos);
373             } else {
374                 // No exponent, but there may be a type character to remove
375                 dec = str.substring(decPos + 1, requestType ? length - 1 : length);
376             }
377             mant = getMantissa(str, decPos);
378         } else {
379             if (expPos > -1) {
380                 if (expPos > length) { // prevents double exponent causing IOOBE
381                     throw new NumberFormatException(str + " is not a valid number.");
382                 }
383                 mant = getMantissa(str, expPos);
384             } else {
385                 // No decimal, no exponent, but there may be a type character to remove
386                 mant = getMantissa(str, requestType ? length - 1 : length);
387             }
388             dec = null;
389         }
390         if (requestType) {
391             if (expPos > -1 && expPos < length - 1) {
392                 exp = str.substring(expPos + 1, length - 1);
393             } else {
394                 exp = null;
395             }
396             //Requesting a specific type.
397             final String numeric = str.substring(0, length - 1);
398             switch (lastChar) {
399                 case 'l' :
400                 case 'L' :
401                     if (dec == null
402                         && exp == null
403                         && (!numeric.isEmpty() && numeric.charAt(0) == '-' && isDigits(numeric.substring(1)) || isDigits(numeric))) {
404                         try {
405                             return createLong(numeric);
406                         } catch (final NumberFormatException ignored) {
407                             // Too big for a long
408                         }
409                         return createBigInteger(numeric);
410 
411                     }
412                     throw new NumberFormatException(str + " is not a valid number.");
413                 case 'f' :
414                 case 'F' :
415                     try {
416                         final Float f = createFloat(str);
417                         if (!(f.isInfinite() || f.floatValue() == 0.0F && !isZero(mant, dec))) {
418                             //If it's too big for a float or the float value = 0 and the string
419                             //has non-zeros in it, then float does not have the precision we want
420                             return f;
421                         }
422 
423                     } catch (final NumberFormatException ignored) {
424                         // ignore the bad number
425                     }
426                     //$FALL-THROUGH$
427                 case 'd' :
428                 case 'D' :
429                     try {
430                         final Double d = createDouble(str);
431                         if (!(d.isInfinite() || d.doubleValue() == 0.0D && !isZero(mant, dec))) {
432                             return d;
433                         }
434                     } catch (final NumberFormatException ignored) {
435                         // ignore the bad number
436                     }
437                     try {
438                         return createBigDecimal(numeric);
439                     } catch (final NumberFormatException ignored) {
440                         // ignore the bad number
441                     }
442                     //$FALL-THROUGH$
443                 default :
444                     throw new NumberFormatException(str + " is not a valid number.");
445 
446             }
447         }
448         //User doesn't have a preference on the return type, so let's start
449         //small and go from there...
450         if (expPos > -1 && expPos < length - 1) {
451             exp = str.substring(expPos + 1);
452         } else {
453             exp = null;
454         }
455         if (dec == null && exp == null) { // no decimal point and no exponent
456             //Must be an Integer, Long, Biginteger
457             try {
458                 return createInteger(str);
459             } catch (final NumberFormatException ignored) {
460                 // ignore the bad number
461             }
462             try {
463                 return createLong(str);
464             } catch (final NumberFormatException ignored) {
465                 // ignore the bad number
466             }
467             return createBigInteger(str);
468         }
469 
470         //Must be a Float, Double, BigDecimal
471         try {
472             final Float f = createFloat(str);
473             final Double d = createDouble(str);
474             if (!f.isInfinite()
475                     && !(f.floatValue() == 0.0F && !isZero(mant, dec))
476                     && f.toString().equals(d.toString())) {
477                 return f;
478             }
479             if (!d.isInfinite() && !(d.doubleValue() == 0.0D && !isZero(mant, dec))) {
480                 final BigDecimal b = createBigDecimal(str);
481                 if (b.compareTo(BigDecimal.valueOf(d.doubleValue())) == 0) {
482                     return d;
483                 }
484                 return b;
485             }
486         } catch (final NumberFormatException ignored) {
487             // ignore the bad number
488         }
489         return createBigDecimal(str);
490     }
491 
492      /**
493      * Utility method for {@link #createNumber(String)}.
494      *
495      * <p>Returns mantissa of the given number.</p>
496      *
497      * @param str the string representation of the number
498      * @param stopPos the position of the exponent or decimal point
499      * @return mantissa of the given number
500      * @throws NumberFormatException if no mantissa can be retrieved
501      */
502     private static String getMantissa(final String str, final int stopPos) {
503          final char firstChar = str.charAt(0);
504          final boolean hasSign = firstChar == '-' || firstChar == '+';
505          final int length = str.length();
506          if (length <= (hasSign ? 1 : 0) || length < stopPos) {
507              throw new NumberFormatException(str + " is not a valid number.");
508          }
509          return hasSign ? str.substring(1, stopPos) : str.substring(0, stopPos);
510     }
511 
512     /**
513      * Utility method for {@link #createNumber(java.lang.String)}.
514      *
515      * <p>Returns {@code true} if s is {@code null} or empty.</p>
516      *
517      * @param str the String to check
518      * @return if it is all zeros or {@code null}
519      */
520     private static boolean isAllZeros(final String str) {
521         if (str == null) {
522             return true;
523         }
524         for (int i = str.length() - 1; i >= 0; i--) {
525             if (str.charAt(i) != '0') {
526                 return false;
527             }
528         }
529         return true;
530     }
531 
532     /**
533      * Checks whether the String is a valid Java number.
534      *
535      * <p>Valid numbers include hexadecimal marked with the {@code 0x} or
536      * {@code 0X} qualifier, octal numbers, scientific notation and
537      * numbers marked with a type qualifier (e.g. 123L).</p>
538      *
539      * <p>Non-hexadecimal strings beginning with a leading zero are
540      * treated as octal values. Thus the string {@code 09} will return
541      * {@code false}, since {@code 9} is not a valid octal value.
542      * However, numbers beginning with {@code 0.} are treated as decimal.</p>
543      *
544      * <p>{@code null} and empty/blank {@link String} will return
545      * {@code false}.</p>
546      *
547      * <p>Note, {@link #createNumber(String)} should return a number for every
548      * input resulting in {@code true}.</p>
549      *
550      * @param str  the {@link String} to check
551      * @return {@code true} if the string is a correctly formatted number
552      * @since 3.5
553      */
554     public static boolean isCreatable(final String str) {
555         if (StringUtils.isEmpty(str)) {
556             return false;
557         }
558         final char[] chars = str.toCharArray();
559         int sz = chars.length;
560         boolean hasExp = false;
561         boolean hasDecPoint = false;
562         boolean allowSigns = false;
563         boolean foundDigit = false;
564         // deal with any possible sign up front
565         final int start = chars[0] == '-' || chars[0] == '+' ? 1 : 0;
566         if (sz > start + 1 && chars[start] == '0' && !StringUtils.contains(str, '.')) { // leading 0, skip if is a decimal number
567             if (chars[start + 1] == 'x' || chars[start + 1] == 'X') { // leading 0x/0X
568                 int i = start + 2;
569                 if (i == sz) {
570                     return false; // str == "0x"
571                 }
572                 // checking hex (it can't be anything else)
573                 for (; i < chars.length; i++) {
574                     if ((chars[i] < '0' || chars[i] > '9')
575                         && (chars[i] < 'a' || chars[i] > 'f')
576                         && (chars[i] < 'A' || chars[i] > 'F')) {
577                         return false;
578                     }
579                 }
580                 return true;
581            }
582             if (Character.isDigit(chars[start + 1])) {
583                    // leading 0, but not hex, must be octal
584                    int i = start + 1;
585                    for (; i < chars.length; i++) {
586                        if (chars[i] < '0' || chars[i] > '7') {
587                            return false;
588                        }
589                    }
590                    return true;
591                }
592         }
593         sz--; // don't want to loop to the last char, check it afterwards
594               // for type qualifiers
595         int i = start;
596         // loop to the next to last char or to the last char if we need another digit to
597         // make a valid number (e.g. chars[0..5] = "1234E")
598         while (i < sz || i < sz + 1 && allowSigns && !foundDigit) {
599             if (chars[i] >= '0' && chars[i] <= '9') {
600                 foundDigit = true;
601                 allowSigns = false;
602 
603             } else if (chars[i] == '.') {
604                 if (hasDecPoint || hasExp) {
605                     // two decimal points or dec in exponent
606                     return false;
607                 }
608                 hasDecPoint = true;
609             } else if (chars[i] == 'e' || chars[i] == 'E') {
610                 // we've already taken care of hex.
611                 if (hasExp) {
612                     // two E's
613                     return false;
614                 }
615                 if (!foundDigit) {
616                     return false;
617                 }
618                 hasExp = true;
619                 allowSigns = true;
620             } else if (chars[i] == '+' || chars[i] == '-') {
621                 if (!allowSigns) {
622                     return false;
623                 }
624                 allowSigns = false;
625                 foundDigit = false; // we need a digit after the E
626             } else {
627                 return false;
628             }
629             i++;
630         }
631         if (i < chars.length) {
632             if (chars[i] >= '0' && chars[i] <= '9') {
633                 // no type qualifier, OK
634                 return true;
635             }
636             if (chars[i] == 'e' || chars[i] == 'E') {
637                 // can't have an E at the last byte
638                 return false;
639             }
640             if (chars[i] == '.') {
641                 if (hasDecPoint || hasExp) {
642                     // two decimal points or dec in exponent
643                     return false;
644                 }
645                 // single trailing decimal point after non-exponent is ok
646                 return foundDigit;
647             }
648             if (!allowSigns
649                 && (chars[i] == 'd'
650                     || chars[i] == 'D'
651                     || chars[i] == 'f'
652                     || chars[i] == 'F')) {
653                 return foundDigit;
654             }
655             if (chars[i] == 'l'
656                 || chars[i] == 'L') {
657                 // not allowing L with an exponent or decimal point
658                 return foundDigit && !hasExp && !hasDecPoint;
659             }
660             // last character is illegal
661             return false;
662         }
663         // allowSigns is true iff the val ends in 'E'
664         // found digit it to make sure weird stuff like '.' and '1E-' doesn't pass
665         return !allowSigns && foundDigit;
666     }
667 
668     /**
669      * Checks whether the {@link String} contains only
670      * digit characters.
671      *
672      * <p>{@code null} and empty String will return
673      * {@code false}.</p>
674      *
675      * @param str  the {@link String} to check
676      * @return {@code true} if str contains only Unicode numeric
677      */
678     public static boolean isDigits(final String str) {
679         return StringUtils.isNumeric(str);
680     }
681 
682     /**
683      * Checks whether the String is a valid Java number.
684      *
685      * <p>Valid numbers include hexadecimal marked with the {@code 0x} or
686      * {@code 0X} qualifier, octal numbers, scientific notation and
687      * numbers marked with a type qualifier (e.g. 123L).</p>
688      *
689      * <p>Non-hexadecimal strings beginning with a leading zero are
690      * treated as octal values. Thus the string {@code 09} will return
691      * {@code false}, since {@code 9} is not a valid octal value.
692      * However, numbers beginning with {@code 0.} are treated as decimal.</p>
693      *
694      * <p>{@code null} and empty/blank {@link String} will return
695      * {@code false}.</p>
696      *
697      * <p>Note, {@link #createNumber(String)} should return a number for every
698      * input resulting in {@code true}.</p>
699      *
700      * @param str  the {@link String} to check
701      * @return {@code true} if the string is a correctly formatted number
702      * @since 3.3 the code supports hexadecimal {@code 0Xhhh} an
703      *        octal {@code 0ddd} validation
704      * @deprecated This feature will be removed in Lang 4,
705      *             use {@link NumberUtils#isCreatable(String)} instead
706      */
707     @Deprecated
708     public static boolean isNumber(final String str) {
709         return isCreatable(str);
710     }
711 
712     /**
713      * Checks whether the given String is a parsable number.
714      *
715      * <p>Parsable numbers include those Strings understood by {@link Integer#parseInt(String)},
716      * {@link Long#parseLong(String)}, {@link Float#parseFloat(String)} or
717      * {@link Double#parseDouble(String)}. This method can be used instead of catching {@link java.text.ParseException}
718      * when calling one of those methods.</p>
719      *
720      * <p>Hexadecimal and scientific notations are <strong>not</strong> considered parsable.
721      * See {@link #isCreatable(String)} on those cases.</p>
722      *
723      * <p>{@code null} and empty String will return {@code false}.</p>
724      *
725      * @param str the String to check.
726      * @return {@code true} if the string is a parsable number.
727      * @since 3.4
728      */
729     public static boolean isParsable(final String str) {
730         if (StringUtils.isEmpty(str)) {
731             return false;
732         }
733         if (str.charAt(str.length() - 1) == '.') {
734             return false;
735         }
736         if (str.charAt(0) == '-') {
737             if (str.length() == 1) {
738                 return false;
739             }
740             return withDecimalsParsing(str, 1);
741         }
742         return withDecimalsParsing(str, 0);
743     }
744 
745     /**
746      * Utility method for {@link #createNumber(java.lang.String)}.
747      *
748      * <p>This will check if the magnitude of the number is zero by checking if there
749      * are only zeros before and after the decimal place.</p>
750      *
751      * <p>Note: It is <strong>assumed</strong> that the input string has been converted
752      * to either a Float or Double with a value of zero when this method is called.
753      * This eliminates invalid input for example {@code ".", ".D", ".e0"}.</p>
754      *
755      * <p>Thus the method only requires checking if both arguments are null, empty or
756      * contain only zeros.</p>
757      *
758      * <p>Given {@code s = mant + "." + dec}:</p>
759      * <ul>
760      * <li>{@code true} if s is {@code "0.0"}
761      * <li>{@code true} if s is {@code "0."}
762      * <li>{@code true} if s is {@code ".0"}
763      * <li>{@code false} otherwise (this assumes {@code "."} is not possible)
764      * </ul>
765      *
766      * @param mant the mantissa decimal digits before the decimal point (sign must be removed; never null)
767      * @param dec the decimal digits after the decimal point (exponent and type specifier removed;
768      *            can be null)
769      * @return true if the magnitude is zero
770      */
771     private static boolean isZero(final String mant, final String dec) {
772         return isAllZeros(mant) && isAllZeros(dec);
773     }
774 
775     /**
776      * Returns the maximum value in an array.
777      *
778      * @param array  an array, must not be null or empty
779      * @return the maximum value in the array
780      * @throws NullPointerException if {@code array} is {@code null}
781      * @throws IllegalArgumentException if {@code array} is empty
782      * @since 3.4 Changed signature from max(byte[]) to max(byte...)
783      */
784     public static byte max(final byte... array) {
785         // Validates input
786         validateArray(array);
787         // Finds and returns max
788         byte max = array[0];
789         for (int i = 1; i < array.length; i++) {
790             if (array[i] > max) {
791                 max = array[i];
792             }
793         }
794         return max;
795     }
796 
797     /**
798      * Gets the maximum of three {@code byte} values.
799      *
800      * @param a  value 1
801      * @param b  value 2
802      * @param c  value 3
803      * @return  the largest of the values
804      */
805     public static byte max(byte a, final byte b, final byte c) {
806         if (b > a) {
807             a = b;
808         }
809         if (c > a) {
810             a = c;
811         }
812         return a;
813     }
814 
815     /**
816      * Returns the maximum value in an array.
817      *
818      * @param array  an array, must not be null or empty
819      * @return the maximum value in the array
820      * @throws NullPointerException if {@code array} is {@code null}
821      * @throws IllegalArgumentException if {@code array} is empty
822      * @see IEEE754rUtils#max(double[]) IEEE754rUtils for a version of this method that handles NaN differently
823      * @since 3.4 Changed signature from max(double[]) to max(double...)
824      */
825     public static double max(final double... array) {
826         // Validates input
827         validateArray(array);
828         // Finds and returns max
829         double max = array[0];
830         for (int j = 1; j < array.length; j++) {
831             if (Double.isNaN(array[j])) {
832                 return Double.NaN;
833             }
834             if (array[j] > max) {
835                 max = array[j];
836             }
837         }
838         return max;
839     }
840 
841     /**
842      * Gets the maximum of three {@code double} values.
843      *
844      * <p>If any value is {@code NaN}, {@code NaN} is
845      * returned. Infinity is handled.</p>
846      *
847      * @param a  value 1
848      * @param b  value 2
849      * @param c  value 3
850      * @return  the largest of the values
851      * @see IEEE754rUtils#max(double, double, double) for a version of this method that handles NaN differently
852      */
853     public static double max(final double a, final double b, final double c) {
854         return Math.max(Math.max(a, b), c);
855     }
856 
857     /**
858      * Returns the maximum value in an array.
859      *
860      * @param array  an array, must not be null or empty
861      * @return the maximum value in the array
862      * @throws NullPointerException if {@code array} is {@code null}
863      * @throws IllegalArgumentException if {@code array} is empty
864      * @see IEEE754rUtils#max(float[]) IEEE754rUtils for a version of this method that handles NaN differently
865      * @since 3.4 Changed signature from max(float[]) to max(float...)
866      */
867     public static float max(final float... array) {
868         // Validates input
869         validateArray(array);
870         // Finds and returns max
871         float max = array[0];
872         for (int j = 1; j < array.length; j++) {
873             if (Float.isNaN(array[j])) {
874                 return Float.NaN;
875             }
876             if (array[j] > max) {
877                 max = array[j];
878             }
879         }
880         return max;
881     }
882 
883     // must handle Long, Float, Integer, Float, Short,
884     //                  BigDecimal, BigInteger and Byte
885     // useful methods:
886     // Byte.decode(String)
887     // Byte.valueOf(String, int radix)
888     // Byte.valueOf(String)
889     // Double.valueOf(String)
890     // Float.valueOf(String)
891     // Float.valueOf(String)
892     // Integer.valueOf(String, int radix)
893     // Integer.valueOf(String)
894     // Integer.decode(String)
895     // Integer.getInteger(String)
896     // Integer.getInteger(String, int val)
897     // Integer.getInteger(String, Integer val)
898     // Integer.valueOf(String)
899     // Double.valueOf(String)
900     // new Byte(String)
901     // Long.valueOf(String)
902     // Long.getLong(String)
903     // Long.getLong(String, int)
904     // Long.getLong(String, Integer)
905     // Long.valueOf(String, int)
906     // Long.valueOf(String)
907     // Short.valueOf(String)
908     // Short.decode(String)
909     // Short.valueOf(String, int)
910     // Short.valueOf(String)
911     // new BigDecimal(String)
912     // new BigInteger(String)
913     // new BigInteger(String, int radix)
914     // Possible inputs:
915     // 45 45.5 45E7 4.5E7 Hex Oct Binary xxxF xxxD xxxf xxxd
916     // plus minus everything. Prolly more. A lot are not separable.
917 
918     /**
919      * Gets the maximum of three {@code float} values.
920      *
921      * <p>If any value is {@code NaN}, {@code NaN} is
922      * returned. Infinity is handled.</p>
923      *
924      * @param a  value 1
925      * @param b  value 2
926      * @param c  value 3
927      * @return  the largest of the values
928      * @see IEEE754rUtils#max(float, float, float) for a version of this method that handles NaN differently
929      */
930     public static float max(final float a, final float b, final float c) {
931         return Math.max(Math.max(a, b), c);
932     }
933 
934     /**
935      * Returns the maximum value in an array.
936      *
937      * @param array  an array, must not be null or empty
938      * @return the maximum value in the array
939      * @throws NullPointerException if {@code array} is {@code null}
940      * @throws IllegalArgumentException if {@code array} is empty
941      * @since 3.4 Changed signature from max(int[]) to max(int...)
942      */
943     public static int max(final int... array) {
944         // Validates input
945         validateArray(array);
946         // Finds and returns max
947         int max = array[0];
948         for (int j = 1; j < array.length; j++) {
949             if (array[j] > max) {
950                 max = array[j];
951             }
952         }
953         return max;
954     }
955 
956     /**
957      * Gets the maximum of three {@code int} values.
958      *
959      * @param a  value 1
960      * @param b  value 2
961      * @param c  value 3
962      * @return  the largest of the values
963      */
964     public static int max(int a, final int b, final int c) {
965         if (b > a) {
966             a = b;
967         }
968         if (c > a) {
969             a = c;
970         }
971         return a;
972     }
973 
974     /**
975      * Returns the maximum value in an array.
976      *
977      * @param array  an array, must not be null or empty
978      * @return the maximum value in the array
979      * @throws NullPointerException if {@code array} is {@code null}
980      * @throws IllegalArgumentException if {@code array} is empty
981      * @since 3.4 Changed signature from max(long[]) to max(long...)
982      */
983     public static long max(final long... array) {
984         // Validates input
985         validateArray(array);
986         // Finds and returns max
987         long max = array[0];
988         for (int j = 1; j < array.length; j++) {
989             if (array[j] > max) {
990                 max = array[j];
991             }
992         }
993         return max;
994     }
995 
996     // 3 param max
997     /**
998      * Gets the maximum of three {@code long} values.
999      *
1000      * @param a  value 1
1001      * @param b  value 2
1002      * @param c  value 3
1003      * @return  the largest of the values
1004      */
1005     public static long max(long a, final long b, final long c) {
1006         if (b > a) {
1007             a = b;
1008         }
1009         if (c > a) {
1010             a = c;
1011         }
1012         return a;
1013     }
1014 
1015     /**
1016      * Returns the maximum value in an array.
1017      *
1018      * @param array  an array, must not be null or empty
1019      * @return the maximum value in the array
1020      * @throws NullPointerException if {@code array} is {@code null}
1021      * @throws IllegalArgumentException if {@code array} is empty
1022      * @since 3.4 Changed signature from max(short[]) to max(short...)
1023      */
1024     public static short max(final short... array) {
1025         // Validates input
1026         validateArray(array);
1027 
1028         // Finds and returns max
1029         short max = array[0];
1030         for (int i = 1; i < array.length; i++) {
1031             if (array[i] > max) {
1032                 max = array[i];
1033             }
1034         }
1035         return max;
1036     }
1037 
1038     /**
1039      * Gets the maximum of three {@code short} values.
1040      *
1041      * @param a  value 1
1042      * @param b  value 2
1043      * @param c  value 3
1044      * @return  the largest of the values
1045      */
1046     public static short max(short a, final short b, final short c) {
1047         if (b > a) {
1048             a = b;
1049         }
1050         if (c > a) {
1051             a = c;
1052         }
1053         return a;
1054     }
1055 
1056     /**
1057      * Returns the minimum value in an array.
1058      *
1059      * @param array  an array, must not be null or empty
1060      * @return the minimum value in the array
1061      * @throws NullPointerException if {@code array} is {@code null}
1062      * @throws IllegalArgumentException if {@code array} is empty
1063      * @since 3.4 Changed signature from min(byte[]) to min(byte...)
1064      */
1065     public static byte min(final byte... array) {
1066         // Validates input
1067         validateArray(array);
1068         // Finds and returns min
1069         byte min = array[0];
1070         for (int i = 1; i < array.length; i++) {
1071             if (array[i] < min) {
1072                 min = array[i];
1073             }
1074         }
1075         return min;
1076     }
1077 
1078     /**
1079      * Gets the minimum of three {@code byte} values.
1080      *
1081      * @param a  value 1
1082      * @param b  value 2
1083      * @param c  value 3
1084      * @return  the smallest of the values
1085      */
1086     public static byte min(byte a, final byte b, final byte c) {
1087         if (b < a) {
1088             a = b;
1089         }
1090         if (c < a) {
1091             a = c;
1092         }
1093         return a;
1094     }
1095 
1096     /**
1097      * Returns the minimum value in an array.
1098      *
1099      * @param array  an array, must not be null or empty
1100      * @return the minimum value in the array
1101      * @throws NullPointerException if {@code array} is {@code null}
1102      * @throws IllegalArgumentException if {@code array} is empty
1103      * @see IEEE754rUtils#min(double[]) IEEE754rUtils for a version of this method that handles NaN differently
1104      * @since 3.4 Changed signature from min(double[]) to min(double...)
1105      */
1106     public static double min(final double... array) {
1107         // Validates input
1108         validateArray(array);
1109 
1110         // Finds and returns min
1111         double min = array[0];
1112         for (int i = 1; i < array.length; i++) {
1113             if (Double.isNaN(array[i])) {
1114                 return Double.NaN;
1115             }
1116             if (array[i] < min) {
1117                 min = array[i];
1118             }
1119         }
1120         return min;
1121     }
1122 
1123     /**
1124      * Gets the minimum of three {@code double} values.
1125      *
1126      * <p>If any value is {@code NaN}, {@code NaN} is
1127      * returned. Infinity is handled.</p>
1128      *
1129      * @param a  value 1
1130      * @param b  value 2
1131      * @param c  value 3
1132      * @return  the smallest of the values
1133      * @see IEEE754rUtils#min(double, double, double) for a version of this method that handles NaN differently
1134      */
1135     public static double min(final double a, final double b, final double c) {
1136         return Math.min(Math.min(a, b), c);
1137     }
1138 
1139     /**
1140      * Returns the minimum value in an array.
1141      *
1142      * @param array  an array, must not be null or empty
1143      * @return the minimum value in the array
1144      * @throws NullPointerException if {@code array} is {@code null}
1145      * @throws IllegalArgumentException if {@code array} is empty
1146      * @see IEEE754rUtils#min(float[]) IEEE754rUtils for a version of this method that handles NaN differently
1147      * @since 3.4 Changed signature from min(float[]) to min(float...)
1148      */
1149     public static float min(final float... array) {
1150         // Validates input
1151         validateArray(array);
1152 
1153         // Finds and returns min
1154         float min = array[0];
1155         for (int i = 1; i < array.length; i++) {
1156             if (Float.isNaN(array[i])) {
1157                 return Float.NaN;
1158             }
1159             if (array[i] < min) {
1160                 min = array[i];
1161             }
1162         }
1163         return min;
1164     }
1165 
1166     /**
1167      * Gets the minimum of three {@code float} values.
1168      *
1169      * <p>If any value is {@code NaN}, {@code NaN} is
1170      * returned. Infinity is handled.</p>
1171      *
1172      * @param a  value 1
1173      * @param b  value 2
1174      * @param c  value 3
1175      * @return  the smallest of the values
1176      * @see IEEE754rUtils#min(float, float, float) for a version of this method that handles NaN differently
1177      */
1178     public static float min(final float a, final float b, final float c) {
1179         return Math.min(Math.min(a, b), c);
1180     }
1181 
1182     /**
1183      * Returns the minimum value in an array.
1184      *
1185      * @param array  an array, must not be null or empty
1186      * @return the minimum value in the array
1187      * @throws NullPointerException if {@code array} is {@code null}
1188      * @throws IllegalArgumentException if {@code array} is empty
1189      * @since 3.4 Changed signature from min(int[]) to min(int...)
1190      */
1191     public static int min(final int... array) {
1192         // Validates input
1193         validateArray(array);
1194         // Finds and returns min
1195         int min = array[0];
1196         for (int j = 1; j < array.length; j++) {
1197             if (array[j] < min) {
1198                 min = array[j];
1199             }
1200         }
1201         return min;
1202     }
1203 
1204      /**
1205      * Gets the minimum of three {@code int} values.
1206      *
1207      * @param a  value 1
1208      * @param b  value 2
1209      * @param c  value 3
1210      * @return  the smallest of the values
1211      */
1212     public static int min(int a, final int b, final int c) {
1213         if (b < a) {
1214             a = b;
1215         }
1216         if (c < a) {
1217             a = c;
1218         }
1219         return a;
1220     }
1221 
1222     /**
1223      * Returns the minimum value in an array.
1224      *
1225      * @param array  an array, must not be null or empty
1226      * @return the minimum value in the array
1227      * @throws NullPointerException if {@code array} is {@code null}
1228      * @throws IllegalArgumentException if {@code array} is empty
1229      * @since 3.4 Changed signature from min(long[]) to min(long...)
1230      */
1231     public static long min(final long... array) {
1232         // Validates input
1233         validateArray(array);
1234         // Finds and returns min
1235         long min = array[0];
1236         for (int i = 1; i < array.length; i++) {
1237             if (array[i] < min) {
1238                 min = array[i];
1239             }
1240         }
1241         return min;
1242     }
1243 
1244     // 3 param min
1245     /**
1246      * Gets the minimum of three {@code long} values.
1247      *
1248      * @param a  value 1
1249      * @param b  value 2
1250      * @param c  value 3
1251      * @return  the smallest of the values
1252      */
1253     public static long min(long a, final long b, final long c) {
1254         if (b < a) {
1255             a = b;
1256         }
1257         if (c < a) {
1258             a = c;
1259         }
1260         return a;
1261     }
1262 
1263     /**
1264      * Returns the minimum value in an array.
1265      *
1266      * @param array  an array, must not be null or empty
1267      * @return the minimum value in the array
1268      * @throws NullPointerException if {@code array} is {@code null}
1269      * @throws IllegalArgumentException if {@code array} is empty
1270      * @since 3.4 Changed signature from min(short[]) to min(short...)
1271      */
1272     public static short min(final short... array) {
1273         // Validates input
1274         validateArray(array);
1275         // Finds and returns min
1276         short min = array[0];
1277         for (int i = 1; i < array.length; i++) {
1278             if (array[i] < min) {
1279                 min = array[i];
1280             }
1281         }
1282 
1283         return min;
1284     }
1285 
1286     /**
1287      * Gets the minimum of three {@code short} values.
1288      *
1289      * @param a  value 1
1290      * @param b  value 2
1291      * @param c  value 3
1292      * @return  the smallest of the values
1293      */
1294     public static short min(short a, final short b, final short c) {
1295         if (b < a) {
1296             a = b;
1297         }
1298         if (c < a) {
1299             a = c;
1300         }
1301         return a;
1302     }
1303 
1304     /**
1305      * Converts a {@link String} to a {@code byte}, returning
1306      * {@code zero} if the conversion fails.
1307      *
1308      * <p>If the string is {@code null}, {@code zero} is returned.</p>
1309      *
1310      * <pre>
1311      *   NumberUtils.toByte(null) = 0
1312      *   NumberUtils.toByte("")   = 0
1313      *   NumberUtils.toByte("1")  = 1
1314      * </pre>
1315      *
1316      * @param str  the string to convert, may be null
1317      * @return the byte represented by the string, or {@code zero} if
1318      *  conversion fails
1319      * @since 2.5
1320      */
1321     public static byte toByte(final String str) {
1322         return toByte(str, (byte) 0);
1323     }
1324 
1325     /**
1326      * Converts a {@link String} to a {@code byte}, returning a
1327      * default value if the conversion fails.
1328      *
1329      * <p>If the string is {@code null}, the default value is returned.</p>
1330      *
1331      * <pre>
1332      *   NumberUtils.toByte(null, 1) = 1
1333      *   NumberUtils.toByte("", 1)   = 1
1334      *   NumberUtils.toByte("1", 0)  = 1
1335      * </pre>
1336      *
1337      * @param str  the string to convert, may be null
1338      * @param defaultValue  the default value
1339      * @return the byte represented by the string, or the default if conversion fails
1340      * @since 2.5
1341      */
1342     public static byte toByte(final String str, final byte defaultValue) {
1343         try {
1344             return Byte.parseByte(str);
1345         } catch (final RuntimeException e) {
1346             return defaultValue;
1347         }
1348     }
1349 
1350     /**
1351      * Converts a {@link BigDecimal} to a {@code double}.
1352      *
1353      * <p>If the {@link BigDecimal} {@code value} is
1354      * {@code null}, then the specified default value is returned.</p>
1355      *
1356      * <pre>
1357      *   NumberUtils.toDouble(null)                     = 0.0d
1358      *   NumberUtils.toDouble(BigDecimal.valueOf(8.5d)) = 8.5d
1359      * </pre>
1360      *
1361      * @param value the {@link BigDecimal} to convert, may be {@code null}.
1362      * @return the double represented by the {@link BigDecimal} or
1363      *  {@code 0.0d} if the {@link BigDecimal} is {@code null}.
1364      * @since 3.8
1365      */
1366     public static double toDouble(final BigDecimal value) {
1367         return toDouble(value, 0.0d);
1368     }
1369 
1370     /**
1371      * Converts a {@link BigDecimal} to a {@code double}.
1372      *
1373      * <p>If the {@link BigDecimal} {@code value} is
1374      * {@code null}, then the specified default value is returned.</p>
1375      *
1376      * <pre>
1377      *   NumberUtils.toDouble(null, 1.1d)                     = 1.1d
1378      *   NumberUtils.toDouble(BigDecimal.valueOf(8.5d), 1.1d) = 8.5d
1379      * </pre>
1380      *
1381      * @param value the {@link BigDecimal} to convert, may be {@code null}.
1382      * @param defaultValue the default value
1383      * @return the double represented by the {@link BigDecimal} or the
1384      *  defaultValue if the {@link BigDecimal} is {@code null}.
1385      * @since 3.8
1386      */
1387     public static double toDouble(final BigDecimal value, final double defaultValue) {
1388         return value == null ? defaultValue : value.doubleValue();
1389     }
1390 
1391     /**
1392      * Converts a {@link String} to a {@code double}, returning
1393      * {@code 0.0d} if the conversion fails.
1394      *
1395      * <p>If the string {@code str} is {@code null},
1396      * {@code 0.0d} is returned.</p>
1397      *
1398      * <pre>
1399      *   NumberUtils.toDouble(null)   = 0.0d
1400      *   NumberUtils.toDouble("")     = 0.0d
1401      *   NumberUtils.toDouble("1.5")  = 1.5d
1402      * </pre>
1403      *
1404      * @param str the string to convert, may be {@code null}
1405      * @return the double represented by the string, or {@code 0.0d}
1406      *  if conversion fails
1407      * @since 2.1
1408      */
1409     public static double toDouble(final String str) {
1410         return toDouble(str, 0.0d);
1411     }
1412 
1413     /**
1414      * Converts a {@link String} to a {@code double}, returning a
1415      * default value if the conversion fails.
1416      *
1417      * <p>If the string {@code str} is {@code null}, the default
1418      * value is returned.</p>
1419      *
1420      * <pre>
1421      *   NumberUtils.toDouble(null, 1.1d)   = 1.1d
1422      *   NumberUtils.toDouble("", 1.1d)     = 1.1d
1423      *   NumberUtils.toDouble("1.5", 0.0d)  = 1.5d
1424      * </pre>
1425      *
1426      * @param str the string to convert, may be {@code null}
1427      * @param defaultValue the default value
1428      * @return the double represented by the string, or defaultValue
1429      *  if conversion fails
1430      * @since 2.1
1431      */
1432     public static double toDouble(final String str, final double defaultValue) {
1433       try {
1434           return Double.parseDouble(str);
1435       } catch (final RuntimeException e) {
1436           return defaultValue;
1437       }
1438     }
1439 
1440     /**
1441      * Converts a {@link String} to a {@code float}, returning
1442      * {@code 0.0f} if the conversion fails.
1443      *
1444      * <p>If the string {@code str} is {@code null},
1445      * {@code 0.0f} is returned.</p>
1446      *
1447      * <pre>
1448      *   NumberUtils.toFloat(null)   = 0.0f
1449      *   NumberUtils.toFloat("")     = 0.0f
1450      *   NumberUtils.toFloat("1.5")  = 1.5f
1451      * </pre>
1452      *
1453      * @param str the string to convert, may be {@code null}
1454      * @return the float represented by the string, or {@code 0.0f}
1455      *  if conversion fails
1456      * @since 2.1
1457      */
1458     public static float toFloat(final String str) {
1459         return toFloat(str, 0.0f);
1460     }
1461 
1462     /**
1463      * Converts a {@link String} to a {@code float}, returning a
1464      * default value if the conversion fails.
1465      *
1466      * <p>If the string {@code str} is {@code null}, the default
1467      * value is returned.</p>
1468      *
1469      * <pre>
1470      *   NumberUtils.toFloat(null, 1.1f)   = 1.1f
1471      *   NumberUtils.toFloat("", 1.1f)     = 1.1f
1472      *   NumberUtils.toFloat("1.5", 0.0f)  = 1.5f
1473      * </pre>
1474      *
1475      * @param str the string to convert, may be {@code null}
1476      * @param defaultValue the default value
1477      * @return the float represented by the string, or defaultValue
1478      *  if conversion fails
1479      * @since 2.1
1480      */
1481     public static float toFloat(final String str, final float defaultValue) {
1482       try {
1483           return Float.parseFloat(str);
1484       } catch (final RuntimeException e) {
1485           return defaultValue;
1486       }
1487     }
1488 
1489     /**
1490      * Converts a {@link String} to an {@code int}, returning
1491      * {@code zero} if the conversion fails.
1492      *
1493      * <p>If the string is {@code null}, {@code zero} is returned.</p>
1494      *
1495      * <pre>
1496      *   NumberUtils.toInt(null) = 0
1497      *   NumberUtils.toInt("")   = 0
1498      *   NumberUtils.toInt("1")  = 1
1499      * </pre>
1500      *
1501      * @param str  the string to convert, may be null
1502      * @return the int represented by the string, or {@code zero} if
1503      *  conversion fails
1504      * @since 2.1
1505      */
1506     public static int toInt(final String str) {
1507         return toInt(str, 0);
1508     }
1509 
1510     /**
1511      * Converts a {@link String} to an {@code int}, returning a
1512      * default value if the conversion fails.
1513      *
1514      * <p>If the string is {@code null}, the default value is returned.</p>
1515      *
1516      * <pre>
1517      *   NumberUtils.toInt(null, 1) = 1
1518      *   NumberUtils.toInt("", 1)   = 1
1519      *   NumberUtils.toInt("1", 0)  = 1
1520      * </pre>
1521      *
1522      * @param str  the string to convert, may be null
1523      * @param defaultValue  the default value
1524      * @return the int represented by the string, or the default if conversion fails
1525      * @since 2.1
1526      */
1527     public static int toInt(final String str, final int defaultValue) {
1528         try {
1529             return Integer.parseInt(str);
1530         } catch (final RuntimeException e) {
1531             return defaultValue;
1532         }
1533     }
1534 
1535     /**
1536      * Converts a {@link String} to a {@code long}, returning
1537      * {@code zero} if the conversion fails.
1538      *
1539      * <p>If the string is {@code null}, {@code zero} is returned.</p>
1540      *
1541      * <pre>
1542      *   NumberUtils.toLong(null) = 0L
1543      *   NumberUtils.toLong("")   = 0L
1544      *   NumberUtils.toLong("1")  = 1L
1545      * </pre>
1546      *
1547      * @param str  the string to convert, may be null
1548      * @return the long represented by the string, or {@code 0} if
1549      *  conversion fails
1550      * @since 2.1
1551      */
1552     public static long toLong(final String str) {
1553         return toLong(str, 0L);
1554     }
1555 
1556     /**
1557      * Converts a {@link String} to a {@code long}, returning a
1558      * default value if the conversion fails.
1559      *
1560      * <p>If the string is {@code null}, the default value is returned.</p>
1561      *
1562      * <pre>
1563      *   NumberUtils.toLong(null, 1L) = 1L
1564      *   NumberUtils.toLong("", 1L)   = 1L
1565      *   NumberUtils.toLong("1", 0L)  = 1L
1566      * </pre>
1567      *
1568      * @param str  the string to convert, may be null
1569      * @param defaultValue  the default value
1570      * @return the long represented by the string, or the default if conversion fails
1571      * @since 2.1
1572      */
1573     public static long toLong(final String str, final long defaultValue) {
1574         try {
1575             return Long.parseLong(str);
1576         } catch (final RuntimeException e) {
1577             return defaultValue;
1578         }
1579     }
1580 
1581     /**
1582      * Converts a {@link BigDecimal} to a {@link BigDecimal} with a scale of
1583      * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied
1584      * {@code value} is null, then {@code BigDecimal.ZERO} is returned.
1585      *
1586      * <p>Note, the scale of a {@link BigDecimal} is the number of digits to the right of the
1587      * decimal point.</p>
1588      *
1589      * @param value the {@link BigDecimal} to convert, may be null.
1590      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1591      * @since 3.8
1592      */
1593     public static BigDecimal toScaledBigDecimal(final BigDecimal value) {
1594         return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN);
1595     }
1596 
1597     /**
1598      * Converts a {@link BigDecimal} to a {@link BigDecimal} whose scale is the
1599      * specified value with a {@link RoundingMode} applied. If the input {@code value}
1600      * is {@code null}, we simply return {@code BigDecimal.ZERO}.
1601      *
1602      * @param value the {@link BigDecimal} to convert, may be null.
1603      * @param scale the number of digits to the right of the decimal point.
1604      * @param roundingMode a rounding behavior for numerical operations capable of
1605      *  discarding precision.
1606      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1607      * @since 3.8
1608      */
1609     public static BigDecimal toScaledBigDecimal(final BigDecimal value, final int scale, final RoundingMode roundingMode) {
1610         if (value == null) {
1611             return BigDecimal.ZERO;
1612         }
1613         return value.setScale(
1614             scale,
1615             roundingMode == null ? RoundingMode.HALF_EVEN : roundingMode
1616         );
1617     }
1618 
1619     /**
1620      * Converts a {@link Double} to a {@link BigDecimal} with a scale of
1621      * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied
1622      * {@code value} is null, then {@code BigDecimal.ZERO} is returned.
1623      *
1624      * <p>Note, the scale of a {@link BigDecimal} is the number of digits to the right of the
1625      * decimal point.</p>
1626      *
1627      * @param value the {@link Double} to convert, may be null.
1628      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1629      * @since 3.8
1630      */
1631     public static BigDecimal toScaledBigDecimal(final Double value) {
1632         return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN);
1633     }
1634 
1635     /**
1636      * Converts a {@link Double} to a {@link BigDecimal} whose scale is the
1637      * specified value with a {@link RoundingMode} applied. If the input {@code value}
1638      * is {@code null}, we simply return {@code BigDecimal.ZERO}.
1639      *
1640      * @param value the {@link Double} to convert, may be null.
1641      * @param scale the number of digits to the right of the decimal point.
1642      * @param roundingMode a rounding behavior for numerical operations capable of
1643      *  discarding precision.
1644      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1645      * @since 3.8
1646      */
1647     public static BigDecimal toScaledBigDecimal(final Double value, final int scale, final RoundingMode roundingMode) {
1648         if (value == null) {
1649             return BigDecimal.ZERO;
1650         }
1651         return toScaledBigDecimal(
1652             BigDecimal.valueOf(value),
1653             scale,
1654             roundingMode
1655         );
1656     }
1657 
1658     /**
1659      * Converts a {@link Float} to a {@link BigDecimal} with a scale of
1660      * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied
1661      * {@code value} is null, then {@code BigDecimal.ZERO} is returned.
1662      *
1663      * <p>Note, the scale of a {@link BigDecimal} is the number of digits to the right of the
1664      * decimal point.</p>
1665      *
1666      * @param value the {@link Float} to convert, may be null.
1667      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1668      * @since 3.8
1669      */
1670     public static BigDecimal toScaledBigDecimal(final Float value) {
1671         return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN);
1672     }
1673 
1674     /**
1675      * Converts a {@link Float} to a {@link BigDecimal} whose scale is the
1676      * specified value with a {@link RoundingMode} applied. If the input {@code value}
1677      * is {@code null}, we simply return {@code BigDecimal.ZERO}.
1678      *
1679      * @param value the {@link Float} to convert, may be null.
1680      * @param scale the number of digits to the right of the decimal point.
1681      * @param roundingMode a rounding behavior for numerical operations capable of
1682      *  discarding precision.
1683      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1684      * @since 3.8
1685      */
1686     public static BigDecimal toScaledBigDecimal(final Float value, final int scale, final RoundingMode roundingMode) {
1687         if (value == null) {
1688             return BigDecimal.ZERO;
1689         }
1690         return toScaledBigDecimal(
1691             BigDecimal.valueOf(value),
1692             scale,
1693             roundingMode
1694         );
1695     }
1696 
1697     /**
1698      * Converts a {@link String} to a {@link BigDecimal} with a scale of
1699      * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied
1700      * {@code value} is null, then {@code BigDecimal.ZERO} is returned.
1701      *
1702      * <p>Note, the scale of a {@link BigDecimal} is the number of digits to the right of the
1703      * decimal point.</p>
1704      *
1705      * @param value the {@link String} to convert, may be null.
1706      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1707      * @since 3.8
1708      */
1709     public static BigDecimal toScaledBigDecimal(final String value) {
1710         return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN);
1711     }
1712 
1713     /**
1714      * Converts a {@link String} to a {@link BigDecimal} whose scale is the
1715      * specified value with a {@link RoundingMode} applied. If the input {@code value}
1716      * is {@code null}, we simply return {@code BigDecimal.ZERO}.
1717      *
1718      * @param value the {@link String} to convert, may be null.
1719      * @param scale the number of digits to the right of the decimal point.
1720      * @param roundingMode a rounding behavior for numerical operations capable of
1721      *  discarding precision.
1722      * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1723      * @since 3.8
1724      */
1725     public static BigDecimal toScaledBigDecimal(final String value, final int scale, final RoundingMode roundingMode) {
1726         if (value == null) {
1727             return BigDecimal.ZERO;
1728         }
1729         return toScaledBigDecimal(
1730             createBigDecimal(value),
1731             scale,
1732             roundingMode
1733         );
1734     }
1735 
1736     /**
1737      * Converts a {@link String} to a {@code short}, returning
1738      * {@code zero} if the conversion fails.
1739      *
1740      * <p>If the string is {@code null}, {@code zero} is returned.</p>
1741      *
1742      * <pre>
1743      *   NumberUtils.toShort(null) = 0
1744      *   NumberUtils.toShort("")   = 0
1745      *   NumberUtils.toShort("1")  = 1
1746      * </pre>
1747      *
1748      * @param str  the string to convert, may be null
1749      * @return the short represented by the string, or {@code zero} if
1750      *  conversion fails
1751      * @since 2.5
1752      */
1753     public static short toShort(final String str) {
1754         return toShort(str, (short) 0);
1755     }
1756 
1757     /**
1758      * Converts a {@link String} to an {@code short}, returning a
1759      * default value if the conversion fails.
1760      *
1761      * <p>If the string is {@code null}, the default value is returned.</p>
1762      *
1763      * <pre>
1764      *   NumberUtils.toShort(null, 1) = 1
1765      *   NumberUtils.toShort("", 1)   = 1
1766      *   NumberUtils.toShort("1", 0)  = 1
1767      * </pre>
1768      *
1769      * @param str  the string to convert, may be null
1770      * @param defaultValue  the default value
1771      * @return the short represented by the string, or the default if conversion fails
1772      * @since 2.5
1773      */
1774     public static short toShort(final String str, final short defaultValue) {
1775         try {
1776             return Short.parseShort(str);
1777         } catch (final RuntimeException e) {
1778             return defaultValue;
1779         }
1780     }
1781 
1782     /**
1783      * Checks if the specified array is neither null nor empty.
1784      *
1785      * @param array  the array to check
1786      * @throws IllegalArgumentException if {@code array} is empty
1787      * @throws NullPointerException if {@code array} is {@code null}
1788      */
1789     private static void validateArray(final Object array) {
1790         Objects.requireNonNull(array, "array");
1791         Validate.isTrue(Array.getLength(array) != 0, "Array cannot be empty.");
1792     }
1793 
1794     private static boolean withDecimalsParsing(final String str, final int beginIdx) {
1795         int decimalPoints = 0;
1796         for (int i = beginIdx; i < str.length(); i++) {
1797             final char ch = str.charAt(i);
1798             final boolean isDecimalPoint = ch == '.';
1799             if (isDecimalPoint) {
1800                 decimalPoints++;
1801             }
1802             if (decimalPoints > 1) {
1803                 return false;
1804             }
1805             if (!isDecimalPoint && !Character.isDigit(ch)) {
1806                 return false;
1807             }
1808         }
1809         return true;
1810     }
1811 
1812     /**
1813      * {@link NumberUtils} instances should NOT be constructed in standard programming.
1814      * Instead, the class should be used as {@code NumberUtils.toInt("6");}.
1815      *
1816      * <p>This constructor is public to permit tools that require a JavaBean instance
1817      * to operate.</p>
1818      *
1819      * @deprecated TODO Make private in 4.0.
1820      */
1821     @Deprecated
1822     public NumberUtils() {
1823         // empty
1824     }
1825 }