Class LoessInterpolator
- java.lang.Object
-
- org.apache.commons.math4.legacy.analysis.interpolation.LoessInterpolator
-
- All Implemented Interfaces:
UnivariateInterpolator
public class LoessInterpolator extends Object implements UnivariateInterpolator
Implements the Local Regression Algorithm (also Loess, Lowess) for interpolation of real univariate functions.For reference, see William S. Cleveland - Robust Locally Weighted Regression and Smoothing Scatterplots
This class implements both the loess method and serves as an interpolation adapter to it, allowing one to build a spline on the obtained loess fit.
- Since:
- 2.0
-
-
Field Summary
Fields Modifier and Type Field Description static double
DEFAULT_ACCURACY
Default value for accuracy.static double
DEFAULT_BANDWIDTH
Default value of the bandwidth parameter.static int
DEFAULT_ROBUSTNESS_ITERS
Default value of the number of robustness iterations.
-
Constructor Summary
Constructors Constructor Description LoessInterpolator()
Constructs a newLoessInterpolator
with a bandwidth ofDEFAULT_BANDWIDTH
,DEFAULT_ROBUSTNESS_ITERS
robustness iterations and an accuracy of {#link #DEFAULT_ACCURACY}.LoessInterpolator(double bandwidth, int robustnessIters)
Construct a newLoessInterpolator
with given bandwidth and number of robustness iterations.LoessInterpolator(double bandwidth, int robustnessIters, double accuracy)
Construct a newLoessInterpolator
with given bandwidth, number of robustness iterations and accuracy.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description PolynomialSplineFunction
interpolate(double[] xval, double[] yval)
Compute an interpolating function by performing a loess fit on the data at the original abscissae and then building a cubic spline with aSplineInterpolator
on the resulting fit.double[]
smooth(double[] xval, double[] yval)
Compute a loess fit on the data at the original abscissae.double[]
smooth(double[] xval, double[] yval, double[] weights)
Compute a weighted loess fit on the data at the original abscissae.
-
-
-
Field Detail
-
DEFAULT_BANDWIDTH
public static final double DEFAULT_BANDWIDTH
Default value of the bandwidth parameter.- See Also:
- Constant Field Values
-
DEFAULT_ROBUSTNESS_ITERS
public static final int DEFAULT_ROBUSTNESS_ITERS
Default value of the number of robustness iterations.- See Also:
- Constant Field Values
-
DEFAULT_ACCURACY
public static final double DEFAULT_ACCURACY
Default value for accuracy.- Since:
- 2.1
- See Also:
- Constant Field Values
-
-
Constructor Detail
-
LoessInterpolator
public LoessInterpolator()
Constructs a newLoessInterpolator
with a bandwidth ofDEFAULT_BANDWIDTH
,DEFAULT_ROBUSTNESS_ITERS
robustness iterations and an accuracy of {#link #DEFAULT_ACCURACY}. SeeLoessInterpolator(double, int, double)
for an explanation of the parameters.
-
LoessInterpolator
public LoessInterpolator(double bandwidth, int robustnessIters)
Construct a newLoessInterpolator
with given bandwidth and number of robustness iterations.Calling this constructor is equivalent to calling {link
LoessInterpolator(bandwidth, robustnessIters, LoessInterpolator.DEFAULT_ACCURACY)
- Parameters:
bandwidth
- when computing the loess fit at a particular point, this fraction of source points closest to the current point is taken into account for computing a least-squares regression. A sensible value is usually 0.25 to 0.5, the default value isDEFAULT_BANDWIDTH
.robustnessIters
- This many robustness iterations are done. A sensible value is usually 0 (just the initial fit without any robustness iterations) to 4, the default value isDEFAULT_ROBUSTNESS_ITERS
.- See Also:
LoessInterpolator(double, int, double)
-
LoessInterpolator
public LoessInterpolator(double bandwidth, int robustnessIters, double accuracy) throws OutOfRangeException, NotPositiveException
Construct a newLoessInterpolator
with given bandwidth, number of robustness iterations and accuracy.- Parameters:
bandwidth
- when computing the loess fit at a particular point, this fraction of source points closest to the current point is taken into account for computing a least-squares regression. A sensible value is usually 0.25 to 0.5, the default value isDEFAULT_BANDWIDTH
.robustnessIters
- This many robustness iterations are done. A sensible value is usually 0 (just the initial fit without any robustness iterations) to 4, the default value isDEFAULT_ROBUSTNESS_ITERS
.accuracy
- If the median residual at a certain robustness iteration is less than this amount, no more iterations are done.- Throws:
OutOfRangeException
- if bandwidth does not lie in the interval [0,1].NotPositiveException
- ifrobustnessIters
is negative.- Since:
- 2.1
- See Also:
LoessInterpolator(double, int)
-
-
Method Detail
-
interpolate
public final PolynomialSplineFunction interpolate(double[] xval, double[] yval) throws NonMonotonicSequenceException, DimensionMismatchException, NoDataException, NotFiniteNumberException, NumberIsTooSmallException
Compute an interpolating function by performing a loess fit on the data at the original abscissae and then building a cubic spline with aSplineInterpolator
on the resulting fit.- Specified by:
interpolate
in interfaceUnivariateInterpolator
- Parameters:
xval
- the arguments for the interpolation pointsyval
- the values for the interpolation points- Returns:
- A cubic spline built upon a loess fit to the data at the original abscissae
- Throws:
NonMonotonicSequenceException
- ifxval
not sorted in strictly increasing order.DimensionMismatchException
- ifxval
andyval
have different sizes.NoDataException
- ifxval
oryval
has zero size.NotFiniteNumberException
- if any of the arguments and values are not finite real numbers.NumberIsTooSmallException
- if the bandwidth is too small to accommodate the size of the input data (i.e. the bandwidth must be larger than 2/n).
-
smooth
public final double[] smooth(double[] xval, double[] yval, double[] weights) throws NonMonotonicSequenceException, DimensionMismatchException, NoDataException, NotFiniteNumberException, NumberIsTooSmallException
Compute a weighted loess fit on the data at the original abscissae.- Parameters:
xval
- Arguments for the interpolation points.yval
- Values for the interpolation points.weights
- point weights: coefficients by which the robustness weight of a point is multiplied.- Returns:
- the values of the loess fit at corresponding original abscissae.
- Throws:
NonMonotonicSequenceException
- ifxval
not sorted in strictly increasing order.DimensionMismatchException
- ifxval
andyval
have different sizes.NoDataException
- ifxval
oryval
has zero size.NotFiniteNumberException
- if any of the arguments and values are not finite real numbers.NumberIsTooSmallException
- if the bandwidth is too small to accommodate the size of the input data (i.e. the bandwidth must be larger than 2/n).- Since:
- 2.1
-
smooth
public final double[] smooth(double[] xval, double[] yval) throws NonMonotonicSequenceException, DimensionMismatchException, NoDataException, NotFiniteNumberException, NumberIsTooSmallException
Compute a loess fit on the data at the original abscissae.- Parameters:
xval
- the arguments for the interpolation pointsyval
- the values for the interpolation points- Returns:
- values of the loess fit at corresponding original abscissae
- Throws:
NonMonotonicSequenceException
- ifxval
not sorted in strictly increasing order.DimensionMismatchException
- ifxval
andyval
have different sizes.NoDataException
- ifxval
oryval
has zero size.NotFiniteNumberException
- if any of the arguments and values are not finite real numbers.NumberIsTooSmallException
- if the bandwidth is too small to accommodate the size of the input data (i.e. the bandwidth must be larger than 2/n).
-
-