Class EigenDecomposition
- java.lang.Object
-
- org.apache.commons.math4.legacy.linear.EigenDecomposition
-
public class EigenDecomposition extends Object
Calculates the eigen decomposition of a real matrix.The eigen decomposition of matrix A is a set of two matrices: V and D such that A = V × D × VT. A, V and D are all m × m matrices.
This class is similar in spirit to the
EigenvalueDecomposition
class from the JAMA library, with the following changes:- a
getVt
method has been added, - two
getRealEigenvalue
andgetImagEigenvalue
methods to pick up a single eigenvalue have been added, - a
getEigenvector
method to pick up a single eigenvector has been added, - a
getDeterminant
method has been added. - a
getSolver
method has been added.
As of 3.1, this class supports general real matrices (both symmetric and non-symmetric):
If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal, i.e.
A = V.multiply(D.multiply(V.transpose()))
andV.multiply(V.transpose())
equals the identity matrix.If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2 blocks:
[lambda, mu ] [ -mu, lambda]
The columns of V represent the eigenvectors in the sense thatA*V = V*D
, i.e. A.multiply(V) equals V.multiply(D). The matrix V may be badly conditioned, or even singular, so the validity of the equationA = V*D*inverse(V)
depends upon the condition of V.This implementation is based on the paper by A. Drubrulle, R.S. Martin and J.H. Wilkinson "The Implicit QL Algorithm" in Wilksinson and Reinsch (1971) Handbook for automatic computation, vol. 2, Linear algebra, Springer-Verlag, New-York.
- a
-
-
Constructor Summary
Constructors Constructor Description EigenDecomposition(double[] main, double[] secondary)
Calculates the eigen decomposition of the symmetric tridiagonal matrix.EigenDecomposition(RealMatrix matrix)
Calculates the eigen decomposition of the given real matrix.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description RealMatrix
getD()
Gets the block diagonal matrix D of the decomposition.double
getDeterminant()
Computes the determinant of the matrix.RealVector
getEigenvector(int i)
Gets a copy of the ith eigenvector of the original matrix.double
getImagEigenvalue(int i)
Gets the imaginary part of the ith eigenvalue of the original matrix.double[]
getImagEigenvalues()
Gets a copy of the imaginary parts of the eigenvalues of the original matrix.double
getRealEigenvalue(int i)
Returns the real part of the ith eigenvalue of the original matrix.double[]
getRealEigenvalues()
Gets a copy of the real parts of the eigenvalues of the original matrix.DecompositionSolver
getSolver()
Gets a solver for finding the A × X = B solution in exact linear sense.RealMatrix
getSquareRoot()
Computes the square-root of the matrix.RealMatrix
getV()
Gets the matrix V of the decomposition.RealMatrix
getVT()
Gets the transpose of the matrix V of the decomposition.boolean
hasComplexEigenvalues()
Returns whether the calculated eigen values are complex or real.
-
-
-
Constructor Detail
-
EigenDecomposition
public EigenDecomposition(RealMatrix matrix) throws MathArithmeticException
Calculates the eigen decomposition of the given real matrix.Supports decomposition of a general matrix since 3.1.
- Parameters:
matrix
- Matrix to decompose.- Throws:
MaxCountExceededException
- if the algorithm fails to converge.MathArithmeticException
- if the decomposition of a general matrix results in a matrix with zero norm- Since:
- 3.1
-
EigenDecomposition
public EigenDecomposition(double[] main, double[] secondary)
Calculates the eigen decomposition of the symmetric tridiagonal matrix. The Householder matrix is assumed to be the identity matrix.- Parameters:
main
- Main diagonal of the symmetric tridiagonal form.secondary
- Secondary of the tridiagonal form.- Throws:
MaxCountExceededException
- if the algorithm fails to converge.- Since:
- 3.1
-
-
Method Detail
-
getV
public RealMatrix getV()
Gets the matrix V of the decomposition. V is an orthogonal matrix, i.e. its transpose is also its inverse. The columns of V are the eigenvectors of the original matrix. No assumption is made about the orientation of the system axes formed by the columns of V (e.g. in a 3-dimension space, V can form a left- or right-handed system).- Returns:
- the V matrix.
-
getD
public RealMatrix getD()
Gets the block diagonal matrix D of the decomposition. D is a block diagonal matrix. Real eigenvalues are on the diagonal while complex values are on 2x2 blocks { {real +imaginary}, {-imaginary, real} }.- Returns:
- the D matrix.
- See Also:
getRealEigenvalues()
,getImagEigenvalues()
-
getVT
public RealMatrix getVT()
Gets the transpose of the matrix V of the decomposition. V is an orthogonal matrix, i.e. its transpose is also its inverse. The columns of V are the eigenvectors of the original matrix. No assumption is made about the orientation of the system axes formed by the columns of V (e.g. in a 3-dimension space, V can form a left- or right-handed system).- Returns:
- the transpose of the V matrix.
-
hasComplexEigenvalues
public boolean hasComplexEigenvalues()
Returns whether the calculated eigen values are complex or real.The method performs a zero check for each element of the
getImagEigenvalues()
array and returnstrue
if any element is not equal to zero.- Returns:
true
if the eigen values are complex,false
otherwise- Since:
- 3.1
-
getRealEigenvalues
public double[] getRealEigenvalues()
Gets a copy of the real parts of the eigenvalues of the original matrix.- Returns:
- a copy of the real parts of the eigenvalues of the original matrix.
- See Also:
getD()
,getRealEigenvalue(int)
,getImagEigenvalues()
-
getRealEigenvalue
public double getRealEigenvalue(int i)
Returns the real part of the ith eigenvalue of the original matrix.- Parameters:
i
- index of the eigenvalue (counting from 0)- Returns:
- real part of the ith eigenvalue of the original matrix.
- See Also:
getD()
,getRealEigenvalues()
,getImagEigenvalue(int)
-
getImagEigenvalues
public double[] getImagEigenvalues()
Gets a copy of the imaginary parts of the eigenvalues of the original matrix.- Returns:
- a copy of the imaginary parts of the eigenvalues of the original matrix.
- See Also:
getD()
,getImagEigenvalue(int)
,getRealEigenvalues()
-
getImagEigenvalue
public double getImagEigenvalue(int i)
Gets the imaginary part of the ith eigenvalue of the original matrix.- Parameters:
i
- Index of the eigenvalue (counting from 0).- Returns:
- the imaginary part of the ith eigenvalue of the original matrix.
- See Also:
getD()
,getImagEigenvalues()
,getRealEigenvalue(int)
-
getEigenvector
public RealVector getEigenvector(int i)
Gets a copy of the ith eigenvector of the original matrix.- Parameters:
i
- Index of the eigenvector (counting from 0).- Returns:
- a copy of the ith eigenvector of the original matrix.
- See Also:
getD()
-
getDeterminant
public double getDeterminant()
Computes the determinant of the matrix.- Returns:
- the determinant of the matrix.
-
getSquareRoot
public RealMatrix getSquareRoot()
Computes the square-root of the matrix. This implementation assumes that the matrix is symmetric and positive definite.- Returns:
- the square-root of the matrix.
- Throws:
MathUnsupportedOperationException
- if the matrix is not symmetric or not positive definite.- Since:
- 3.1
-
getSolver
public DecompositionSolver getSolver()
Gets a solver for finding the A × X = B solution in exact linear sense.Since 3.1, eigen decomposition of a general matrix is supported, but the
DecompositionSolver
only supports real eigenvalues.- Returns:
- a solver
- Throws:
MathUnsupportedOperationException
- if the decomposition resulted in complex eigenvalues
-
-