A B C D E F G H I J K L M N O P Q R S T U V W Z 
All Classes All Packages

A

aarstAndVanLaarhoven(double) - Static method in interface org.apache.commons.math4.legacy.optim.nonlinear.scalar.SimulatedAnnealing.CoolingSchedule
Aarst and van Laarhoven (1985) scheme: \[ T_{i + 1} = \frac{T_{i}}{1 + \frac{T_i \ln(1 + \delta)}{3 \sigma}} \]
ABOVE_SIDE - org.apache.commons.math4.legacy.analysis.solvers.AllowedSolution
Only solutions for which values are greater than or equal to zero are acceptable as solutions for root-finding.
abs() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
abs() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Abs - Class in org.apache.commons.math4.legacy.analysis.function
Absolute value function.
Abs() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Abs
 
AbstractConvergenceChecker<PAIR> - Class in org.apache.commons.math4.legacy.optim
Base class for all convergence checker implementations.
AbstractConvergenceChecker(double, double) - Constructor for class org.apache.commons.math4.legacy.optim.AbstractConvergenceChecker
Build an instance with a specified thresholds.
AbstractCurveFitter - Class in org.apache.commons.math4.legacy.fitting
Base class that contains common code for fitting parametric univariate real functions y = f(pi;x), where x is the independent variable and the pi are the parameters.
AbstractCurveFitter() - Constructor for class org.apache.commons.math4.legacy.fitting.AbstractCurveFitter
 
AbstractCurveFitter.TheoreticalValuesFunction - Class in org.apache.commons.math4.legacy.fitting
Vector function for computing function theoretical values.
AbstractEvaluation - Class in org.apache.commons.math4.legacy.fitting.leastsquares
An implementation of LeastSquaresProblem.Evaluation that is designed for extension.
AbstractFieldIntegrator<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode
Base class managing common boilerplate for all integrators.
AbstractFieldIntegrator(Field<T>, String) - Constructor for class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Build an instance.
AbstractFieldMatrix<T extends FieldElement<T>> - Class in org.apache.commons.math4.legacy.linear
Basic implementation of FieldMatrix methods regardless of the underlying storage.
AbstractFieldMatrix() - Constructor for class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Constructor for use with Serializable.
AbstractFieldMatrix(Field<T>) - Constructor for class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Creates a matrix with no data.
AbstractFieldMatrix(Field<T>, int, int) - Constructor for class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Create a new FieldMatrix<T> with the supplied row and column dimensions.
AbstractFieldStepInterpolator<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode.sampling
This abstract class represents an interpolator over the last step during an ODE integration.
AbstractFieldStepInterpolator(boolean, FieldODEStateAndDerivative<T>, FieldODEStateAndDerivative<T>, FieldODEStateAndDerivative<T>, FieldODEStateAndDerivative<T>, FieldEquationsMapper<T>) - Constructor for class org.apache.commons.math4.legacy.ode.sampling.AbstractFieldStepInterpolator
Simple constructor.
AbstractIntegerDistribution - Class in org.apache.commons.math4.legacy.distribution
Base class for integer-valued discrete distributions.
AbstractIntegerDistribution() - Constructor for class org.apache.commons.math4.legacy.distribution.AbstractIntegerDistribution
 
AbstractIntegrator - Class in org.apache.commons.math4.legacy.ode
Base class managing common boilerplate for all integrators.
AbstractIntegrator() - Constructor for class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Build an instance with a null name.
AbstractIntegrator(String) - Constructor for class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Build an instance.
AbstractListChromosome<T> - Class in org.apache.commons.math4.legacy.genetics
Chromosome represented by an immutable list of a fixed length.
AbstractListChromosome(List<T>) - Constructor for class org.apache.commons.math4.legacy.genetics.AbstractListChromosome
Constructor, copying the input representation.
AbstractListChromosome(List<T>, boolean) - Constructor for class org.apache.commons.math4.legacy.genetics.AbstractListChromosome
Constructor.
AbstractListChromosome(T[]) - Constructor for class org.apache.commons.math4.legacy.genetics.AbstractListChromosome
Constructor, copying the input representation.
AbstractMultipleLinearRegression - Class in org.apache.commons.math4.legacy.stat.regression
Abstract base class for implementations of MultipleLinearRegression.
AbstractMultipleLinearRegression() - Constructor for class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
 
AbstractMultivariateRealDistribution - Class in org.apache.commons.math4.legacy.distribution
Base class for multivariate probability distributions.
AbstractMultivariateRealDistribution(int) - Constructor for class org.apache.commons.math4.legacy.distribution.AbstractMultivariateRealDistribution
 
AbstractOptimizationProblem<PAIR> - Class in org.apache.commons.math4.legacy.optim
Base class for implementing optimization problems.
AbstractOptimizationProblem(int, int, ConvergenceChecker<PAIR>) - Constructor for class org.apache.commons.math4.legacy.optim.AbstractOptimizationProblem
Create an AbstractOptimizationProblem from the given data.
AbstractParameterizable - Class in org.apache.commons.math4.legacy.ode
This abstract class provides boilerplate parameters list.
AbstractParameterizable(String...) - Constructor for class org.apache.commons.math4.legacy.ode.AbstractParameterizable
Simple constructor.
AbstractParameterizable(Collection<String>) - Constructor for class org.apache.commons.math4.legacy.ode.AbstractParameterizable
Simple constructor.
AbstractPolynomialSolver - Class in org.apache.commons.math4.legacy.analysis.solvers
Base class for solvers.
AbstractPolynomialSolver(double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.AbstractPolynomialSolver
Construct a solver with given absolute accuracy.
AbstractPolynomialSolver(double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.AbstractPolynomialSolver
Construct a solver with given accuracies.
AbstractPolynomialSolver(double, double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.AbstractPolynomialSolver
Construct a solver with given accuracies.
AbstractRealDistribution - Class in org.apache.commons.math4.legacy.distribution
Base class for probability distributions on the reals.
AbstractRealDistribution() - Constructor for class org.apache.commons.math4.legacy.distribution.AbstractRealDistribution
 
AbstractRealMatrix - Class in org.apache.commons.math4.legacy.linear
Basic implementation of RealMatrix methods regardless of the underlying storage.
AbstractRealMatrix() - Constructor for class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Creates a matrix with no data.
AbstractRealMatrix(int, int) - Constructor for class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Create a new RealMatrix with the supplied row and column dimensions.
AbstractStepInterpolator - Class in org.apache.commons.math4.legacy.ode.sampling
This abstract class represents an interpolator over the last step during an ODE integration.
AbstractStepInterpolator() - Constructor for class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Simple constructor.
AbstractStepInterpolator(double[], boolean, EquationsMapper, EquationsMapper[]) - Constructor for class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Simple constructor.
AbstractStepInterpolator(AbstractStepInterpolator) - Constructor for class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Copy constructor.
AbstractStorelessUnivariateStatistic - Class in org.apache.commons.math4.legacy.stat.descriptive
Abstract base class for implementations of the StorelessUnivariateStatistic interface.
AbstractStorelessUnivariateStatistic() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.AbstractStorelessUnivariateStatistic
 
AbstractUnivariateDifferentiableSolver - Class in org.apache.commons.math4.legacy.analysis.solvers
Provide a default implementation for several functions useful to generic solvers.
AbstractUnivariateDifferentiableSolver(double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.AbstractUnivariateDifferentiableSolver
Construct a solver with given absolute accuracy.
AbstractUnivariateDifferentiableSolver(double, double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.AbstractUnivariateDifferentiableSolver
Construct a solver with given accuracies.
AbstractUnivariateSolver - Class in org.apache.commons.math4.legacy.analysis.solvers
Base class for solvers.
AbstractUnivariateSolver(double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.AbstractUnivariateSolver
Construct a solver with given absolute accuracy.
AbstractUnivariateSolver(double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.AbstractUnivariateSolver
Construct a solver with given accuracies.
AbstractUnivariateSolver(double, double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.AbstractUnivariateSolver
Construct a solver with given accuracies.
AbstractUnivariateStatistic - Class in org.apache.commons.math4.legacy.stat.descriptive
Abstract base class for implementations of the UnivariateStatistic interface.
AbstractUnivariateStatistic() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.AbstractUnivariateStatistic
 
acceptStep(AbstractFieldStepInterpolator<T>, T) - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Accept a step, triggering events and step handlers.
acceptStep(AbstractStepInterpolator, double[], double[], double) - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Accept a step, triggering events and step handlers.
acos() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
acos() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
acos(double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute arc cosine of a derivative structure.
Acos - Class in org.apache.commons.math4.legacy.analysis.function
Arc-cosine function.
Acos() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Acos
 
acosh() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
acosh() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
acosh(double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute inverse hyperbolic cosine of a derivative structure.
Acosh - Class in org.apache.commons.math4.legacy.analysis.function
Hyperbolic arc-cosine function.
Acosh() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Acosh
 
Action - Enum in org.apache.commons.math4.legacy.ode.events
Enumerate for actions to be performed when an event occurs during ODE integration.
AdamsBashforthFieldIntegrator<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements explicit Adams-Bashforth integrators for Ordinary Differential Equations.
AdamsBashforthFieldIntegrator(Field<T>, int, double, double, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.AdamsBashforthFieldIntegrator
Build an Adams-Bashforth integrator with the given order and step control parameters.
AdamsBashforthFieldIntegrator(Field<T>, int, double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.AdamsBashforthFieldIntegrator
Build an Adams-Bashforth integrator with the given order and step control parameters.
AdamsBashforthIntegrator - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements explicit Adams-Bashforth integrators for Ordinary Differential Equations.
AdamsBashforthIntegrator(int, double, double, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.AdamsBashforthIntegrator
Build an Adams-Bashforth integrator with the given order and step control parameters.
AdamsBashforthIntegrator(int, double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.AdamsBashforthIntegrator
Build an Adams-Bashforth integrator with the given order and step control parameters.
AdamsFieldIntegrator<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode.nonstiff
Base class for Adams-Bashforth and Adams-Moulton integrators.
AdamsFieldIntegrator(Field<T>, String, int, int, double, double, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.AdamsFieldIntegrator
Build an Adams integrator with the given order and step control parameters.
AdamsFieldIntegrator(Field<T>, String, int, int, double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.AdamsFieldIntegrator
Build an Adams integrator with the given order and step control parameters.
AdamsIntegrator - Class in org.apache.commons.math4.legacy.ode.nonstiff
Base class for Adams-Bashforth and Adams-Moulton integrators.
AdamsIntegrator(String, int, int, double, double, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.AdamsIntegrator
Build an Adams integrator with the given order and step control parameters.
AdamsIntegrator(String, int, int, double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.AdamsIntegrator
Build an Adams integrator with the given order and step control parameters.
AdamsMoultonFieldIntegrator<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements implicit Adams-Moulton integrators for Ordinary Differential Equations.
AdamsMoultonFieldIntegrator(Field<T>, int, double, double, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.AdamsMoultonFieldIntegrator
Build an Adams-Moulton integrator with the given order and error control parameters.
AdamsMoultonFieldIntegrator(Field<T>, int, double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.AdamsMoultonFieldIntegrator
Build an Adams-Moulton integrator with the given order and error control parameters.
AdamsMoultonIntegrator - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements implicit Adams-Moulton integrators for Ordinary Differential Equations.
AdamsMoultonIntegrator(int, double, double, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.AdamsMoultonIntegrator
Build an Adams-Moulton integrator with the given order and error control parameters.
AdamsMoultonIntegrator(int, double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.AdamsMoultonIntegrator
Build an Adams-Moulton integrator with the given order and error control parameters.
AdamsNordsieckFieldTransformer<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode.nonstiff
Transformer to Nordsieck vectors for Adams integrators.
AdamsNordsieckTransformer - Class in org.apache.commons.math4.legacy.ode.nonstiff
Transformer to Nordsieck vectors for Adams integrators.
AdaptiveStepsizeFieldIntegrator<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode.nonstiff
This abstract class holds the common part of all adaptive stepsize integrators for Ordinary Differential Equations.
AdaptiveStepsizeFieldIntegrator(Field<T>, String, double, double, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeFieldIntegrator
Build an integrator with the given stepsize bounds.
AdaptiveStepsizeFieldIntegrator(Field<T>, String, double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeFieldIntegrator
Build an integrator with the given stepsize bounds.
AdaptiveStepsizeIntegrator - Class in org.apache.commons.math4.legacy.ode.nonstiff
This abstract class holds the common part of all adaptive stepsize integrators for Ordinary Differential Equations.
AdaptiveStepsizeIntegrator(String, double, double, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
Build an integrator with the given stepsize bounds.
AdaptiveStepsizeIntegrator(String, double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
Build an integrator with the given stepsize bounds.
add(double) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
add(double) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
add(double[], boolean) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.InterpolatingMicrosphere
Replace i-th facet of the microsphere.
add(double[], int, double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Perform addition of two derivative structures.
add(double, double) - Method in class org.apache.commons.math4.legacy.fitting.WeightedObservedPoints
Adds a point to the sample.
add(double, double, double) - Method in class org.apache.commons.math4.legacy.fitting.WeightedObservedPoints
Adds a point to the sample.
add(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
add(SparseGradient) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
add(UnivariateDifferentiableFunction...) - Static method in class org.apache.commons.math4.legacy.analysis.FunctionUtils
Adds functions.
add(PolynomialFunction) - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction
Add a polynomial to the instance.
add(UnivariateFunction...) - Static method in class org.apache.commons.math4.legacy.analysis.FunctionUtils
Adds functions.
add(FieldDenseMatrix<T>) - Method in class org.apache.commons.math4.legacy.field.linalg.FieldDenseMatrix
Addition.
add(WeightedObservedPoint) - Method in class org.apache.commons.math4.legacy.fitting.WeightedObservedPoints
Adds a point to the sample.
add(Array2DRowFieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Add m to this matrix.
add(Array2DRowRealMatrix) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Compute the sum of this and m.
add(ArrayFieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Compute the sum of this and v.
add(BigReal) - Method in class org.apache.commons.math4.legacy.linear.BigReal
add(BlockFieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Compute the sum of this and m.
add(BlockRealMatrix) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Compute the sum of this matrix and m.
add(DiagonalMatrix) - Method in class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Compute the sum of this and m.
add(FieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Compute the sum of this and m.
add(FieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Compute the sum of this and m.
add(FieldMatrix<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Compute the sum of this and m.
add(FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Compute the sum of this and v.
add(FieldVector<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Compute the sum of this and v.
add(FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Compute the sum of this and v.
add(OpenMapRealMatrix) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealMatrix
Compute the sum of this matrix and m.
add(OpenMapRealVector) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Optimized method to add two OpenMapRealVectors.
add(RealMatrix) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Returns the sum of this and m.
add(RealMatrix) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Returns the sum of this and m.
add(RealMatrix) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Returns the sum of this and m.
add(RealVector) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Compute the sum of this vector and v.
add(RealVector) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Compute the sum of this vector and v.
add(RealVector) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Compute the sum of this vector and v.
add(SparseFieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Optimized method to add sparse vectors.
Add - Class in org.apache.commons.math4.legacy.analysis.function
Add the two operands.
Add() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Add
 
addChromosome(Chromosome) - Method in class org.apache.commons.math4.legacy.genetics.ListPopulation
Add the given chromosome to the population.
addChromosome(Chromosome) - Method in interface org.apache.commons.math4.legacy.genetics.Population
Add the given chromosome to the population.
addChromosomes(Collection<Chromosome>) - Method in class org.apache.commons.math4.legacy.genetics.ListPopulation
Add a Collection of chromosomes to this Population.
addData(double[][]) - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Adds the observations represented by the elements in data.
addData(double, double) - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Adds the observation (x,y) to the regression data set.
addEventHandler(EventHandler, double, double, int) - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Add an event handler to the integrator.
addEventHandler(EventHandler, double, double, int) - Method in interface org.apache.commons.math4.legacy.ode.ODEIntegrator
Add an event handler to the integrator.
addEventHandler(EventHandler, double, double, int, UnivariateSolver) - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Add an event handler to the integrator.
addEventHandler(EventHandler, double, double, int, UnivariateSolver) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.GraggBulirschStoerIntegrator
Add an event handler to the integrator.
addEventHandler(EventHandler, double, double, int, UnivariateSolver) - Method in interface org.apache.commons.math4.legacy.ode.ODEIntegrator
Add an event handler to the integrator.
addEventHandler(FieldEventHandler<T>, double, double, int) - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Add an event handler to the integrator.
addEventHandler(FieldEventHandler<T>, double, double, int) - Method in interface org.apache.commons.math4.legacy.ode.FirstOrderFieldIntegrator
Add an event handler to the integrator.
addEventHandler(FieldEventHandler<T>, double, double, int, BracketedRealFieldUnivariateSolver<T>) - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Add an event handler to the integrator.
addEventHandler(FieldEventHandler<T>, double, double, int, BracketedRealFieldUnivariateSolver<T>) - Method in interface org.apache.commons.math4.legacy.ode.FirstOrderFieldIntegrator
Add an event handler to the integrator.
addInPlace(SparseGradient) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Add in place.
addIterationListener(IterationListener) - Method in class org.apache.commons.math4.legacy.linear.IterationManager
Attaches a listener to this manager.
addObservation(double[], double) - Method in class org.apache.commons.math4.legacy.stat.regression.MillerUpdatingRegression
Adds an observation to the regression model.
addObservation(double[], double) - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Adds one observation to the regression model.
addObservation(double[], double) - Method in interface org.apache.commons.math4.legacy.stat.regression.UpdatingMultipleLinearRegression
Adds one observation to the regression model.
addObservations(double[][], double[]) - Method in class org.apache.commons.math4.legacy.stat.regression.MillerUpdatingRegression
Adds multiple observations to the model.
addObservations(double[][], double[]) - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Adds a series of observations to the regression model.
addObservations(double[][], double[]) - Method in interface org.apache.commons.math4.legacy.stat.regression.UpdatingMultipleLinearRegression
Adds a series of observations to the regression model.
addObserver(SimplexOptimizer.Observer) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.SimplexOptimizer
Register a callback.
addParameterJacobianProvider(ParameterJacobianProvider) - Method in class org.apache.commons.math4.legacy.ode.JacobianMatrices
Add a parameter Jacobian provider.
addPoint(T) - Method in class org.apache.commons.math4.legacy.ml.clustering.Cluster
Add a point to this cluster.
addRule(Pair<T[], T[]>) - Method in class org.apache.commons.math4.legacy.analysis.integration.gauss.BaseRuleFactory
Stores a rule.
addSamplePoint(double, double[]...) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.HermiteInterpolator
Add a sample point.
addSamplePoint(T, T[]...) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.FieldHermiteInterpolator
Add a sample point.
addSecondaryEquations(FieldSecondaryEquations<T>) - Method in class org.apache.commons.math4.legacy.ode.FieldExpandableODE
Add a set of secondary equations to be integrated along with the primary set.
addSecondaryEquations(SecondaryEquations) - Method in class org.apache.commons.math4.legacy.ode.ExpandableStatefulODE
Add a set of secondary equations to be integrated along with the primary set.
addStepHandler(FieldStepHandler<T>) - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Add a step handler to this integrator.
addStepHandler(FieldStepHandler<T>) - Method in interface org.apache.commons.math4.legacy.ode.FirstOrderFieldIntegrator
Add a step handler to this integrator.
addStepHandler(StepHandler) - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Add a step handler to this integrator.
addStepHandler(StepHandler) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.GraggBulirschStoerIntegrator
Add a step handler to this integrator.
addStepHandler(StepHandler) - Method in interface org.apache.commons.math4.legacy.ode.ODEIntegrator
Add a step handler to this integrator.
addToEntry(int, double) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Change an entry at the specified index.
addToEntry(int, double) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Change an entry at the specified index.
addToEntry(int, int, double) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Adds (in place) the specified value to the specified entry of this matrix.
addToEntry(int, int, double) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Adds (in place) the specified value to the specified entry of this matrix.
addToEntry(int, int, double) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Adds (in place) the specified value to the specified entry of this matrix.
addToEntry(int, int, double) - Method in class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Adds (in place) the specified value to the specified entry of this matrix.
addToEntry(int, int, double) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealMatrix
Adds (in place) the specified value to the specified entry of this matrix.
addToEntry(int, int, double) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Adds (in place) the specified value to the specified entry of this matrix.
addToEntry(int, int, T) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Change an entry in the specified row and column.
addToEntry(int, int, T) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Change an entry in the specified row and column.
addToEntry(int, int, T) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Change an entry in the specified row and column.
addToEntry(int, int, T) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Change an entry in the specified row and column.
addToEntry(int, int, T) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldMatrix
Change an entry in the specified row and column.
addValue(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Adds the value to the dataset.
addValue(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Add a value to the data.
addValue(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedDescriptiveStatistics
Adds the value to the dataset.
addValue(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Add a value to the data.
addValue(double[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Add an n-tuple to the data.
addValue(double[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Add an n-tuple to the data.
addValue(T) - Method in class org.apache.commons.math4.legacy.stat.Frequency
Adds 1 to the frequency count for v.
advance(RealVector.Entry) - Method in class org.apache.commons.math4.legacy.linear.RealVector.SparseEntryIterator
Advance an entry up to the next nonzero one.
aggregate(Collection<? extends StatisticalSummary>) - Static method in class org.apache.commons.math4.legacy.stat.descriptive.AggregateSummaryStatistics
Computes aggregate summary statistics.
AggregateSummaryStatistics - Class in org.apache.commons.math4.legacy.stat.descriptive
An aggregator for SummaryStatistics from several data sets or data set partitions.
AggregateSummaryStatistics() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.AggregateSummaryStatistics
Initializes a new AggregateSummaryStatistics with default statistics implementations.
AggregateSummaryStatistics(SummaryStatistics) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.AggregateSummaryStatistics
Initializes a new AggregateSummaryStatistics with the specified statistics object as a prototype for contributing statistics and for the internal aggregate statistics.
AggregateSummaryStatistics(SummaryStatistics, SummaryStatistics) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.AggregateSummaryStatistics
Initializes a new AggregateSummaryStatistics with the specified statistics object as a prototype for contributing statistics and for the internal aggregate statistics.
AgrestiCoullInterval - Class in org.apache.commons.math4.legacy.stat.interval
Implements the Agresti-Coull method for creating a binomial proportion confidence interval.
AgrestiCoullInterval() - Constructor for class org.apache.commons.math4.legacy.stat.interval.AgrestiCoullInterval
 
AkimaSplineInterpolator - Class in org.apache.commons.math4.legacy.analysis.interpolation
Computes a cubic spline interpolation for the data set using the Akima algorithm, as originally formulated by Hiroshi Akima in his 1970 paper "A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures." J.
AkimaSplineInterpolator() - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.AkimaSplineInterpolator
Uses the original Akima algorithm.
AkimaSplineInterpolator(boolean) - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.AkimaSplineInterpolator
 
AllowedSolution - Enum in org.apache.commons.math4.legacy.analysis.solvers
The kinds of solutions that a (bracketed univariate real) root-finding algorithm may accept as solutions.
alongAxes(double[]) - Static method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.Simplex
The start configuration for simplex is built from a box parallel to the canonical axes of the space.
AlternativeHypothesis - Enum in org.apache.commons.math4.legacy.stat.inference
Represents an alternative hypothesis for a hypothesis test.
anovaFValue(Collection<double[]>) - Method in class org.apache.commons.math4.legacy.stat.inference.OneWayAnova
Computes the ANOVA F-value for a collection of double[] arrays.
anovaPValue(Collection<double[]>) - Method in class org.apache.commons.math4.legacy.stat.inference.OneWayAnova
Computes the ANOVA P-value for a collection of double[] arrays.
anovaPValue(Collection<SummaryStatistics>, boolean) - Method in class org.apache.commons.math4.legacy.stat.inference.OneWayAnova
Computes the ANOVA P-value for a collection of SummaryStatistics.
anovaTest(Collection<double[]>, double) - Method in class org.apache.commons.math4.legacy.stat.inference.OneWayAnova
Performs an ANOVA test, evaluating the null hypothesis that there is no difference among the means of the data categories.
ANY_SIDE - org.apache.commons.math4.legacy.analysis.solvers.AllowedSolution
There are no additional side restriction on the solutions for root-finding.
AnyMatrix - Interface in org.apache.commons.math4.legacy.linear
Interface defining very basic matrix operations.
append(double) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Construct a new vector by appending a double to this vector.
append(double) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Construct a new vector by appending a double to this vector.
append(double) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Construct a new vector by appending a double to this vector.
append(ArrayFieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Construct a vector by appending a vector to this vector.
append(ArrayRealVector) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Construct a vector by appending a vector to this vector.
append(FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Construct a vector by appending a vector to this vector.
append(FieldVector<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Construct a vector by appending a vector to this vector.
append(FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Construct a vector by appending a vector to this vector.
append(OpenMapRealVector) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Optimized method to append a OpenMapRealVector.
append(RealVector) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Construct a new vector by appending a vector to this vector.
append(RealVector) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Construct a new vector by appending a vector to this vector.
append(RealVector) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Construct a new vector by appending a vector to this vector.
append(SparseFieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Construct a vector by appending a vector to this vector.
append(ContinuousOutputFieldModel<T>) - Method in class org.apache.commons.math4.legacy.ode.ContinuousOutputFieldModel
Append another model at the end of the instance.
append(ContinuousOutputModel) - Method in class org.apache.commons.math4.legacy.ode.ContinuousOutputModel
Append another model at the end of the instance.
append(StorelessCovariance) - Method in class org.apache.commons.math4.legacy.stat.correlation.StorelessCovariance
Appends sc to this, effectively aggregating the computations in sc with this.
append(SimpleRegression) - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Appends data from another regression calculation to this one.
append(T) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Construct a vector by appending a T to this vector.
append(T) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Construct a vector by appending a T to this vector.
append(T) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Construct a vector by appending a T to this vector.
apply(UnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Apply the given statistic to the data associated with this set of statistics.
apply(UnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedDescriptiveStatistics
Apply the given statistic to the data associated with this set of statistics.
applyAsDouble(double) - Method in interface org.apache.commons.math4.legacy.analysis.UnivariateFunction
applyAsDouble(double, double) - Method in interface org.apache.commons.math4.legacy.analysis.BivariateFunction
approximateP(double, int, int) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
approximateP(double, int, int) - Method in class org.apache.commons.math4.legacy.stat.inference.KolmogorovSmirnovTest
Uses the Kolmogorov-Smirnov distribution to approximate \(P(D_{n,m} > d)\) where \(D_{n,m}\) is the 2-sample Kolmogorov-Smirnov statistic.
Array2DRowFieldMatrix<T extends FieldElement<T>> - Class in org.apache.commons.math4.legacy.linear
Implementation of FieldMatrix<T> using a FieldElement[][] array to store entries.
Array2DRowFieldMatrix(Field<T>) - Constructor for class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Creates a matrix with no data.
Array2DRowFieldMatrix(Field<T>, int, int) - Constructor for class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Create a new FieldMatrix<T> with the supplied row and column dimensions.
Array2DRowFieldMatrix(Field<T>, T[]) - Constructor for class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Create a new (column) FieldMatrix<T> using v as the data for the unique column of the created matrix.
Array2DRowFieldMatrix(Field<T>, T[][]) - Constructor for class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Create a new FieldMatrix<T> using the input array as the underlying data array.
Array2DRowFieldMatrix(Field<T>, T[][], boolean) - Constructor for class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Create a new FieldMatrix<T> using the input array as the underlying data array.
Array2DRowFieldMatrix(T[]) - Constructor for class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Create a new (column) FieldMatrix<T> using v as the data for the unique column of the created matrix.
Array2DRowFieldMatrix(T[][]) - Constructor for class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Create a new FieldMatrix<T> using the input array as the underlying data array.
Array2DRowFieldMatrix(T[][], boolean) - Constructor for class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Create a new FieldMatrix<T> using the input array as the underlying data array.
Array2DRowRealMatrix - Class in org.apache.commons.math4.legacy.linear
Implementation of RealMatrix using a double[][] array to store entries.
Array2DRowRealMatrix() - Constructor for class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Creates a matrix with no data.
Array2DRowRealMatrix(double[]) - Constructor for class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Create a new (column) RealMatrix using v as the data for the unique column of the created matrix.
Array2DRowRealMatrix(double[][]) - Constructor for class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Create a new RealMatrix using the input array as the underlying data array.
Array2DRowRealMatrix(double[][], boolean) - Constructor for class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Create a new RealMatrix using the input array as the underlying data array.
Array2DRowRealMatrix(int, int) - Constructor for class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Create a new RealMatrix with the supplied row and column dimensions.
ArrayFieldVector<T extends FieldElement<T>> - Class in org.apache.commons.math4.legacy.linear
This class implements the FieldVector interface with a FieldElement array.
ArrayFieldVector(int, T) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Construct a vector with preset values.
ArrayFieldVector(Field<T>) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Build a 0-length vector.
ArrayFieldVector(Field<T>, int) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Construct a vector of zeroes.
ArrayFieldVector(Field<T>, T[]) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Construct a vector from an array, copying the input array.
ArrayFieldVector(Field<T>, T[], boolean) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Create a new ArrayFieldVector using the input array as the underlying data array.
ArrayFieldVector(Field<T>, T[], int, int) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Construct a vector from part of a array.
ArrayFieldVector(Field<T>, T[], T[]) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Construct a vector by appending one vector to another vector.
ArrayFieldVector(ArrayFieldVector<T>) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Construct a vector from another vector, using a deep copy.
ArrayFieldVector(ArrayFieldVector<T>, boolean) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Construct a vector from another vector.
ArrayFieldVector(FieldVector<T>) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Construct a vector from another vector, using a deep copy.
ArrayFieldVector(FieldVector<T>, FieldVector<T>) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Construct a vector by appending one vector to another vector.
ArrayFieldVector(FieldVector<T>, T[]) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Construct a vector by appending one vector to another vector.
ArrayFieldVector(T[]) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Construct a vector from an array, copying the input array.
ArrayFieldVector(T[], boolean) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Create a new ArrayFieldVector using the input array as the underlying data array.
ArrayFieldVector(T[], int, int) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Construct a vector from part of a array.
ArrayFieldVector(T[], FieldVector<T>) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Construct a vector by appending one vector to another vector.
ArrayFieldVector(T[], T[]) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Construct a vector by appending one vector to another vector.
ArrayRealVector - Class in org.apache.commons.math4.legacy.linear
This class implements the RealVector interface with a double array.
ArrayRealVector() - Constructor for class org.apache.commons.math4.legacy.linear.ArrayRealVector
Build a 0-length vector.
ArrayRealVector(double[]) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayRealVector
Construct a vector from an array, copying the input array.
ArrayRealVector(double[], boolean) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayRealVector
Create a new ArrayRealVector using the input array as the underlying data array.
ArrayRealVector(double[], double[]) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayRealVector
Construct a vector by appending one vector to another vector.
ArrayRealVector(double[], int, int) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayRealVector
Construct a vector from part of a array.
ArrayRealVector(double[], ArrayRealVector) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayRealVector
Construct a vector by appending one vector to another vector.
ArrayRealVector(int) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayRealVector
Construct a vector of zeroes.
ArrayRealVector(int, double) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayRealVector
Construct a vector with preset values.
ArrayRealVector(Double[]) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayRealVector
Construct a vector from an array.
ArrayRealVector(Double[], int, int) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayRealVector
Construct a vector from part of an array.
ArrayRealVector(ArrayRealVector) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayRealVector
Construct a vector from another vector, using a deep copy.
ArrayRealVector(ArrayRealVector, boolean) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayRealVector
Construct a vector from another vector.
ArrayRealVector(ArrayRealVector, double[]) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayRealVector
Construct a vector by appending one vector to another vector.
ArrayRealVector(ArrayRealVector, ArrayRealVector) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayRealVector
Construct a vector by appending one vector to another vector.
ArrayRealVector(ArrayRealVector, RealVector) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayRealVector
Construct a vector by appending one vector to another vector.
ArrayRealVector(RealVector) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayRealVector
Construct a vector from another vector, using a deep copy.
ArrayRealVector(RealVector, ArrayRealVector) - Constructor for class org.apache.commons.math4.legacy.linear.ArrayRealVector
Construct a vector by appending one vector to another vector.
asin() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
asin() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
asin(double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute arc sine of a derivative structure.
Asin - Class in org.apache.commons.math4.legacy.analysis.function
Arc-sine function.
Asin() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Asin
 
asinh() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
asinh() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
asinh(double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute inverse hyperbolic sine of a derivative structure.
Asinh - Class in org.apache.commons.math4.legacy.analysis.function
Hyperbolic arc-sine function.
Asinh() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Asinh
 
asList() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.Simplex
Creates a (deep) copy of the simplex points.
atan() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
atan() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
atan(double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute arc tangent of a derivative structure.
Atan - Class in org.apache.commons.math4.legacy.analysis.function
Arc-tangent function.
Atan() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Atan
 
atan2(double[], int, double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute two arguments arc tangent of a derivative structure.
atan2(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
atan2(DerivativeStructure, DerivativeStructure) - Static method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Two arguments arc tangent operation.
atan2(SparseGradient) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
atan2(SparseGradient, SparseGradient) - Static method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Two arguments arc tangent operation.
Atan2 - Class in org.apache.commons.math4.legacy.analysis.function
Arc-tangent function.
Atan2() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Atan2
 
atanh() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
atanh() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
atanh(double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute inverse hyperbolic tangent of a derivative structure.
Atanh - Class in org.apache.commons.math4.legacy.analysis.function
Hyperbolic arc-tangent function.
Atanh() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Atanh
 
AVERAGE - org.apache.commons.math4.legacy.stat.ranking.TiesStrategy
Ties get the average of applicable ranks.

B

BaseAbstractUnivariateIntegrator - Class in org.apache.commons.math4.legacy.analysis.integration
Provide a default implementation for several generic functions.
BaseAbstractUnivariateIntegrator(double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.integration.BaseAbstractUnivariateIntegrator
Construct an integrator with given accuracies.
BaseAbstractUnivariateIntegrator(double, double, int, int) - Constructor for class org.apache.commons.math4.legacy.analysis.integration.BaseAbstractUnivariateIntegrator
Construct an integrator with given accuracies and iteration counts.
BaseAbstractUnivariateIntegrator(int, int) - Constructor for class org.apache.commons.math4.legacy.analysis.integration.BaseAbstractUnivariateIntegrator
Construct an integrator with given iteration counts.
BaseAbstractUnivariateSolver<FUNC extends UnivariateFunction> - Class in org.apache.commons.math4.legacy.analysis.solvers
Provide a default implementation for several functions useful to generic solvers.
BaseAbstractUnivariateSolver(double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
Construct a solver with given absolute accuracy.
BaseAbstractUnivariateSolver(double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
Construct a solver with given accuracies.
BaseAbstractUnivariateSolver(double, double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
Construct a solver with given accuracies.
BaseMultiStartMultivariateOptimizer<PAIR> - Class in org.apache.commons.math4.legacy.optim
Base class multi-start optimizer for a multivariate function.
BaseMultiStartMultivariateOptimizer(BaseMultivariateOptimizer<PAIR>, int, Supplier<double[]>) - Constructor for class org.apache.commons.math4.legacy.optim.BaseMultiStartMultivariateOptimizer
Create a multi-start optimizer from a single-start optimizer.
BaseMultivariateOptimizer<PAIR> - Class in org.apache.commons.math4.legacy.optim
Base class for implementing optimizers for multivariate functions.
BaseMultivariateOptimizer(ConvergenceChecker<PAIR>) - Constructor for class org.apache.commons.math4.legacy.optim.BaseMultivariateOptimizer
 
BaseOptimizer<PAIR> - Class in org.apache.commons.math4.legacy.optim
Base class for implementing optimizers.
BaseOptimizer(ConvergenceChecker<PAIR>) - Constructor for class org.apache.commons.math4.legacy.optim.BaseOptimizer
 
BaseOptimizer(ConvergenceChecker<PAIR>, int, int) - Constructor for class org.apache.commons.math4.legacy.optim.BaseOptimizer
 
BaseRuleFactory<T extends Number> - Class in org.apache.commons.math4.legacy.analysis.integration.gauss
Base class for rules that determines the integration nodes and their weights.
BaseRuleFactory() - Constructor for class org.apache.commons.math4.legacy.analysis.integration.gauss.BaseRuleFactory
 
BaseSecantSolver - Class in org.apache.commons.math4.legacy.analysis.solvers
Base class for all bracketing Secant-based methods for root-finding (approximating a zero of a univariate real function).
BaseSecantSolver(double, double, double, BaseSecantSolver.Method) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.BaseSecantSolver
Construct a solver.
BaseSecantSolver(double, double, BaseSecantSolver.Method) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.BaseSecantSolver
Construct a solver.
BaseSecantSolver(double, BaseSecantSolver.Method) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.BaseSecantSolver
Construct a solver.
BaseSecantSolver.Method - Enum in org.apache.commons.math4.legacy.analysis.solvers
Secant-based root-finding methods.
BaseUnivariateSolver<FUNC extends UnivariateFunction> - Interface in org.apache.commons.math4.legacy.analysis.solvers
Interface for (univariate real) rootfinding algorithms.
BELOW_SIDE - org.apache.commons.math4.legacy.analysis.solvers.AllowedSolution
Only solutions for which values are less than or equal to zero are acceptable as solutions for root-finding.
BesselJ - Class in org.apache.commons.math4.legacy.special
This class provides computation methods related to Bessel functions of the first kind.
BesselJ(double) - Constructor for class org.apache.commons.math4.legacy.special.BesselJ
Create a new BesselJ with the given order.
BesselJ.BesselJResult - Class in org.apache.commons.math4.legacy.special
Encapsulates the results returned by BesselJ.rjBesl(double, double, int).
BesselJResult(double[], int) - Constructor for class org.apache.commons.math4.legacy.special.BesselJ.BesselJResult
Create a new BesselJResult with the given values and valid value count.
BicubicInterpolatingFunction - Class in org.apache.commons.math4.legacy.analysis.interpolation
Function that implements the bicubic spline interpolation.
BicubicInterpolatingFunction(double[], double[], double[][], double[][], double[][], double[][]) - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.BicubicInterpolatingFunction
 
BicubicInterpolatingFunction(double[], double[], double[][], double[][], double[][], double[][], boolean) - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.BicubicInterpolatingFunction
 
BicubicInterpolator - Class in org.apache.commons.math4.legacy.analysis.interpolation
BicubicInterpolator() - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.BicubicInterpolator
Default constructor.
BicubicInterpolator(boolean) - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.BicubicInterpolator
Creates an interpolator.
bigDecimalValue() - Method in class org.apache.commons.math4.legacy.linear.BigReal
Get the BigDecimal value corresponding to the instance.
BigReal - Class in org.apache.commons.math4.legacy.linear
Arbitrary precision decimal number.
BigReal(char[]) - Constructor for class org.apache.commons.math4.legacy.linear.BigReal
Build an instance from a characters representation.
BigReal(char[], int, int) - Constructor for class org.apache.commons.math4.legacy.linear.BigReal
Build an instance from a characters representation.
BigReal(char[], int, int, MathContext) - Constructor for class org.apache.commons.math4.legacy.linear.BigReal
Build an instance from a characters representation.
BigReal(char[], MathContext) - Constructor for class org.apache.commons.math4.legacy.linear.BigReal
Build an instance from a characters representation.
BigReal(double) - Constructor for class org.apache.commons.math4.legacy.linear.BigReal
Build an instance from a double.
BigReal(double, MathContext) - Constructor for class org.apache.commons.math4.legacy.linear.BigReal
Build an instance from a double.
BigReal(int) - Constructor for class org.apache.commons.math4.legacy.linear.BigReal
Build an instance from an int.
BigReal(int, MathContext) - Constructor for class org.apache.commons.math4.legacy.linear.BigReal
Build an instance from an int.
BigReal(long) - Constructor for class org.apache.commons.math4.legacy.linear.BigReal
Build an instance from a long.
BigReal(long, MathContext) - Constructor for class org.apache.commons.math4.legacy.linear.BigReal
Build an instance from a long.
BigReal(String) - Constructor for class org.apache.commons.math4.legacy.linear.BigReal
Build an instance from a String representation.
BigReal(String, MathContext) - Constructor for class org.apache.commons.math4.legacy.linear.BigReal
Build an instance from a String representation.
BigReal(BigDecimal) - Constructor for class org.apache.commons.math4.legacy.linear.BigReal
Build an instance from a BigDecimal.
BigReal(BigInteger) - Constructor for class org.apache.commons.math4.legacy.linear.BigReal
Build an instance from a BigInteger.
BigReal(BigInteger, int) - Constructor for class org.apache.commons.math4.legacy.linear.BigReal
Build an instance from an unscaled BigInteger.
BigReal(BigInteger, int, MathContext) - Constructor for class org.apache.commons.math4.legacy.linear.BigReal
Build an instance from an unscaled BigInteger.
BigReal(BigInteger, MathContext) - Constructor for class org.apache.commons.math4.legacy.linear.BigReal
Build an instance from a BigInteger.
BigRealField - Class in org.apache.commons.math4.legacy.linear
Representation of real numbers with arbitrary precision field.
BinaryChromosome - Class in org.apache.commons.math4.legacy.genetics
Chromosome represented by a vector of 0s and 1s.
BinaryChromosome(Integer[]) - Constructor for class org.apache.commons.math4.legacy.genetics.BinaryChromosome
Constructor.
BinaryChromosome(List<Integer>) - Constructor for class org.apache.commons.math4.legacy.genetics.BinaryChromosome
Constructor.
BinaryMutation - Class in org.apache.commons.math4.legacy.genetics
Mutation for BinaryChromosomes.
BinaryMutation() - Constructor for class org.apache.commons.math4.legacy.genetics.BinaryMutation
 
BinomialConfidenceInterval - Interface in org.apache.commons.math4.legacy.stat.interval
Interface to generate confidence intervals for a binomial proportion.
binomialTest(int, int, double, AlternativeHypothesis) - Method in class org.apache.commons.math4.legacy.stat.inference.BinomialTest
Returns the observed significance level, or p-value, associated with a Binomial test.
binomialTest(int, int, double, AlternativeHypothesis, double) - Method in class org.apache.commons.math4.legacy.stat.inference.BinomialTest
Returns whether the null hypothesis can be rejected with the given confidence level.
BinomialTest - Class in org.apache.commons.math4.legacy.stat.inference
Implements binomial test statistics.
BinomialTest() - Constructor for class org.apache.commons.math4.legacy.stat.inference.BinomialTest
 
BisectionSolver - Class in org.apache.commons.math4.legacy.analysis.solvers
Implements the bisection algorithm for finding zeros of univariate real functions.
BisectionSolver() - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.BisectionSolver
Construct a solver with default accuracy (1e-6).
BisectionSolver(double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.BisectionSolver
Construct a solver.
BisectionSolver(double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.BisectionSolver
Construct a solver.
BivariateFunction - Interface in org.apache.commons.math4.legacy.analysis
An interface representing a bivariate real function.
BivariateGridInterpolator - Interface in org.apache.commons.math4.legacy.analysis.interpolation
Interface representing a bivariate real interpolating function where the sample points must be specified on a regular grid.
BLAND - org.apache.commons.math4.legacy.optim.linear.PivotSelectionRule
The first variable with a negative coefficient in the objective function row will be chosen as entering variable.
BLOCK_SIZE - Static variable in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Block size.
BLOCK_SIZE - Static variable in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Block size.
BlockFieldMatrix<T extends FieldElement<T>> - Class in org.apache.commons.math4.legacy.linear
Cache-friendly implementation of FieldMatrix using a flat arrays to store square blocks of the matrix.
BlockFieldMatrix(int, int, T[][], boolean) - Constructor for class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Create a new dense matrix copying entries from block layout data.
BlockFieldMatrix(Field<T>, int, int) - Constructor for class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Create a new matrix with the supplied row and column dimensions.
BlockFieldMatrix(T[][]) - Constructor for class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Create a new dense matrix copying entries from raw layout data.
blockInverse(RealMatrix, int) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Computes the inverse of the given matrix by splitting it into 4 sub-matrices.
BlockRealMatrix - Class in org.apache.commons.math4.legacy.linear
Cache-friendly implementation of RealMatrix using a flat arrays to store square blocks of the matrix.
BlockRealMatrix(double[][]) - Constructor for class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Create a new dense matrix copying entries from raw layout data.
BlockRealMatrix(int, int) - Constructor for class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Create a new matrix with the supplied row and column dimensions.
BlockRealMatrix(int, int, double[][], boolean) - Constructor for class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Create a new dense matrix copying entries from block layout data.
BOBYQAOptimizer - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv
Powell's BOBYQA algorithm.
BOBYQAOptimizer(int) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.BOBYQAOptimizer
 
BOBYQAOptimizer(int, double, double) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.BOBYQAOptimizer
 
bootstrap(double[], double[], int, boolean, UniformRandomProvider) - Method in class org.apache.commons.math4.legacy.stat.inference.KolmogorovSmirnovTest
Estimates the p-value of a two-sample Kolmogorov-Smirnov test evaluating the null hypothesis that x and y are samples drawn from the same probability distribution.
BOTH - org.apache.commons.math4.legacy.ode.sampling.StepNormalizerBounds
Include both the first and last points.
boundedToUnbounded(double[]) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateFunctionMappingAdapter
Maps an array from bounded to unbounded.
bracket(UnivariateFunction, double, double, double) - Static method in class org.apache.commons.math4.legacy.analysis.solvers.UnivariateSolverUtils
This method simply calls bracket(function, initial, lowerBound, upperBound, q, r, maximumIterations) with q and r set to 1.0 and maximumIterations set to Integer.MAX_VALUE.
bracket(UnivariateFunction, double, double, double, double, double, int) - Static method in class org.apache.commons.math4.legacy.analysis.solvers.UnivariateSolverUtils
This method attempts to find two values a and b satisfying lowerBound <= a < initial < b <= upperBound f(a) * f(b) <= 0 If f is continuous on [a,b], this means that a and b bracket a root of f.
bracket(UnivariateFunction, double, double, double, int) - Static method in class org.apache.commons.math4.legacy.analysis.solvers.UnivariateSolverUtils
This method simply calls bracket(function, initial, lowerBound, upperBound, q, r, maximumIterations) with q and r set to 1.0.
BracketedRealFieldUnivariateSolver<T extends RealFieldElement<T>> - Interface in org.apache.commons.math4.legacy.analysis.solvers
Interface for (univariate real) root-finding algorithms that maintain a bracketed solution.
BracketedUnivariateSolver<FUNC extends UnivariateFunction> - Interface in org.apache.commons.math4.legacy.analysis.solvers
Interface for (univariate real) root-finding algorithms that maintain a bracketed solution.
BracketFinder - Class in org.apache.commons.math4.legacy.optim.univariate
Provide an interval that brackets a local optimum of a function.
BracketFinder() - Constructor for class org.apache.commons.math4.legacy.optim.univariate.BracketFinder
Constructor with default values 100, 500 (see the other constructor).
BracketFinder(double, int) - Constructor for class org.apache.commons.math4.legacy.optim.univariate.BracketFinder
Create a bracketing interval finder.
BracketingNthOrderBrentSolver - Class in org.apache.commons.math4.legacy.analysis.solvers
This class implements a modification of the Brent algorithm.
BracketingNthOrderBrentSolver() - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.BracketingNthOrderBrentSolver
Construct a solver with default accuracy and maximal order (1e-6 and 5 respectively).
BracketingNthOrderBrentSolver(double, double, double, int) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.BracketingNthOrderBrentSolver
Construct a solver.
BracketingNthOrderBrentSolver(double, double, int) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.BracketingNthOrderBrentSolver
Construct a solver.
BracketingNthOrderBrentSolver(double, int) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.BracketingNthOrderBrentSolver
Construct a solver.
BrentOptimizer - Class in org.apache.commons.math4.legacy.optim.univariate
For a function defined on some interval (lo, hi), this class finds an approximation x to the point at which the function attains its minimum.
BrentOptimizer(double, double) - Constructor for class org.apache.commons.math4.legacy.optim.univariate.BrentOptimizer
The arguments are used for implementing the original stopping criterion of Brent's algorithm.
BrentOptimizer(double, double, ConvergenceChecker<UnivariatePointValuePair>) - Constructor for class org.apache.commons.math4.legacy.optim.univariate.BrentOptimizer
The arguments are used implement the original stopping criterion of Brent's algorithm.
BrentSolver - Class in org.apache.commons.math4.legacy.analysis.solvers
This class implements the Brent algorithm for finding zeros of real univariate functions.
BrentSolver() - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.BrentSolver
Construct a solver with default absolute accuracy (1e-6).
BrentSolver(double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.BrentSolver
Construct a solver.
BrentSolver(double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.BrentSolver
Construct a solver.
BrentSolver(double, double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.BrentSolver
Construct a solver.
build() - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresBuilder
Construct a LeastSquaresProblem from the data in this builder.

C

calculateAdjustedRSquared() - Method in class org.apache.commons.math4.legacy.stat.regression.OLSMultipleLinearRegression
Returns the adjusted R-squared statistic, defined by the formula R2adj = 1 - [SSR (n - 1)] / [SSTO (n - p)] where SSR is the sum of squared residuals, SSTO is the total sum of squares, n is the number of observations and p is the number of parameters estimated (including the intercept).
calculateBeta() - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
Calculates the beta of multiple linear regression in matrix notation.
calculateBeta() - Method in class org.apache.commons.math4.legacy.stat.regression.GLSMultipleLinearRegression
Calculates beta by GLS.
calculateBeta() - Method in class org.apache.commons.math4.legacy.stat.regression.OLSMultipleLinearRegression
Calculates the regression coefficients using OLS.
calculateBetaVariance() - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
Calculates the beta variance of multiple linear regression in matrix notation.
calculateBetaVariance() - Method in class org.apache.commons.math4.legacy.stat.regression.GLSMultipleLinearRegression
Calculates the variance on the beta.
calculateBetaVariance() - Method in class org.apache.commons.math4.legacy.stat.regression.OLSMultipleLinearRegression
Calculates the variance-covariance matrix of the regression parameters.
calculateErrorVariance() - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
Calculates the variance of the error term.
calculateErrorVariance() - Method in class org.apache.commons.math4.legacy.stat.regression.GLSMultipleLinearRegression
Calculates the estimated variance of the error term using the formula
calculateHat() - Method in class org.apache.commons.math4.legacy.stat.regression.OLSMultipleLinearRegression
Compute the "hat" matrix.
calculateResiduals() - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
Calculates the residuals of multiple linear regression in matrix notation.
calculateResidualSumOfSquares() - Method in class org.apache.commons.math4.legacy.stat.regression.OLSMultipleLinearRegression
Returns the sum of squared residuals.
calculateRSquared() - Method in class org.apache.commons.math4.legacy.stat.regression.OLSMultipleLinearRegression
Returns the R-Squared statistic, defined by the formula R2 = 1 - SSR / SSTO where SSR is the sum of squared residuals and SSTO is the total sum of squares
calculateTotalSumOfSquares() - Method in class org.apache.commons.math4.legacy.stat.regression.OLSMultipleLinearRegression
Returns the sum of squared deviations of Y from its mean.
calculateYVariance() - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
Calculates the variance of the y values.
CalinskiHarabasz - Class in org.apache.commons.math4.legacy.ml.clustering.evaluation
Compute the Calinski and Harabasz score.
CalinskiHarabasz() - Constructor for class org.apache.commons.math4.legacy.ml.clustering.evaluation.CalinskiHarabasz
 
canAdd(AnyMatrix) - Method in interface org.apache.commons.math4.legacy.linear.AnyMatrix
Checks that this matrix and the other matrix can be added.
CanberraDistance - Class in org.apache.commons.math4.legacy.ml.distance
Calculates the Canberra distance between two points.
CanberraDistance() - Constructor for class org.apache.commons.math4.legacy.ml.distance.CanberraDistance
 
canMultiply(AnyMatrix) - Method in interface org.apache.commons.math4.legacy.linear.AnyMatrix
Checks that this matrix can be multiplied by the other matrix.
cbrt() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
cbrt() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Cbrt - Class in org.apache.commons.math4.legacy.analysis.function
Cube root function.
Cbrt() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Cbrt
 
cdf(double, int) - Method in class org.apache.commons.math4.legacy.stat.inference.KolmogorovSmirnovTest
Calculates \(P(D_n < d)\) using the method described in [1] with quick decisions for extreme values given in [2] (see above).
cdf(double, int, boolean) - Method in class org.apache.commons.math4.legacy.stat.inference.KolmogorovSmirnovTest
Calculates P(D_n < d) using method described in [1] with quick decisions for extreme values given in [2] (see above).
cdfExact(double, int) - Method in class org.apache.commons.math4.legacy.stat.inference.KolmogorovSmirnovTest
Calculates P(D_n < d).
ceil() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
ceil() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Ceil - Class in org.apache.commons.math4.legacy.analysis.function
ceil function.
Ceil() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Ceil
 
CentralPivotingStrategy - Class in org.apache.commons.math4.legacy.stat.descriptive.rank
A mid point strategy based on the average of begin and end indices.
CentralPivotingStrategy() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.rank.CentralPivotingStrategy
 
centroid() - Method in class org.apache.commons.math4.legacy.ml.clustering.Cluster
Computes the centroid of the cluster.
CentroidCluster<T extends Clusterable> - Class in org.apache.commons.math4.legacy.ml.clustering
A Cluster used by centroid-based clustering algorithms.
CentroidCluster(Clusterable) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.CentroidCluster
Build a cluster centered at a specified point.
ChebyshevDistance - Class in org.apache.commons.math4.legacy.ml.distance
Calculates the L (max of abs) distance between two points.
ChebyshevDistance() - Constructor for class org.apache.commons.math4.legacy.ml.distance.ChebyshevDistance
 
checkAdd(AnyMatrix) - Method in interface org.apache.commons.math4.legacy.linear.AnyMatrix
Checks that this matrix and the other matrix can be added.
checkAdditionCompatible(AnyMatrix, AnyMatrix) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Check if matrices are addition compatible.
checkColumnIndex(int) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Check if a column index is valid.
checkColumnIndex(AnyMatrix, int) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Check if a column index is valid.
checkCompatibility(DSCompiler) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Check rules set compatibility.
checker(ConvergenceChecker<LeastSquaresProblem.Evaluation>) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresBuilder
Configure the convergence checker.
checkerPair(ConvergenceChecker<PointVectorValuePair>) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresBuilder
Configure the convergence checker.
checkIndex(int) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Check if an index is valid.
checkIndices(int, int) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Checks that the indices of a subvector are valid.
checkMatrixIndex(AnyMatrix, int, int) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Check if matrix indices are valid.
checkMultiplicationCompatible(AnyMatrix, AnyMatrix) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Check if matrices are multiplication compatible.
checkMultiply(AnyMatrix) - Method in interface org.apache.commons.math4.legacy.linear.AnyMatrix
Checks that this matrix can be multiplied by the other matrix.
checkParameters(RealLinearOperator, RealLinearOperator, RealVector, RealVector) - Static method in class org.apache.commons.math4.legacy.linear.PreconditionedIterativeLinearSolver
Performs all dimension checks on the parameters of solve and solveInPlace, and throws an exception if one of the checks fails.
checkParameters(RealLinearOperator, RealVector, RealVector) - Static method in class org.apache.commons.math4.legacy.linear.IterativeLinearSolver
Performs all dimension checks on the parameters of solve and solveInPlace, and throws an exception if one of the checks fails.
checkRowIndex(int) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Check if a row index is valid.
checkRowIndex(AnyMatrix, int) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Check if a row index is valid.
checkSubMatrixIndex(int[], int[]) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Check if submatrix ranges indices are valid.
checkSubMatrixIndex(int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Check if submatrix ranges indices are valid.
checkSubMatrixIndex(AnyMatrix, int[], int[]) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Check if submatrix ranges indices are valid.
checkSubMatrixIndex(AnyMatrix, int, int, int, int) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Check if submatrix ranges indices are valid.
checkSubtractionCompatible(AnyMatrix, AnyMatrix) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Check if matrices are subtraction compatible.
checkSymmetric(RealMatrix, double) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Checks whether a matrix is symmetric.
checkValidity(List<Double>) - Method in class org.apache.commons.math4.legacy.genetics.RandomKey
Asserts that representation can represent a valid chromosome.
checkValidity(List<Integer>) - Method in class org.apache.commons.math4.legacy.genetics.BinaryChromosome
Asserts that representation can represent a valid chromosome.
checkValidity(List<T>) - Method in class org.apache.commons.math4.legacy.genetics.AbstractListChromosome
Asserts that representation can represent a valid chromosome.
checkVectorDimensions(int) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Check if instance dimension is equal to some expected value.
checkVectorDimensions(int) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Check if instance dimension is equal to some expected value.
checkVectorDimensions(int) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Check if instance dimension is equal to some expected value.
checkVectorDimensions(int) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Check if instance dimension is equal to some expected value.
checkVectorDimensions(FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Check if instance and specified vectors have the same dimension.
checkVectorDimensions(RealVector) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Check if instance and specified vectors have the same dimension.
checkVectorDimensions(RealVector) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Check if instance and specified vectors have the same dimension.
chiSquare(double[], long[]) - Method in class org.apache.commons.math4.legacy.stat.inference.ChiSquareTest
Computes the Chi-Square statistic comparing observed and expected frequency counts.
chiSquare(double[], long[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
chiSquare(long[][]) - Method in class org.apache.commons.math4.legacy.stat.inference.ChiSquareTest
Computes the Chi-Square statistic associated with a chi-square test of independence based on the input counts array, viewed as a two-way table.
chiSquare(long[][]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
chiSquareDataSetsComparison(long[], long[]) - Method in class org.apache.commons.math4.legacy.stat.inference.ChiSquareTest
Computes a Chi-Square two sample test statistic comparing bin frequency counts in observed1 and observed2.
chiSquareDataSetsComparison(long[], long[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
chiSquareTest(double[], long[]) - Method in class org.apache.commons.math4.legacy.stat.inference.ChiSquareTest
Returns the observed significance level, or p-value, associated with a Chi-square goodness of fit test comparing the observed frequency counts to those in the expected array.
chiSquareTest(double[], long[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
chiSquareTest(double[], long[], double) - Method in class org.apache.commons.math4.legacy.stat.inference.ChiSquareTest
Performs a Chi-square goodness of fit test evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance level alpha.
chiSquareTest(double[], long[], double) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
chiSquareTest(long[][]) - Method in class org.apache.commons.math4.legacy.stat.inference.ChiSquareTest
Returns the observed significance level, or p-value, associated with a chi-square test of independence based on the input counts array, viewed as a two-way table.
chiSquareTest(long[][]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
chiSquareTest(long[][], double) - Method in class org.apache.commons.math4.legacy.stat.inference.ChiSquareTest
Performs a chi-square test of independence evaluating the null hypothesis that the classifications represented by the counts in the columns of the input 2-way table are independent of the rows, with significance level alpha.
chiSquareTest(long[][], double) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
ChiSquareTest - Class in org.apache.commons.math4.legacy.stat.inference
Implements Chi-Square test statistics.
ChiSquareTest() - Constructor for class org.apache.commons.math4.legacy.stat.inference.ChiSquareTest
Construct a ChiSquareTest.
chiSquareTestDataSetsComparison(long[], long[]) - Method in class org.apache.commons.math4.legacy.stat.inference.ChiSquareTest
Returns the observed significance level, or p-value, associated with a Chi-Square two sample test comparing bin frequency counts in observed1 and observed2.
chiSquareTestDataSetsComparison(long[], long[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
chiSquareTestDataSetsComparison(long[], long[], double) - Method in class org.apache.commons.math4.legacy.stat.inference.ChiSquareTest
Performs a Chi-Square two sample test comparing two binned data sets.
chiSquareTestDataSetsComparison(long[], long[], double) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
CHOLESKY - org.apache.commons.math4.legacy.fitting.leastsquares.GaussNewtonOptimizer.Decomposition
Solve by forming the normal equations (JTJx=JTr) and using the CholeskyDecomposition.
CholeskyDecomposition - Class in org.apache.commons.math4.legacy.linear
Calculates the Cholesky decomposition of a matrix.
CholeskyDecomposition(RealMatrix) - Constructor for class org.apache.commons.math4.legacy.linear.CholeskyDecomposition
Calculates the Cholesky decomposition of the given matrix.
CholeskyDecomposition(RealMatrix, double, double) - Constructor for class org.apache.commons.math4.legacy.linear.CholeskyDecomposition
Calculates the Cholesky decomposition of the given matrix.
Chromosome - Class in org.apache.commons.math4.legacy.genetics
Individual in a population.
Chromosome() - Constructor for class org.apache.commons.math4.legacy.genetics.Chromosome
 
ChromosomePair - Class in org.apache.commons.math4.legacy.genetics
A pair of Chromosome objects.
ChromosomePair(Chromosome, Chromosome) - Constructor for class org.apache.commons.math4.legacy.genetics.ChromosomePair
Create a chromosome pair.
ClampedSplineInterpolator - Class in org.apache.commons.math4.legacy.analysis.interpolation
Computes a clamped cubic spline interpolation for the data set.
ClampedSplineInterpolator() - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.ClampedSplineInterpolator
 
ClassicalRungeKuttaFieldIntegrator<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements the classical fourth order Runge-Kutta integrator for Ordinary Differential Equations (it is the most often used Runge-Kutta method).
ClassicalRungeKuttaFieldIntegrator(Field<T>, T) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.ClassicalRungeKuttaFieldIntegrator
Simple constructor.
ClassicalRungeKuttaIntegrator - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements the classical fourth order Runge-Kutta integrator for Ordinary Differential Equations (it is the most often used Runge-Kutta method).
ClassicalRungeKuttaIntegrator(double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.ClassicalRungeKuttaIntegrator
Simple constructor.
clear() - Method in class org.apache.commons.math4.legacy.fitting.WeightedObservedPoints
Removes all observations from this container.
clear() - Method in class org.apache.commons.math4.legacy.optim.BaseMultiStartMultivariateOptimizer
Method that will called in order to clear all stored optima.
clear() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultiStartMultivariateOptimizer
Method that will called in order to clear all stored optima.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AbstractStorelessUnivariateStatistic
Clears the internal state of the Statistic.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Resets all statistics and storage.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.GeometricMean
Clears the internal state of the Statistic.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Kurtosis
Clears the internal state of the Statistic.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Mean
Clears the internal state of the Statistic.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.SecondMoment
Clears the internal state of the Statistic.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Skewness
Clears the internal state of the Statistic.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.StandardDeviation
Clears the internal state of the Statistic.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
Clears the internal state of the Statistic.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.VectorialCovariance
Clears the internal state of the Statistic.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Resets all statistics and storage.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Max
Clears the internal state of the Statistic.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Min
Clears the internal state of the Statistic.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.PSquarePercentile
Clears the internal state of the Statistic.
clear() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StorelessUnivariateStatistic
Clears the internal state of the Statistic.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.Product
Clears the internal state of the Statistic.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.Sum
Clears the internal state of the Statistic.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.SumOfLogs
Clears the internal state of the Statistic.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.SumOfSquares
Clears the internal state of the Statistic.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Resets all statistics and storage.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedDescriptiveStatistics
Resets all statistics and storage.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Resets all statistics and storage.
clear() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Resets all statistics and storage.
clear() - Method in class org.apache.commons.math4.legacy.stat.Frequency
Clears the frequency table.
clear() - Method in class org.apache.commons.math4.legacy.stat.regression.MillerUpdatingRegression
As the name suggests, clear wipes the internals and reorders everything in the canonical order.
clear() - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Clears all data from the model.
clear() - Method in interface org.apache.commons.math4.legacy.stat.regression.UpdatingMultipleLinearRegression
Clears internal buffers and resets the regression model.
clearEventHandlers() - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Remove all the event handlers that have been added to the integrator.
clearEventHandlers() - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Remove all the event handlers that have been added to the integrator.
clearEventHandlers() - Method in interface org.apache.commons.math4.legacy.ode.FirstOrderFieldIntegrator
Remove all the event handlers that have been added to the integrator.
clearEventHandlers() - Method in interface org.apache.commons.math4.legacy.ode.ODEIntegrator
Remove all the event handlers that have been added to the integrator.
clearStepHandlers() - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Remove all the step handlers that have been added to the integrator.
clearStepHandlers() - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Remove all the step handlers that have been added to the integrator.
clearStepHandlers() - Method in interface org.apache.commons.math4.legacy.ode.FirstOrderFieldIntegrator
Remove all the step handlers that have been added to the integrator.
clearStepHandlers() - Method in interface org.apache.commons.math4.legacy.ode.ODEIntegrator
Remove all the step handlers that have been added to the integrator.
ClopperPearsonInterval - Class in org.apache.commons.math4.legacy.stat.interval
Implements the Clopper-Pearson method for creating a binomial proportion confidence interval.
ClopperPearsonInterval() - Constructor for class org.apache.commons.math4.legacy.stat.interval.ClopperPearsonInterval
 
cluster(Collection<T>) - Method in class org.apache.commons.math4.legacy.ml.clustering.Clusterer
Perform a cluster analysis on the given set of Clusterable instances.
cluster(Collection<T>) - Method in class org.apache.commons.math4.legacy.ml.clustering.DBSCANClusterer
Performs DBSCAN cluster analysis.
cluster(Collection<T>) - Method in class org.apache.commons.math4.legacy.ml.clustering.ElkanKMeansPlusPlusClusterer
Runs the K-means++ clustering algorithm.
cluster(Collection<T>) - Method in class org.apache.commons.math4.legacy.ml.clustering.FuzzyKMeansClusterer
Performs Fuzzy K-Means cluster analysis.
cluster(Collection<T>) - Method in class org.apache.commons.math4.legacy.ml.clustering.KMeansPlusPlusClusterer
Runs the K-means++ clustering algorithm.
cluster(Collection<T>) - Method in class org.apache.commons.math4.legacy.ml.clustering.MiniBatchKMeansClusterer
Runs the MiniBatch K-means clustering algorithm.
cluster(Collection<T>) - Method in class org.apache.commons.math4.legacy.ml.clustering.MultiKMeansPlusPlusClusterer
Runs the K-means++ clustering algorithm.
Cluster<T extends Clusterable> - Class in org.apache.commons.math4.legacy.ml.clustering
Cluster holding a set of Clusterable points.
Cluster() - Constructor for class org.apache.commons.math4.legacy.ml.clustering.Cluster
Build a cluster centered at a specified point.
Clusterable - Interface in org.apache.commons.math4.legacy.ml.clustering
Interface for n-dimensional points that can be clustered together.
Clusterer<T extends Clusterable> - Class in org.apache.commons.math4.legacy.ml.clustering
Base class for clustering algorithms.
Clusterer(DistanceMeasure) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.Clusterer
Build a new clusterer with the given DistanceMeasure.
ClusterEvaluator - Interface in org.apache.commons.math4.legacy.ml.clustering
Defines a measure of the quality of clusters.
ClusterRanking - Interface in org.apache.commons.math4.legacy.ml.clustering
Evaluates the quality of a set of clusters.
CMAESOptimizer - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv
An implementation of the active Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for non-linear, non-convex, non-smooth, global function minimization.
CMAESOptimizer(int, double, boolean, int, int, UniformRandomProvider, boolean, ConvergenceChecker<PointValuePair>) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.CMAESOptimizer
 
collector(BivariateFunction, double) - Static method in class org.apache.commons.math4.legacy.analysis.FunctionUtils
Returns a MultivariateFunction h(x[]).
collector(BivariateFunction, UnivariateFunction, double) - Static method in class org.apache.commons.math4.legacy.analysis.FunctionUtils
Returns a MultivariateFunction h(x[]).
combine(double, double, RealVector) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Returns a new vector representing a * this + b * y, the linear combination of this and y.
combine(double, double, RealVector) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Returns a new vector representing a * this + b * y, the linear combination of this and y.
combine(BivariateFunction, UnivariateFunction, UnivariateFunction) - Static method in class org.apache.commons.math4.legacy.analysis.FunctionUtils
Returns the univariate function h(x) = combiner(f(x), g(x)).
combineToSelf(double, double, RealVector) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Updates this with the linear combination of this and y.
combineToSelf(double, double, RealVector) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Updates this with the linear combination of this and y.
comparatorPermutation(List<S>, Comparator<S>) - Static method in class org.apache.commons.math4.legacy.genetics.RandomKey
Generates a representation of a permutation corresponding to the data sorted by comparator.
compareTo(Chromosome) - Method in class org.apache.commons.math4.legacy.genetics.Chromosome
Compares two chromosomes based on their fitness.
compareTo(BigReal) - Method in class org.apache.commons.math4.legacy.linear.BigReal
complainIfNotSupported(String) - Method in class org.apache.commons.math4.legacy.ode.AbstractParameterizable
Check if a parameter is supported and throw an IllegalArgumentException if not.
ComplexFormat - Class in org.apache.commons.math4.legacy.util
Formats a Complex number in cartesian format "Re(c) + Im(c)i".
ComplexFormat() - Constructor for class org.apache.commons.math4.legacy.util.ComplexFormat
Create an instance with the default imaginary character, 'i', and the default number format for both real and imaginary parts.
ComplexFormat(String) - Constructor for class org.apache.commons.math4.legacy.util.ComplexFormat
Create an instance with a custom imaginary character, and the default number format for both real and imaginary parts.
ComplexFormat(String, NumberFormat) - Constructor for class org.apache.commons.math4.legacy.util.ComplexFormat
Create an instance with a custom imaginary character, and a custom number format for both real and imaginary parts.
ComplexFormat(String, NumberFormat, NumberFormat) - Constructor for class org.apache.commons.math4.legacy.util.ComplexFormat
Create an instance with a custom imaginary character, a custom number format for the real part, and a custom number format for the imaginary part.
ComplexFormat(NumberFormat) - Constructor for class org.apache.commons.math4.legacy.util.ComplexFormat
Create an instance with a custom number format for both real and imaginary parts.
ComplexFormat(NumberFormat, NumberFormat) - Constructor for class org.apache.commons.math4.legacy.util.ComplexFormat
Create an instance with a custom number format for the real part and a custom number format for the imaginary part.
compose(double...) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Compute composition of the instance by a univariate function.
compose(double[], int, double[], double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute composition of a derivative structure by a function.
compose(double, double) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Compute composition of the instance by a univariate function.
compose(UnivariateDifferentiableFunction...) - Static method in class org.apache.commons.math4.legacy.analysis.FunctionUtils
Composes functions.
compose(UnivariateFunction...) - Static method in class org.apache.commons.math4.legacy.analysis.FunctionUtils
Composes functions.
CompositeFormat - Class in org.apache.commons.math4.legacy.util
Base class for formatters of composite objects (complex numbers, vectors ...).
compute(double[], double[]) - Method in class org.apache.commons.math4.legacy.ml.distance.CanberraDistance
Compute the distance between two n-dimensional vectors.
compute(double[], double[]) - Method in class org.apache.commons.math4.legacy.ml.distance.ChebyshevDistance
Compute the distance between two n-dimensional vectors.
compute(double[], double[]) - Method in interface org.apache.commons.math4.legacy.ml.distance.DistanceMeasure
Compute the distance between two n-dimensional vectors.
compute(double[], double[]) - Method in class org.apache.commons.math4.legacy.ml.distance.EarthMoversDistance
Compute the distance between two n-dimensional vectors.
compute(double[], double[]) - Method in class org.apache.commons.math4.legacy.ml.distance.EuclideanDistance
Compute the distance between two n-dimensional vectors.
compute(double[], double[]) - Method in class org.apache.commons.math4.legacy.ml.distance.ManhattanDistance
Compute the distance between two n-dimensional vectors.
compute(List<? extends Cluster<? extends Clusterable>>) - Method in interface org.apache.commons.math4.legacy.ml.clustering.ClusterRanking
Computes the rank (higher is better).
computeCoefficients() - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionLagrangeForm
Calculate the coefficients of Lagrange polynomial from the interpolation data.
computeCoefficients() - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionNewtonForm
Calculate the normal polynomial coefficients given the Newton form.
computeCorrelationMatrix(double[][]) - Method in class org.apache.commons.math4.legacy.stat.correlation.KendallsCorrelation
Computes the Kendall's Tau rank correlation matrix for the columns of the input rectangular array.
computeCorrelationMatrix(double[][]) - Method in class org.apache.commons.math4.legacy.stat.correlation.PearsonsCorrelation
Computes the correlation matrix for the columns of the input rectangular array.
computeCorrelationMatrix(double[][]) - Method in class org.apache.commons.math4.legacy.stat.correlation.SpearmansCorrelation
Computes the Spearman's rank correlation matrix for the columns of the input rectangular array.
computeCorrelationMatrix(RealMatrix) - Method in class org.apache.commons.math4.legacy.stat.correlation.KendallsCorrelation
Computes the Kendall's Tau rank correlation matrix for the columns of the input matrix.
computeCorrelationMatrix(RealMatrix) - Method in class org.apache.commons.math4.legacy.stat.correlation.PearsonsCorrelation
Computes the correlation matrix for the columns of the input matrix, using PearsonsCorrelation.correlation(double[], double[]).
computeCorrelationMatrix(RealMatrix) - Method in class org.apache.commons.math4.legacy.stat.correlation.SpearmansCorrelation
Computes the Spearman's rank correlation matrix for the columns of the input matrix.
computeCovarianceMatrix(double[][]) - Method in class org.apache.commons.math4.legacy.stat.correlation.Covariance
Create a covariance matrix from a rectangular array whose columns represent covariates.
computeCovarianceMatrix(double[][], boolean) - Method in class org.apache.commons.math4.legacy.stat.correlation.Covariance
Compute a covariance matrix from a rectangular array whose columns represent covariates.
computeCovarianceMatrix(RealMatrix) - Method in class org.apache.commons.math4.legacy.stat.correlation.Covariance
Create a covariance matrix from a matrix whose columns represent covariates.
computeCovarianceMatrix(RealMatrix, boolean) - Method in class org.apache.commons.math4.legacy.stat.correlation.Covariance
Compute a covariance matrix from a matrix whose columns represent covariates.
computeDerivatives(double, double[], double[]) - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Compute the derivatives and check the number of evaluations.
computeDerivatives(double, double[], double[]) - Method in class org.apache.commons.math4.legacy.ode.ExpandableStatefulODE
Get the current time derivative of the complete state vector.
computeDerivatives(double, double[], double[]) - Method in class org.apache.commons.math4.legacy.ode.FirstOrderConverter
Get the current time derivative of the state vector.
computeDerivatives(double, double[], double[]) - Method in interface org.apache.commons.math4.legacy.ode.FirstOrderDifferentialEquations
Get the current time derivative of the state vector.
computeDerivatives(double, double[], double[], double[], double[]) - Method in interface org.apache.commons.math4.legacy.ode.SecondaryEquations
Compute the derivatives related to the secondary state parameters.
computeDerivatives(T, T[]) - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Compute the derivatives and check the number of evaluations.
computeDerivatives(T, T[]) - Method in class org.apache.commons.math4.legacy.ode.FieldExpandableODE
Get the current time derivative of the complete state vector.
computeDerivatives(T, T[]) - Method in interface org.apache.commons.math4.legacy.ode.FirstOrderFieldDifferentialEquations
Get the current time derivative of the state vector.
computeDerivatives(T, T[], T[], T[]) - Method in interface org.apache.commons.math4.legacy.ode.FieldSecondaryEquations
Compute the derivatives related to the secondary state parameters.
computeDividedDifference(double[], double[]) - Static method in class org.apache.commons.math4.legacy.analysis.interpolation.DividedDifferenceInterpolator
Return a copy of the divided difference array.
computeInterpolatedStateAndDerivatives(double, double) - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Compute the state and derivatives at the interpolated time.
computeInterpolatedStateAndDerivatives(double, double) - Method in class org.apache.commons.math4.legacy.ode.sampling.NordsieckStepInterpolator
Compute the state and derivatives at the interpolated time.
computeInterpolatedStateAndDerivatives(FieldEquationsMapper<T>, T, T, T, T) - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractFieldStepInterpolator
Compute the state and derivatives at the interpolated time.
computeJacobian(double[]) - Method in interface org.apache.commons.math4.legacy.fitting.leastsquares.ValueAndJacobianFunction
Compute the Jacobian.
computeMainStateJacobian(double, double[], double[], double[][]) - Method in interface org.apache.commons.math4.legacy.ode.MainStateJacobianProvider
Compute the jacobian matrix of ODE with respect to main state.
computeObjectiveGradient(double[]) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.GradientMultivariateOptimizer
Compute the gradient vector.
computeObjectiveValue(double) - Method in class org.apache.commons.math4.legacy.analysis.integration.BaseAbstractUnivariateIntegrator
Compute the objective function value.
computeObjectiveValue(double) - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
Compute the objective function value.
computeObjectiveValue(double) - Method in class org.apache.commons.math4.legacy.optim.univariate.UnivariateOptimizer
computeObjectiveValue(double[]) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer
computeObjectiveValueAndDerivative(double) - Method in class org.apache.commons.math4.legacy.analysis.solvers.AbstractUnivariateDifferentiableSolver
Compute the objective function value.
computeParameterJacobian(double, double[], double[], String, double[]) - Method in interface org.apache.commons.math4.legacy.ode.ParameterJacobianProvider
Compute the Jacobian matrix of ODE with respect to one parameter.
computeRule(int) - Method in class org.apache.commons.math4.legacy.analysis.integration.gauss.BaseRuleFactory
Computes the rule for the given order.
computeRule(int) - Method in class org.apache.commons.math4.legacy.analysis.integration.gauss.HermiteRuleFactory
Computes the rule for the given order.
computeRule(int) - Method in class org.apache.commons.math4.legacy.analysis.integration.gauss.LaguerreRuleFactory
Computes the rule for the given order.
computeRule(int) - Method in class org.apache.commons.math4.legacy.analysis.integration.gauss.LegendreHighPrecisionRuleFactory
Computes the rule for the given order.
computeRule(int) - Method in class org.apache.commons.math4.legacy.analysis.integration.gauss.LegendreRuleFactory
Computes the rule for the given order.
computeSecondDerivatives(double, double[], double[], double[]) - Method in interface org.apache.commons.math4.legacy.ode.SecondOrderDifferentialEquations
Get the current time derivative of the state vector.
computeStepGrowShrinkFactor(double) - Method in class org.apache.commons.math4.legacy.ode.MultistepIntegrator
Compute step grow/shrink factor according to normalized error.
computeStepGrowShrinkFactor(T) - Method in class org.apache.commons.math4.legacy.ode.MultistepFieldIntegrator
Compute step grow/shrink factor according to normalized error.
computeValue(double[]) - Method in interface org.apache.commons.math4.legacy.fitting.leastsquares.ValueAndJacobianFunction
Compute the value.
ConfidenceInterval - Class in org.apache.commons.math4.legacy.stat.interval
Represents an interval estimate of a population parameter.
ConfidenceInterval(double, double, double) - Constructor for class org.apache.commons.math4.legacy.stat.interval.ConfidenceInterval
Create a confidence interval with the given bounds and confidence level.
ConjugateGradient - Class in org.apache.commons.math4.legacy.linear
This is an implementation of the conjugate gradient method for RealLinearOperator.
ConjugateGradient(int, double, boolean) - Constructor for class org.apache.commons.math4.legacy.linear.ConjugateGradient
Creates a new instance of this class, with default stopping criterion.
ConjugateGradient(IterationManager, double, boolean) - Constructor for class org.apache.commons.math4.legacy.linear.ConjugateGradient
Creates a new instance of this class, with default stopping criterion and custom iteration manager.
Constant - Class in org.apache.commons.math4.legacy.analysis.function
Constant function.
Constant(double) - Constructor for class org.apache.commons.math4.legacy.analysis.function.Constant
 
CONTINUE - org.apache.commons.math4.legacy.ode.events.Action
Continue indicator.
CONTINUE - org.apache.commons.math4.legacy.ode.events.EventHandler.Action
Continue indicator.
ContinuousOutputFieldModel<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode
This class stores all information provided by an ODE integrator during the integration process and build a continuous model of the solution from this.
ContinuousOutputFieldModel() - Constructor for class org.apache.commons.math4.legacy.ode.ContinuousOutputFieldModel
Simple constructor.
ContinuousOutputModel - Class in org.apache.commons.math4.legacy.ode
This class stores all information provided by an ODE integrator during the integration process and build a continuous model of the solution from this.
ContinuousOutputModel() - Constructor for class org.apache.commons.math4.legacy.ode.ContinuousOutputModel
Simple constructor.
converged(int, LeastSquaresProblem.Evaluation, LeastSquaresProblem.Evaluation) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.EvaluationRmsChecker
Check if the optimization algorithm has converged.
converged(int, PointValuePair, PointValuePair) - Method in class org.apache.commons.math4.legacy.optim.SimpleValueChecker
Check if the optimization algorithm has converged considering the last two points.
converged(int, PointVectorValuePair, PointVectorValuePair) - Method in class org.apache.commons.math4.legacy.optim.SimpleVectorValueChecker
Check if the optimization algorithm has converged considering the last two points.
converged(int, UnivariatePointValuePair, UnivariatePointValuePair) - Method in class org.apache.commons.math4.legacy.optim.univariate.SimpleUnivariateValueChecker
Check if the optimization algorithm has converged considering the last two points.
converged(int, PAIR, PAIR) - Method in class org.apache.commons.math4.legacy.optim.AbstractConvergenceChecker
Check if the optimization algorithm has converged.
converged(int, PAIR, PAIR) - Method in interface org.apache.commons.math4.legacy.optim.ConvergenceChecker
Check if the optimization algorithm has converged.
converged(int, PAIR, PAIR) - Method in class org.apache.commons.math4.legacy.optim.SimplePointChecker
Check if the optimization algorithm has converged considering the last two points.
ConvergenceChecker<PAIR> - Interface in org.apache.commons.math4.legacy.optim
This interface specifies how to check if an optimization algorithm has converged.
copy() - Method in class org.apache.commons.math4.legacy.analysis.interpolation.InterpolatingMicrosphere
Perform a copy.
copy() - Method in class org.apache.commons.math4.legacy.analysis.interpolation.InterpolatingMicrosphere2D
Perform a copy.
copy() - Method in class org.apache.commons.math4.legacy.field.linalg.FieldDenseMatrix
Copies this matrix.
copy() - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Make a (deep) copy of this.
copy() - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Returns a (deep) copy of this.
copy() - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Make a (deep) copy of this.
copy() - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Returns a (deep) copy of this.
copy() - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Returns a (deep) copy of this.
copy() - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Returns a (deep) copy of this vector.
copy() - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Make a (deep) copy of this.
copy() - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Returns a (deep) copy of this.
copy() - Method in class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Returns a (deep) copy of this.
copy() - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Make a (deep) copy of this.
copy() - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Returns a (deep) copy of this.
copy() - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealMatrix
Returns a (deep) copy of this.
copy() - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Returns a (deep) copy of this vector.
copy() - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Returns a (deep) copy of this.
copy() - Method in class org.apache.commons.math4.legacy.linear.RealVector
Returns a (deep) copy of this vector.
copy() - Method in class org.apache.commons.math4.legacy.linear.SparseFieldMatrix
Make a (deep) copy of this.
copy() - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Returns a (deep) copy of this.
copy() - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Copy the instance.
copy() - Method in interface org.apache.commons.math4.legacy.ode.sampling.StepInterpolator
Copy the instance.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AbstractStorelessUnivariateStatistic
Returns a copy of the statistic with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AbstractUnivariateStatistic
Returns a copy of the statistic with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns a copy of this DescriptiveStatistics instance with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.GeometricMean
Returns a copy of the statistic with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Kurtosis
Returns a copy of the statistic with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Mean
Returns a copy of the statistic with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.SecondMoment
Returns a copy of the statistic with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance
Returns a copy of the statistic with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Skewness
Returns a copy of the statistic with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.StandardDeviation
Returns a copy of the statistic with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
Returns a copy of the statistic with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Max
Returns a copy of the statistic with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Min
Returns a copy of the statistic with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Returns a copy of the statistic with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.PSquarePercentile
Returns a copy of the statistic with the same internal state.
copy() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StorelessUnivariateStatistic
Returns a copy of the statistic with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.Product
Returns a copy of the statistic with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.Sum
Returns a copy of the statistic with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.SumOfLogs
Returns a copy of the statistic with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.SumOfSquares
Returns a copy of the statistic with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns a copy of this SummaryStatistics instance with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedDescriptiveStatistics
Returns a copy of this SynchronizedDescriptiveStatistics instance with the same internal state.
copy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns a copy of this SynchronizedSummaryStatistics instance with the same internal state.
copy() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.UnivariateStatistic
Returns a copy of the statistic with the same internal state.
copy(Field<T>, T[][]) - Method in class org.apache.commons.math4.legacy.ode.FieldODEState
Copy a two-dimensions array.
copy(DescriptiveStatistics, DescriptiveStatistics) - Static method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Copies source to dest.
copy(GeometricMean, GeometricMean) - Static method in class org.apache.commons.math4.legacy.stat.descriptive.moment.GeometricMean
Copies source to dest.
copy(Kurtosis, Kurtosis) - Static method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Kurtosis
Copies source to dest.
copy(Mean, Mean) - Static method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Mean
Copies source to dest.
copy(SecondMoment, SecondMoment) - Static method in class org.apache.commons.math4.legacy.stat.descriptive.moment.SecondMoment
Copies source to dest.
copy(SemiVariance, SemiVariance) - Static method in class org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance
Copies source to dest.
copy(Skewness, Skewness) - Static method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Skewness
Copies source to dest.
copy(StandardDeviation, StandardDeviation) - Static method in class org.apache.commons.math4.legacy.stat.descriptive.moment.StandardDeviation
Copies source to dest.
copy(Variance, Variance) - Static method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
Copies source to dest.
copy(Max, Max) - Static method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Max
Copies source to dest.
copy(Min, Min) - Static method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Min
Copies source to dest.
copy(Product, Product) - Static method in class org.apache.commons.math4.legacy.stat.descriptive.summary.Product
Copies source to dest.
copy(SumOfLogs, SumOfLogs) - Static method in class org.apache.commons.math4.legacy.stat.descriptive.summary.SumOfLogs
Copies source to dest.
copy(SumOfSquares, SumOfSquares) - Static method in class org.apache.commons.math4.legacy.stat.descriptive.summary.SumOfSquares
Copies source to dest.
copy(Sum, Sum) - Static method in class org.apache.commons.math4.legacy.stat.descriptive.summary.Sum
Copies source to dest.
copy(SummaryStatistics, SummaryStatistics) - Static method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Copies source to dest.
copy(SynchronizedDescriptiveStatistics, SynchronizedDescriptiveStatistics) - Static method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedDescriptiveStatistics
Copies source to dest.
copy(SynchronizedSummaryStatistics, SynchronizedSummaryStatistics) - Static method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Copies source to dest.
copySign(double) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
copySign(double) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
copySign(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
copySign(SparseGradient) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
copySubMatrix(int[], int[], double[][]) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Copy a submatrix.
copySubMatrix(int[], int[], double[][]) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Copy a submatrix.
copySubMatrix(int[], int[], T[][]) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Copy a submatrix.
copySubMatrix(int[], int[], T[][]) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Copy a submatrix.
copySubMatrix(int, int, int, int, double[][]) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Copy a submatrix.
copySubMatrix(int, int, int, int, double[][]) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Copy a submatrix.
copySubMatrix(int, int, int, int, T[][]) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Copy a submatrix.
copySubMatrix(int, int, int, int, T[][]) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Copy a submatrix.
correct(double[]) - Method in class org.apache.commons.math4.legacy.filter.KalmanFilter
Correct the current state estimate with an actual measurement.
correct(RealVector) - Method in class org.apache.commons.math4.legacy.filter.KalmanFilter
Correct the current state estimate with an actual measurement.
CorrelatedVectorFactory - Class in org.apache.commons.math4.legacy.random
Generates vectors with with correlated components.
CorrelatedVectorFactory(double[], RealMatrix, double) - Constructor for class org.apache.commons.math4.legacy.random.CorrelatedVectorFactory
Correlated vector factory.
CorrelatedVectorFactory(RealMatrix, double) - Constructor for class org.apache.commons.math4.legacy.random.CorrelatedVectorFactory
Null mean correlated vector factory.
correlation(double[], double[]) - Method in class org.apache.commons.math4.legacy.stat.correlation.KendallsCorrelation
Computes the Kendall's Tau rank correlation coefficient between the two arrays.
correlation(double[], double[]) - Method in class org.apache.commons.math4.legacy.stat.correlation.PearsonsCorrelation
Computes the Pearson's product-moment correlation coefficient between two arrays.
correlation(double[], double[]) - Method in class org.apache.commons.math4.legacy.stat.correlation.SpearmansCorrelation
Computes the Spearman's rank correlation coefficient between the two arrays.
cos() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
cos() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
cos(double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute cosine of a derivative structure.
Cos - Class in org.apache.commons.math4.legacy.analysis.function
Cosine function.
Cos() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Cos
 
cosh() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
cosh() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
cosh(double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute hyperbolic cosine of a derivative structure.
Cosh - Class in org.apache.commons.math4.legacy.analysis.function
Hyperbolic cosine function.
Cosh() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Cosh
 
cosine(RealVector) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Computes the cosine of the angle between this vector and the argument.
countEvaluations(LeastSquaresProblem, IntegerSequence.Incrementor) - Static method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresFactory
Count the evaluations of a particular problem.
covariance(double[], double[]) - Method in class org.apache.commons.math4.legacy.stat.correlation.Covariance
Computes the covariance between the two arrays, using the bias-corrected formula.
covariance(double[], double[], boolean) - Method in class org.apache.commons.math4.legacy.stat.correlation.Covariance
Computes the covariance between the two arrays.
Covariance - Class in org.apache.commons.math4.legacy.stat.correlation
Computes covariances for pairs of arrays or columns of a matrix.
Covariance() - Constructor for class org.apache.commons.math4.legacy.stat.correlation.Covariance
Create a Covariance with no data.
Covariance(double[][]) - Constructor for class org.apache.commons.math4.legacy.stat.correlation.Covariance
Create a Covariance matrix from a rectangular array whose columns represent covariates.
Covariance(double[][], boolean) - Constructor for class org.apache.commons.math4.legacy.stat.correlation.Covariance
Create a Covariance matrix from a rectangular array whose columns represent covariates.
Covariance(RealMatrix) - Constructor for class org.apache.commons.math4.legacy.stat.correlation.Covariance
Create a covariance matrix from a matrix whose columns represent covariates.
Covariance(RealMatrix, boolean) - Constructor for class org.apache.commons.math4.legacy.stat.correlation.Covariance
Create a covariance matrix from a matrix whose columns represent covariates.
covarianceToCorrelation(RealMatrix) - Method in class org.apache.commons.math4.legacy.stat.correlation.PearsonsCorrelation
Derives a correlation matrix from a covariance matrix.
create() - Static method in class org.apache.commons.math4.legacy.fitting.GaussianCurveFitter
Creates a default curve fitter.
create() - Static method in class org.apache.commons.math4.legacy.fitting.HarmonicCurveFitter
Creates a default curve fitter.
create(boolean, FieldODEStateAndDerivative<T>, FieldODEStateAndDerivative<T>, FieldODEStateAndDerivative<T>, FieldODEStateAndDerivative<T>, FieldEquationsMapper<T>) - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractFieldStepInterpolator
Create a new instance.
create(int) - Static method in class org.apache.commons.math4.legacy.fitting.PolynomialCurveFitter
Creates a default curve fitter.
create(MultivariateFunction, Comparator<PointValuePair>, DoublePredicate) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.HedarFukushimaTransform
Creates a simplex transformation.
create(MultivariateFunction, Comparator<PointValuePair>, DoublePredicate) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.MultiDirectionalTransform
Creates a simplex transformation.
create(MultivariateFunction, Comparator<PointValuePair>, DoublePredicate) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.NelderMeadTransform
Creates a simplex transformation.
create(MultivariateFunction, Comparator<PointValuePair>, DoublePredicate) - Method in interface org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.Simplex.TransformFactory
Creates a simplex transformation.
create(MultivariateVectorFunction, MultivariateMatrixFunction, double[], double[], RealMatrix, ConvergenceChecker<LeastSquaresProblem.Evaluation>, int, int) - Static method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresFactory
Create a LeastSquaresProblem from the given elements.
create(ParametricUnivariateFunction, double[]) - Static method in class org.apache.commons.math4.legacy.fitting.SimpleCurveFitter
Creates a curve fitter.
create(ParametricUnivariateFunction, SimpleCurveFitter.ParameterGuesser) - Static method in class org.apache.commons.math4.legacy.fitting.SimpleCurveFitter
Creates a curve fitter.
create(MultivariateJacobianFunction, RealVector, RealVector, RealMatrix, ConvergenceChecker<LeastSquaresProblem.Evaluation>, int, int) - Static method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresFactory
Create a LeastSquaresProblem from the given elements.
create(MultivariateJacobianFunction, RealVector, RealVector, RealMatrix, ConvergenceChecker<LeastSquaresProblem.Evaluation>, int, int, boolean, ParameterValidator) - Static method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresFactory
Create a LeastSquaresProblem from the given elements.
create(MultivariateJacobianFunction, RealVector, RealVector, ConvergenceChecker<LeastSquaresProblem.Evaluation>, int, int) - Static method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresFactory
Create a LeastSquaresProblem from the given elements.
create(RealLinearOperator) - Static method in class org.apache.commons.math4.legacy.linear.JacobiPreconditioner
Creates a new instance of this class.
create(Field<T>, int, int) - Static method in class org.apache.commons.math4.legacy.field.linalg.FieldDenseMatrix
Factory method.
createBlocksLayout(int, int) - Static method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Create a data array in blocks layout.
createBlocksLayout(Field<T>, int, int) - Static method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Create a data array in blocks layout.
createChebyshevPolynomial(int) - Static method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialsUtils
Create a Chebyshev polynomial of the first kind.
createColumnFieldMatrix(T[]) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Creates a column FieldMatrix using the data from the input array.
createColumnRealMatrix(double[]) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Creates a column RealMatrix using the data from the input array.
createConstant(double) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Create a constant compatible with instance order and number of parameters.
createConstant(double) - Static method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Factory method creating a constant.
createContributingStatistics() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AggregateSummaryStatistics
Creates and returns a SummaryStatistics whose data will be aggregated with those of this AggregateSummaryStatistics.
createFieldDiagonalMatrix(T[]) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Returns a diagonal matrix with specified elements.
createFieldIdentityMatrix(Field<T>, int) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Returns dimension x dimension identity matrix.
createFieldMatrix(Field<T>, int, int) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Returns a FieldMatrix with specified dimensions.
createFieldMatrix(T[][]) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Returns a FieldMatrix whose entries are the values in the the input array.
createFieldVector(T[]) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Creates a FieldVector using the data from the input array.
createHermitePolynomial(int) - Static method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialsUtils
Create a Hermite polynomial.
createInterpolator(boolean, T[][], FieldODEStateAndDerivative<T>, FieldODEStateAndDerivative<T>, FieldEquationsMapper<T>) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.ClassicalRungeKuttaFieldIntegrator
Create an interpolator.
createInterpolator(boolean, T[][], FieldODEStateAndDerivative<T>, FieldODEStateAndDerivative<T>, FieldEquationsMapper<T>) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince54FieldIntegrator
Create an interpolator.
createInterpolator(boolean, T[][], FieldODEStateAndDerivative<T>, FieldODEStateAndDerivative<T>, FieldEquationsMapper<T>) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince853FieldIntegrator
Create an interpolator.
createInterpolator(boolean, T[][], FieldODEStateAndDerivative<T>, FieldODEStateAndDerivative<T>, FieldEquationsMapper<T>) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaFieldIntegrator
Create an interpolator.
createInterpolator(boolean, T[][], FieldODEStateAndDerivative<T>, FieldODEStateAndDerivative<T>, FieldEquationsMapper<T>) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EulerFieldIntegrator
Create an interpolator.
createInterpolator(boolean, T[][], FieldODEStateAndDerivative<T>, FieldODEStateAndDerivative<T>, FieldEquationsMapper<T>) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.GillFieldIntegrator
Create an interpolator.
createInterpolator(boolean, T[][], FieldODEStateAndDerivative<T>, FieldODEStateAndDerivative<T>, FieldEquationsMapper<T>) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.HighamHall54FieldIntegrator
Create an interpolator.
createInterpolator(boolean, T[][], FieldODEStateAndDerivative<T>, FieldODEStateAndDerivative<T>, FieldEquationsMapper<T>) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.LutherFieldIntegrator
Create an interpolator.
createInterpolator(boolean, T[][], FieldODEStateAndDerivative<T>, FieldODEStateAndDerivative<T>, FieldEquationsMapper<T>) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.MidpointFieldIntegrator
Create an interpolator.
createInterpolator(boolean, T[][], FieldODEStateAndDerivative<T>, FieldODEStateAndDerivative<T>, FieldEquationsMapper<T>) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.RungeKuttaFieldIntegrator
Create an interpolator.
createInterpolator(boolean, T[][], FieldODEStateAndDerivative<T>, FieldODEStateAndDerivative<T>, FieldEquationsMapper<T>) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.ThreeEighthesFieldIntegrator
Create an interpolator.
createInterval(int, int, double) - Method in class org.apache.commons.math4.legacy.stat.interval.AgrestiCoullInterval
Create a confidence interval for the true probability of success of an unknown binomial distribution with the given observed number of trials, successes and confidence level.
createInterval(int, int, double) - Method in interface org.apache.commons.math4.legacy.stat.interval.BinomialConfidenceInterval
Create a confidence interval for the true probability of success of an unknown binomial distribution with the given observed number of trials, successes and confidence level.
createInterval(int, int, double) - Method in class org.apache.commons.math4.legacy.stat.interval.ClopperPearsonInterval
Create a confidence interval for the true probability of success of an unknown binomial distribution with the given observed number of trials, successes and confidence level.
createInterval(int, int, double) - Method in class org.apache.commons.math4.legacy.stat.interval.NormalApproximationInterval
Create a confidence interval for the true probability of success of an unknown binomial distribution with the given observed number of trials, successes and confidence level.
createInterval(int, int, double) - Method in class org.apache.commons.math4.legacy.stat.interval.WilsonScoreInterval
Create a confidence interval for the true probability of success of an unknown binomial distribution with the given observed number of trials, successes and confidence level.
createJacobiPolynomial(int, int, int) - Static method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialsUtils
Create a Jacobi polynomial.
createLaguerrePolynomial(int) - Static method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialsUtils
Create a Laguerre polynomial.
createLegendrePolynomial(int) - Static method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialsUtils
Create a Legendre polynomial.
createLineSearch() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer
Intantiate the line search implementation.
createMatrix(int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Create a new FieldMatrix<T> of the same type as the instance with the supplied row and column dimensions.
createMatrix(int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Create a new RealMatrix of the same type as the instance with the supplied row and column dimensions.
createMatrix(int, int) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Create a new FieldMatrix<T> of the same type as the instance with the supplied row and column dimensions.
createMatrix(int, int) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Create a new RealMatrix of the same type as the instance with the supplied row and column dimensions.
createMatrix(int, int) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Create a new FieldMatrix<T> of the same type as the instance with the supplied row and column dimensions.
createMatrix(int, int) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Create a new RealMatrix of the same type as the instance with the supplied row and column dimensions.
createMatrix(int, int) - Method in class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Create a new RealMatrix of the same type as the instance with the supplied row and column dimensions.
createMatrix(int, int) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Create a new FieldMatrix<T> of the same type as the instance with the supplied row and column dimensions.
createMatrix(int, int) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealMatrix
Create a new RealMatrix of the same type as the instance with the supplied row and column dimensions.
createMatrix(int, int) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Create a new RealMatrix of the same type as the instance with the supplied row and column dimensions.
createMatrix(int, int) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldMatrix
Create a new FieldMatrix<T> of the same type as the instance with the supplied row and column dimensions.
createRealDiagonalMatrix(double[]) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Creates a diagonal matrix with the specified diagonal elements.
createRealIdentityMatrix(int) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Returns dimension x dimension identity matrix.
createRealMatrix(double[][]) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Returns a RealMatrix whose entries are the values in the the input array.
createRealMatrix(int, int) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Returns a RealMatrix with specified dimensions.
createRealMatrixWithDiagonal(double[]) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Creates a dense matrix with the specified diagonal elements.
createRealVector(double[]) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Creates a RealVector using the data from the input array.
createRowFieldMatrix(T[]) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Create a row FieldMatrix using the data from the input array.
createRowRealMatrix(double[]) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Create a row RealMatrix using the data from the input array.
createSampler(UniformRandomProvider) - Method in class org.apache.commons.math4.legacy.distribution.AbstractIntegerDistribution
createSampler(UniformRandomProvider) - Method in class org.apache.commons.math4.legacy.distribution.AbstractMultivariateRealDistribution
Creates a sampler.
createSampler(UniformRandomProvider) - Method in class org.apache.commons.math4.legacy.distribution.AbstractRealDistribution
createSampler(UniformRandomProvider) - Method in class org.apache.commons.math4.legacy.distribution.EnumeratedDistribution
createSampler(UniformRandomProvider) - Method in class org.apache.commons.math4.legacy.distribution.EnumeratedIntegerDistribution
Refer to EnumeratedDistribution.Sampler for implementation details.
createSampler(UniformRandomProvider) - Method in class org.apache.commons.math4.legacy.distribution.EnumeratedRealDistribution
createSampler(UniformRandomProvider) - Method in class org.apache.commons.math4.legacy.distribution.MixtureMultivariateRealDistribution
Creates a sampler.
createSampler(UniformRandomProvider) - Method in class org.apache.commons.math4.legacy.distribution.MultivariateNormalDistribution
Creates a sampler.
createSampler(UniformRandomProvider) - Method in interface org.apache.commons.math4.legacy.distribution.MultivariateRealDistribution
Creates a sampler.
createVariable(int, double) - Static method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Factory method creating an independent variable.
crossover(Chromosome, Chromosome) - Method in interface org.apache.commons.math4.legacy.genetics.CrossoverPolicy
Perform a crossover operation on the given chromosomes.
crossover(Chromosome, Chromosome) - Method in class org.apache.commons.math4.legacy.genetics.CycleCrossover
Perform a crossover operation on the given chromosomes.
crossover(Chromosome, Chromosome) - Method in class org.apache.commons.math4.legacy.genetics.NPointCrossover
Performs a N-point crossover.
crossover(Chromosome, Chromosome) - Method in class org.apache.commons.math4.legacy.genetics.OnePointCrossover
Performs one point crossover.
crossover(Chromosome, Chromosome) - Method in class org.apache.commons.math4.legacy.genetics.OrderedCrossover
Perform a crossover operation on the given chromosomes.
crossover(Chromosome, Chromosome) - Method in class org.apache.commons.math4.legacy.genetics.UniformCrossover
Perform a crossover operation on the given chromosomes.
CrossoverPolicy - Interface in org.apache.commons.math4.legacy.genetics
Policy used to create a pair of new chromosomes by performing a crossover operation on a source pair of chromosomes.
cumulativeProbability(double) - Method in class org.apache.commons.math4.legacy.distribution.EmpiricalDistribution
Algorithm description: Find the bin B that x belongs to. Compute P(B) = the mass of B and P(B-) = the combined mass of the bins below B. Compute K(B) = the probability mass of B with respect to the within-bin kernel and K(B-) = the kernel distribution evaluated at the lower endpoint of B Return P(B-) + P(B) * [K(x) - K(B-)] / K(B) where K(x) is the within-bin kernel distribution function evaluated at x. If K is a constant distribution, we return P(B-) + P(B) (counting the full mass of B).
cumulativeProbability(double) - Method in class org.apache.commons.math4.legacy.distribution.EnumeratedRealDistribution
cumulativeProbability(int) - Method in class org.apache.commons.math4.legacy.distribution.EnumeratedIntegerDistribution
currentState - Variable in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
current state.
CycleCrossover<T> - Class in org.apache.commons.math4.legacy.genetics
Cycle Crossover [CX] builds offspring from ordered chromosomes by identifying cycles between two parent chromosomes.
CycleCrossover() - Constructor for class org.apache.commons.math4.legacy.genetics.CycleCrossover
Creates a new CycleCrossover policy.
CycleCrossover(boolean) - Constructor for class org.apache.commons.math4.legacy.genetics.CycleCrossover
Creates a new CycleCrossover policy using the given randomStart behavior.

D

DANTZIG - org.apache.commons.math4.legacy.optim.linear.PivotSelectionRule
The classical rule, the variable with the most negative coefficient in the objective function row will be chosen as entering variable.
DBSCANClusterer<T extends Clusterable> - Class in org.apache.commons.math4.legacy.ml.clustering
DBSCAN (density-based spatial clustering of applications with noise) algorithm.
DBSCANClusterer(double, int) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.DBSCANClusterer
Creates a new instance of a DBSCANClusterer.
DBSCANClusterer(double, int, DistanceMeasure) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.DBSCANClusterer
Creates a new instance of a DBSCANClusterer.
decode(List<T>) - Method in interface org.apache.commons.math4.legacy.genetics.PermutationChromosome
Permutes the sequence of objects of type T according to the permutation this chromosome represents.
decode(List<T>) - Method in class org.apache.commons.math4.legacy.genetics.RandomKey
Permutes the sequence of objects of type T according to the permutation this chromosome represents.
decompose(double[][]) - Method in class org.apache.commons.math4.legacy.linear.QRDecomposition
Decompose matrix.
decompose(double[][]) - Method in class org.apache.commons.math4.legacy.linear.RRQRDecomposition
Decompose matrix.
DecompositionSolver - Interface in org.apache.commons.math4.legacy.linear
Interface handling decomposition algorithms that can solve A × X = B.
decreasingExponential(double) - Static method in interface org.apache.commons.math4.legacy.optim.nonlinear.scalar.SimulatedAnnealing.CoolingSchedule
Power-law cooling scheme: \[ T_i = T_0 * f^i \], where \( i \) is the current iteration.
DEFAULT_ABSOLUTE_ACCURACY - Static variable in class org.apache.commons.math4.legacy.analysis.integration.BaseAbstractUnivariateIntegrator
Default absolute accuracy.
DEFAULT_ABSOLUTE_ACCURACY - Static variable in class org.apache.commons.math4.legacy.analysis.solvers.BaseSecantSolver
Default absolute accuracy.
DEFAULT_ABSOLUTE_ACCURACY - Static variable in class org.apache.commons.math4.legacy.analysis.solvers.SecantSolver
Default absolute accuracy.
DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD - Static variable in class org.apache.commons.math4.legacy.linear.CholeskyDecomposition
Default threshold below which diagonal elements are considered null and matrix not positive definite.
DEFAULT_ACCURACY - Static variable in class org.apache.commons.math4.legacy.analysis.interpolation.LoessInterpolator
Default value for accuracy.
DEFAULT_BANDWIDTH - Static variable in class org.apache.commons.math4.legacy.analysis.interpolation.LoessInterpolator
Default value of the bandwidth parameter.
DEFAULT_EXTEND - Static variable in class org.apache.commons.math4.legacy.analysis.interpolation.UnivariatePeriodicInterpolator
Default number of extension points of the samples array.
DEFAULT_FORMAT - Static variable in class org.apache.commons.math4.legacy.linear.MatrixUtils
The default format for RealMatrix objects.
DEFAULT_INITIAL_RADIUS - Static variable in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.BOBYQAOptimizer
DEFAULT_MAX_ITERATIONS_COUNT - Static variable in class org.apache.commons.math4.legacy.analysis.integration.BaseAbstractUnivariateIntegrator
Default maximal iteration count.
DEFAULT_MIN_ITERATIONS_COUNT - Static variable in class org.apache.commons.math4.legacy.analysis.integration.BaseAbstractUnivariateIntegrator
Default minimal iteration count.
DEFAULT_NAN_STRATEGY - Static variable in class org.apache.commons.math4.legacy.stat.ranking.NaturalRanking
default NaN strategy.
DEFAULT_RELATIVE_ACCURACY - Static variable in class org.apache.commons.math4.legacy.analysis.integration.BaseAbstractUnivariateIntegrator
Default relative accuracy.
DEFAULT_RELATIVE_SYMMETRY_THRESHOLD - Static variable in class org.apache.commons.math4.legacy.linear.CholeskyDecomposition
Default threshold above which off-diagonal elements are considered too different and matrix not symmetric.
DEFAULT_ROBUSTNESS_ITERS - Static variable in class org.apache.commons.math4.legacy.analysis.interpolation.LoessInterpolator
Default value of the number of robustness iterations.
DEFAULT_STOPPING_RADIUS - Static variable in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.BOBYQAOptimizer
DEFAULT_TIES_STRATEGY - Static variable in class org.apache.commons.math4.legacy.stat.ranking.NaturalRanking
default ties strategy.
DEFAULT_ZERO_TOLERANCE - Static variable in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Default Tolerance for having a value considered zero.
DefaultFieldMatrixChangingVisitor<T extends FieldElement<T>> - Class in org.apache.commons.math4.legacy.linear
Default implementation of the FieldMatrixChangingVisitor interface.
DefaultFieldMatrixChangingVisitor(T) - Constructor for class org.apache.commons.math4.legacy.linear.DefaultFieldMatrixChangingVisitor
Build a new instance.
DefaultFieldMatrixPreservingVisitor<T extends FieldElement<T>> - Class in org.apache.commons.math4.legacy.linear
Default implementation of the FieldMatrixPreservingVisitor interface.
DefaultFieldMatrixPreservingVisitor(T) - Constructor for class org.apache.commons.math4.legacy.linear.DefaultFieldMatrixPreservingVisitor
Build a new instance.
DefaultIterativeLinearSolverEvent - Class in org.apache.commons.math4.legacy.linear
A default concrete implementation of the abstract class IterativeLinearSolverEvent.
DefaultIterativeLinearSolverEvent(Object, int, RealVector, RealVector, double) - Constructor for class org.apache.commons.math4.legacy.linear.DefaultIterativeLinearSolverEvent
Creates a new instance of this class.
DefaultIterativeLinearSolverEvent(Object, int, RealVector, RealVector, RealVector, double) - Constructor for class org.apache.commons.math4.legacy.linear.DefaultIterativeLinearSolverEvent
Creates a new instance of this class.
DefaultMeasurementModel - Class in org.apache.commons.math4.legacy.filter
Default implementation of a MeasurementModel for the use with a KalmanFilter.
DefaultMeasurementModel(double[][], double[][]) - Constructor for class org.apache.commons.math4.legacy.filter.DefaultMeasurementModel
Create a new MeasurementModel, taking double arrays as input parameters for the respective measurement matrix and noise.
DefaultMeasurementModel(RealMatrix, RealMatrix) - Constructor for class org.apache.commons.math4.legacy.filter.DefaultMeasurementModel
Create a new MeasurementModel, taking RealMatrix objects as input parameters for the respective measurement matrix and noise.
DefaultProcessModel - Class in org.apache.commons.math4.legacy.filter
Default implementation of a ProcessModel for the use with a KalmanFilter.
DefaultProcessModel(double[][], double[][], double[][]) - Constructor for class org.apache.commons.math4.legacy.filter.DefaultProcessModel
Create a new ProcessModel, taking double arrays as input parameters.
DefaultProcessModel(double[][], double[][], double[][], double[], double[][]) - Constructor for class org.apache.commons.math4.legacy.filter.DefaultProcessModel
Create a new ProcessModel, taking double arrays as input parameters.
DefaultProcessModel(RealMatrix, RealMatrix, RealMatrix, RealVector, RealMatrix) - Constructor for class org.apache.commons.math4.legacy.filter.DefaultProcessModel
Create a new ProcessModel, taking double arrays as input parameters.
DefaultRealMatrixChangingVisitor - Class in org.apache.commons.math4.legacy.linear
Default implementation of the RealMatrixChangingVisitor interface.
DefaultRealMatrixChangingVisitor() - Constructor for class org.apache.commons.math4.legacy.linear.DefaultRealMatrixChangingVisitor
 
DefaultRealMatrixPreservingVisitor - Class in org.apache.commons.math4.legacy.linear
Default implementation of the RealMatrixPreservingVisitor interface.
DefaultRealMatrixPreservingVisitor() - Constructor for class org.apache.commons.math4.legacy.linear.DefaultRealMatrixPreservingVisitor
 
degree() - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction
Returns the degree of the polynomial.
degree() - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionLagrangeForm
Returns the degree of the polynomial.
degree() - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionNewtonForm
Returns the degree of the polynomial.
density(double) - Method in class org.apache.commons.math4.legacy.distribution.EmpiricalDistribution
Returns the kernel density normalized so that its integral over each bin equals the bin mass.
density(double) - Method in class org.apache.commons.math4.legacy.distribution.EnumeratedRealDistribution
For a random variable X whose values are distributed according to this distribution, this method returns P(X = x).
density(double[]) - Method in class org.apache.commons.math4.legacy.distribution.MixtureMultivariateRealDistribution
Returns the probability density function (PDF) of this distribution evaluated at the specified point x.
density(double[]) - Method in class org.apache.commons.math4.legacy.distribution.MultivariateNormalDistribution
Returns the probability density function (PDF) of this distribution evaluated at the specified point x.
density(double[]) - Method in interface org.apache.commons.math4.legacy.distribution.MultivariateRealDistribution
Returns the probability density function (PDF) of this distribution evaluated at the specified point x.
derivative(MultivariateDifferentiableFunction, int[]) - Static method in class org.apache.commons.math4.legacy.analysis.FunctionUtils
Convert an MultivariateDifferentiableFunction to an MultivariateFunction computing nth order derivative.
derivative(UnivariateDifferentiableFunction, int) - Static method in class org.apache.commons.math4.legacy.analysis.FunctionUtils
Convert an UnivariateDifferentiableFunction to an UnivariateFunction computing nth order derivative.
derivatives(T, int) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.FieldHermiteInterpolator
Interpolate value and first derivatives at a specified abscissa.
DerivativeStructure - Class in org.apache.commons.math4.legacy.analysis.differentiation
Class representing both the value and the differentials of a function.
DerivativeStructure(double, DerivativeStructure, double, DerivativeStructure) - Constructor for class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Linear combination constructor.
DerivativeStructure(double, DerivativeStructure, double, DerivativeStructure, double, DerivativeStructure) - Constructor for class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Linear combination constructor.
DerivativeStructure(double, DerivativeStructure, double, DerivativeStructure, double, DerivativeStructure, double, DerivativeStructure) - Constructor for class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Linear combination constructor.
DerivativeStructure(int, int) - Constructor for class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Build an instance with all values and derivatives set to 0.
DerivativeStructure(int, int, double) - Constructor for class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Build an instance representing a constant value.
DerivativeStructure(int, int, double...) - Constructor for class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Build an instance from all its derivatives.
DerivativeStructure(int, int, int, double) - Constructor for class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Build an instance representing a variable.
DescriptiveStatistics - Class in org.apache.commons.math4.legacy.stat.descriptive
Maintains a dataset of values of a single variable and computes descriptive statistics based on stored data.
DescriptiveStatistics() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Construct a DescriptiveStatistics instance with an infinite window.
DescriptiveStatistics(double[]) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Construct a DescriptiveStatistics instance with an infinite window and the initial data values in initialDoubleArray.
DescriptiveStatistics(int) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Construct a DescriptiveStatistics instance with the specified window.
DescriptiveStatistics(Double[]) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Construct a DescriptiveStatistics instance with an infinite window and the initial data values in initialDoubleArray.
DescriptiveStatistics(DescriptiveStatistics) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Copy constructor.
deserializeRealMatrix(Object, String, ObjectInputStream) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Deserialize a RealMatrix field in a class.
deserializeRealVector(Object, String, ObjectInputStream) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Deserialize a RealVector field in a class.
df(double, double, double, double) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Computes approximate degrees of freedom for 2-sample t-test.
DiagonalMatrix - Class in org.apache.commons.math4.legacy.linear
Implementation of a diagonal matrix.
DiagonalMatrix(double[]) - Constructor for class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Creates a matrix using the input array as the underlying data.
DiagonalMatrix(double[], boolean) - Constructor for class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Creates a matrix using the input array as the underlying data.
DiagonalMatrix(int) - Constructor for class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Creates a matrix with the supplied dimension.
differentiate(double[]) - Static method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction
Returns the coefficients of the derivative of the polynomial with the given coefficients.
differentiate(UnivariateFunction) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.FiniteDifferencesDifferentiator
Create an implementation of a differential from a regular function.
differentiate(UnivariateFunction) - Method in interface org.apache.commons.math4.legacy.analysis.differentiation.UnivariateFunctionDifferentiator
Create an implementation of a differential from a regular function.
differentiate(UnivariateMatrixFunction) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.FiniteDifferencesDifferentiator
Create an implementation of a differential from a regular matrix function.
differentiate(UnivariateMatrixFunction) - Method in interface org.apache.commons.math4.legacy.analysis.differentiation.UnivariateMatrixFunctionDifferentiator
Create an implementation of a differential from a regular matrix function.
differentiate(UnivariateVectorFunction) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.FiniteDifferencesDifferentiator
Create an implementation of a differential from a regular vector function.
differentiate(UnivariateVectorFunction) - Method in interface org.apache.commons.math4.legacy.analysis.differentiation.UnivariateVectorFunctionDifferentiator
Create an implementation of a differential from a regular vector function.
DifferentiatorVectorMultivariateJacobianFunction - Class in org.apache.commons.math4.legacy.fitting.leastsquares
A MultivariateJacobianFunction (a thing that requires a derivative) combined with the thing that can find derivatives.
DifferentiatorVectorMultivariateJacobianFunction(MultivariateVectorFunction, UnivariateVectorFunctionDifferentiator) - Constructor for class org.apache.commons.math4.legacy.fitting.leastsquares.DifferentiatorVectorMultivariateJacobianFunction
Build the jacobian function using a differentiator.
distance(Clusterable, Clusterable) - Method in class org.apache.commons.math4.legacy.ml.clustering.Clusterer
Calculates the distance between two Clusterable instances with the configured DistanceMeasure.
DistanceMeasure - Interface in org.apache.commons.math4.legacy.ml.distance
Interface for distance measures of n-dimensional vectors.
divide(double) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
divide(double) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
divide(double[], int, double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Perform division of two derivative structures.
divide(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
divide(SparseGradient) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
divide(BigReal) - Method in class org.apache.commons.math4.legacy.linear.BigReal
Divide - Class in org.apache.commons.math4.legacy.analysis.function
Divide the first operand by the second.
Divide() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Divide
 
DividedDifferenceInterpolator - Class in org.apache.commons.math4.legacy.analysis.interpolation
Implements the Divided Difference Algorithm for interpolation of real univariate functions.
DividedDifferenceInterpolator() - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.DividedDifferenceInterpolator
 
doCopy() - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Really copy the finalized instance.
doCopy() - Method in class org.apache.commons.math4.legacy.ode.sampling.NordsieckStepInterpolator
Really copy the finalized instance.
doFinalize() - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Really finalize the step.
doIntegrate() - Method in class org.apache.commons.math4.legacy.analysis.integration.BaseAbstractUnivariateIntegrator
Method for implementing actual integration algorithms in derived classes.
doIntegrate() - Method in class org.apache.commons.math4.legacy.analysis.integration.IterativeLegendreGaussIntegrator
Method for implementing actual integration algorithms in derived classes.
doIntegrate() - Method in class org.apache.commons.math4.legacy.analysis.integration.MidPointIntegrator
Method for implementing actual integration algorithms in derived classes.
doIntegrate() - Method in class org.apache.commons.math4.legacy.analysis.integration.RombergIntegrator
Method for implementing actual integration algorithms in derived classes.
doIntegrate() - Method in class org.apache.commons.math4.legacy.analysis.integration.SimpsonIntegrator
Method for implementing actual integration algorithms in derived classes.
doIntegrate() - Method in class org.apache.commons.math4.legacy.analysis.integration.TrapezoidIntegrator
Method for implementing actual integration algorithms in derived classes.
doIteration(SimplexTableau) - Method in class org.apache.commons.math4.legacy.optim.linear.SimplexSolver
Runs one iteration of the Simplex method on the given model.
doOptimize() - Method in class org.apache.commons.math4.legacy.optim.BaseMultiStartMultivariateOptimizer
Performs the bulk of the optimization algorithm.
doOptimize() - Method in class org.apache.commons.math4.legacy.optim.BaseOptimizer
Performs the bulk of the optimization algorithm.
doOptimize() - Method in class org.apache.commons.math4.legacy.optim.linear.SimplexSolver
Performs the bulk of the optimization algorithm.
doOptimize() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.gradient.NonLinearConjugateGradientOptimizer
Performs the bulk of the optimization algorithm.
doOptimize() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.BOBYQAOptimizer
Performs the bulk of the optimization algorithm.
doOptimize() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.CMAESOptimizer
Performs the bulk of the optimization algorithm.
doOptimize() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.PowellOptimizer
Performs the bulk of the optimization algorithm.
doOptimize() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.SimplexOptimizer
Performs the bulk of the optimization algorithm.
doOptimize() - Method in class org.apache.commons.math4.legacy.optim.univariate.BrentOptimizer
Performs the bulk of the optimization algorithm.
doOptimize() - Method in class org.apache.commons.math4.legacy.optim.univariate.MultiStartUnivariateOptimizer
Performs the bulk of the optimization algorithm.
DormandPrince54FieldIntegrator<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements the 5(4) Dormand-Prince integrator for Ordinary Differential Equations.
DormandPrince54FieldIntegrator(Field<T>, double, double, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince54FieldIntegrator
Simple constructor.
DormandPrince54FieldIntegrator(Field<T>, double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince54FieldIntegrator
Simple constructor.
DormandPrince54Integrator - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements the 5(4) Dormand-Prince integrator for Ordinary Differential Equations.
DormandPrince54Integrator(double, double, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince54Integrator
Simple constructor.
DormandPrince54Integrator(double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince54Integrator
Simple constructor.
DormandPrince853FieldIntegrator<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements the 8(5,3) Dormand-Prince integrator for Ordinary Differential Equations.
DormandPrince853FieldIntegrator(Field<T>, double, double, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince853FieldIntegrator
Simple constructor.
DormandPrince853FieldIntegrator(Field<T>, double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince853FieldIntegrator
Simple constructor.
DormandPrince853Integrator - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements the 8(5,3) Dormand-Prince integrator for Ordinary Differential Equations.
DormandPrince853Integrator(double, double, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince853Integrator
Simple constructor.
DormandPrince853Integrator(double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince853Integrator
Simple constructor.
doSolve() - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
Method for implementing actual optimization algorithms in derived classes.
doSolve() - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseSecantSolver
Method for implementing actual optimization algorithms in derived classes.
doSolve() - Method in class org.apache.commons.math4.legacy.analysis.solvers.BisectionSolver
Method for implementing actual optimization algorithms in derived classes.
doSolve() - Method in class org.apache.commons.math4.legacy.analysis.solvers.BracketingNthOrderBrentSolver
Method for implementing actual optimization algorithms in derived classes.
doSolve() - Method in class org.apache.commons.math4.legacy.analysis.solvers.BrentSolver
Method for implementing actual optimization algorithms in derived classes.
doSolve() - Method in class org.apache.commons.math4.legacy.analysis.solvers.LaguerreSolver
Method for implementing actual optimization algorithms in derived classes.
doSolve() - Method in class org.apache.commons.math4.legacy.analysis.solvers.MullerSolver
Method for implementing actual optimization algorithms in derived classes.
doSolve() - Method in class org.apache.commons.math4.legacy.analysis.solvers.MullerSolver2
Method for implementing actual optimization algorithms in derived classes.
doSolve() - Method in class org.apache.commons.math4.legacy.analysis.solvers.NewtonRaphsonSolver
Method for implementing actual optimization algorithms in derived classes.
doSolve() - Method in class org.apache.commons.math4.legacy.analysis.solvers.RiddersSolver
Method for implementing actual optimization algorithms in derived classes.
doSolve() - Method in class org.apache.commons.math4.legacy.analysis.solvers.SecantSolver
Method for implementing actual optimization algorithms in derived classes.
dotProduct(ArrayFieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Compute the dot product.
dotProduct(FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Compute the dot product.
dotProduct(FieldVector<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Compute the dot product.
dotProduct(FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Compute the dot product.
dotProduct(RealVector) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Compute the dot product of this vector with v.
dotProduct(RealVector) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Compute the dot product of this vector with v.
DoublePoint - Class in org.apache.commons.math4.legacy.ml.clustering
A simple implementation of Clusterable for points with double coordinates.
DoublePoint(double[]) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.DoublePoint
Build an instance wrapping an double array.
DoublePoint(int[]) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.DoublePoint
Build an instance wrapping an integer array.
doubleValue() - Method in class org.apache.commons.math4.legacy.linear.BigReal
Get the double value corresponding to the instance.
DOWNSIDE - org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance.Direction
The DOWNSIDE Direction is used to specify that the observations below.
DOWNSIDE_VARIANCE - Static variable in class org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance
The DOWNSIDE Direction is used to specify that the observations below.
DSCompiler - Class in org.apache.commons.math4.legacy.analysis.differentiation
Class holding "compiled" computation rules for derivative structures.
DummyStepHandler - Class in org.apache.commons.math4.legacy.ode.sampling
This class is a step handler that does nothing.

E

EarthMoversDistance - Class in org.apache.commons.math4.legacy.ml.distance
Calculates the Earh Mover's distance (also known as Wasserstein metric) between two distributions.
EarthMoversDistance() - Constructor for class org.apache.commons.math4.legacy.ml.distance.EarthMoversDistance
 
ebeDivide(ArrayFieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Element-by-element division.
ebeDivide(FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Element-by-element division.
ebeDivide(FieldVector<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Element-by-element division.
ebeDivide(FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Element-by-element division.
ebeDivide(RealVector) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Element-by-element division.
ebeDivide(RealVector) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Element-by-element division.
ebeDivide(RealVector) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Element-by-element division.
ebeMultiply(ArrayFieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Element-by-element multiplication.
ebeMultiply(FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Element-by-element multiplication.
ebeMultiply(FieldVector<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Element-by-element multiplication.
ebeMultiply(FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Element-by-element multiplication.
ebeMultiply(RealVector) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Element-by-element multiplication.
ebeMultiply(RealVector) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Element-by-element multiplication.
ebeMultiply(RealVector) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Element-by-element multiplication.
EigenDecomposition - Class in org.apache.commons.math4.legacy.linear
Calculates the eigen decomposition of a real matrix.
EigenDecomposition(double[], double[]) - Constructor for class org.apache.commons.math4.legacy.linear.EigenDecomposition
Calculates the eigen decomposition of the symmetric tridiagonal matrix.
EigenDecomposition(RealMatrix) - Constructor for class org.apache.commons.math4.legacy.linear.EigenDecomposition
Calculates the eigen decomposition of the given real matrix.
ElitisticListPopulation - Class in org.apache.commons.math4.legacy.genetics
Population of chromosomes which uses elitism (certain percentage of the best chromosomes is directly copied to the next generation).
ElitisticListPopulation(int, double) - Constructor for class org.apache.commons.math4.legacy.genetics.ElitisticListPopulation
Creates a new ElitisticListPopulation instance and initializes its inner chromosome list.
ElitisticListPopulation(List<Chromosome>, int, double) - Constructor for class org.apache.commons.math4.legacy.genetics.ElitisticListPopulation
Creates a new ElitisticListPopulation instance.
ElkanKMeansPlusPlusClusterer<T extends Clusterable> - Class in org.apache.commons.math4.legacy.ml.clustering
Implementation of k-means++ algorithm.
ElkanKMeansPlusPlusClusterer(int) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.ElkanKMeansPlusPlusClusterer
 
ElkanKMeansPlusPlusClusterer(int, int, DistanceMeasure, UniformRandomProvider) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.ElkanKMeansPlusPlusClusterer
 
ElkanKMeansPlusPlusClusterer(int, int, DistanceMeasure, UniformRandomProvider, KMeansPlusPlusClusterer.EmptyClusterStrategy) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.ElkanKMeansPlusPlusClusterer
 
EmbeddedRungeKuttaFieldIntegrator<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements the common part of all embedded Runge-Kutta integrators for Ordinary Differential Equations.
EmbeddedRungeKuttaFieldIntegrator(Field<T>, String, int, double, double, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaFieldIntegrator
Build a Runge-Kutta integrator with the given Butcher array.
EmbeddedRungeKuttaFieldIntegrator(Field<T>, String, int, double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaFieldIntegrator
Build a Runge-Kutta integrator with the given Butcher array.
EmbeddedRungeKuttaIntegrator - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements the common part of all embedded Runge-Kutta integrators for Ordinary Differential Equations.
EmbeddedRungeKuttaIntegrator(String, boolean, double[], double[][], double[], RungeKuttaStepInterpolator, double, double, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaIntegrator
Build a Runge-Kutta integrator with the given Butcher array.
EmbeddedRungeKuttaIntegrator(String, boolean, double[], double[][], double[], RungeKuttaStepInterpolator, double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaIntegrator
Build a Runge-Kutta integrator with the given Butcher array.
EmpiricalDistribution - Class in org.apache.commons.math4.legacy.distribution
Represents an empirical probability distribution: Probability distribution derived from observed data without making any assumptions about the functional form of the population distribution that the data come from.
end() - Method in class org.apache.commons.math4.legacy.linear.DefaultFieldMatrixChangingVisitor
End visiting a matrix.
end() - Method in class org.apache.commons.math4.legacy.linear.DefaultFieldMatrixPreservingVisitor
End visiting a matrix.
end() - Method in class org.apache.commons.math4.legacy.linear.DefaultRealMatrixChangingVisitor
End visiting a matrix.
end() - Method in class org.apache.commons.math4.legacy.linear.DefaultRealMatrixPreservingVisitor
End visiting a matrix.
end() - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrixChangingVisitor
End visiting a matrix.
end() - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrixPreservingVisitor
End visiting a matrix.
end() - Method in interface org.apache.commons.math4.legacy.linear.FieldVectorChangingVisitor
End visiting a vector.
end() - Method in interface org.apache.commons.math4.legacy.linear.FieldVectorPreservingVisitor
End visiting a vector.
end() - Method in interface org.apache.commons.math4.legacy.linear.RealMatrixChangingVisitor
End visiting a matrix.
end() - Method in interface org.apache.commons.math4.legacy.linear.RealMatrixPreservingVisitor
End visiting a matrix.
end() - Method in interface org.apache.commons.math4.legacy.linear.RealVectorChangingVisitor
End visiting a vector.
end() - Method in interface org.apache.commons.math4.legacy.linear.RealVectorPreservingVisitor
End visiting a vector.
Entry() - Constructor for class org.apache.commons.math4.legacy.linear.RealVector.Entry
Simple constructor.
entrySetIterator() - Method in class org.apache.commons.math4.legacy.stat.Frequency
Return an Iterator over the set of keys and values that have been added.
EnumeratedDistribution<T> - Class in org.apache.commons.math4.legacy.distribution
A generic implementation of a discrete probability distribution (Wikipedia) over a finite sample space, based on an enumerated list of <value, probability> pairs.
EnumeratedDistribution(List<Pair<T, Double>>) - Constructor for class org.apache.commons.math4.legacy.distribution.EnumeratedDistribution
Create an enumerated distribution using the given random number generator and probability mass function enumeration.
EnumeratedDistribution.Sampler - Class in org.apache.commons.math4.legacy.distribution
Sampler functionality.
EnumeratedIntegerDistribution - Class in org.apache.commons.math4.legacy.distribution
Implementation of an integer-valued EnumeratedDistribution.
EnumeratedIntegerDistribution(int[]) - Constructor for class org.apache.commons.math4.legacy.distribution.EnumeratedIntegerDistribution
Create a discrete integer-valued distribution from the input data.
EnumeratedIntegerDistribution(int[], double[]) - Constructor for class org.apache.commons.math4.legacy.distribution.EnumeratedIntegerDistribution
Create a discrete distribution.
EnumeratedRealDistribution - Class in org.apache.commons.math4.legacy.distribution
Implementation of a real-valued EnumeratedDistribution.
EnumeratedRealDistribution(double[]) - Constructor for class org.apache.commons.math4.legacy.distribution.EnumeratedRealDistribution
Creates a discrete real-valued distribution from the input data.
EnumeratedRealDistribution(double[], double[]) - Constructor for class org.apache.commons.math4.legacy.distribution.EnumeratedRealDistribution
Create a discrete real-valued distribution using the given random number generator and probability mass function enumeration.
EQ - org.apache.commons.math4.legacy.optim.linear.Relationship
Equality relationship.
equals(Object) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Test for the equality of two derivative structures.
equals(Object) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Test for the equality of two sparse gradients.
equals(Object) - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction
equals(Object) - Method in class org.apache.commons.math4.legacy.field.linalg.FieldDenseMatrix
equals(Object) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Returns true iff object is a FieldMatrix instance with the same dimensions as this and all corresponding matrix entries are equal.
equals(Object) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Returns true iff object is a RealMatrix instance with the same dimensions as this and all corresponding matrix entries are equal.
equals(Object) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Test for the equality of two vectors.
equals(Object) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Test for the equality of two real vectors.
equals(Object) - Method in class org.apache.commons.math4.legacy.linear.BigReal
equals(Object) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Test for the equality of two real vectors.
equals(Object) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Test for the equality of two real vectors.
equals(Object) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
equals(Object) - Method in class org.apache.commons.math4.legacy.ml.clustering.DoublePoint
equals(Object) - Method in class org.apache.commons.math4.legacy.optim.linear.LinearConstraint
equals(Object) - Method in class org.apache.commons.math4.legacy.optim.linear.LinearObjectiveFunction
equals(Object) - Method in class org.apache.commons.math4.legacy.optim.PointValuePair
 
equals(Object) - Method in class org.apache.commons.math4.legacy.stat.descriptive.AbstractStorelessUnivariateStatistic
Returns true iff object is the same type of StorelessUnivariateStatistic (the object's class equals this instance) returning the same values as this for getResult() and getN().
equals(Object) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.VectorialCovariance
equals(Object) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.VectorialMean
equals(Object) - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Returns true iff object is a MultivariateSummaryStatistics instance and all statistics have the same values as this.
equals(Object) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.PSquarePercentile
Returns true iff o is a PSquarePercentile returning the.
equals(Object) - Method in class org.apache.commons.math4.legacy.stat.descriptive.StatisticalSummaryValues
Returns true iff object is a StatisticalSummaryValues instance and all statistics have the same values as this.
equals(Object) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns true iff object is a SummaryStatistics instance and all statistics have the same values as this.
equals(Object) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Returns true iff object is a MultivariateSummaryStatistics instance and all statistics have the same values as this.
equals(Object) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns true iff object is a SummaryStatistics instance and all statistics have the same values as this.
equals(Object) - Method in class org.apache.commons.math4.legacy.stat.Frequency
equalSidesAlongAxes(int, double) - Static method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.Simplex
Builds simplex with the given side length.
EquationsMapper - Class in org.apache.commons.math4.legacy.ode
Class mapping the part of a complete state or derivative that pertains to a specific differential equation.
EquationsMapper(int, int) - Constructor for class org.apache.commons.math4.legacy.ode.EquationsMapper
simple constructor.
ERROR - org.apache.commons.math4.legacy.ml.clustering.KMeansPlusPlusClusterer.EmptyClusterStrategy
Generate an error.
estimate(double[][], int) - Static method in class org.apache.commons.math4.legacy.distribution.fitting.MultivariateNormalMixtureExpectationMaximization
Helper method to create a multivariate normal mixture model which can be used to initialize MultivariateNormalMixtureExpectationMaximization.fit(MixtureMultivariateNormalDistribution).
estimate(double[], int[], double, int, KthSelector) - Method in enum org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile.EstimationType
Estimation based on Kth selection.
estimateError(double[][], double[], double[], double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince54Integrator
Compute the error ratio.
estimateError(double[][], double[], double[], double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince853Integrator
Compute the error ratio.
estimateError(double[][], double[], double[], double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaIntegrator
Compute the error ratio.
estimateError(double[][], double[], double[], double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.HighamHall54Integrator
Compute the error ratio.
estimateError(T[][], T[], T[], T) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince54FieldIntegrator
Compute the error ratio.
estimateError(T[][], T[], T[], T) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince853FieldIntegrator
Compute the error ratio.
estimateError(T[][], T[], T[], T) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaFieldIntegrator
Compute the error ratio.
estimateError(T[][], T[], T[], T) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.HighamHall54FieldIntegrator
Compute the error ratio.
estimateErrorVariance() - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
Estimates the variance of the error.
estimateRegressandVariance() - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
Returns the variance of the regressand, ie Var(y).
estimateRegressandVariance() - Method in interface org.apache.commons.math4.legacy.stat.regression.MultipleLinearRegression
Returns the variance of the regressand, ie Var(y).
estimateRegressionParameters() - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
Estimates the regression parameters b.
estimateRegressionParameters() - Method in interface org.apache.commons.math4.legacy.stat.regression.MultipleLinearRegression
Estimates the regression parameters b.
estimateRegressionParametersStandardErrors() - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
Returns the standard errors of the regression parameters.
estimateRegressionParametersStandardErrors() - Method in interface org.apache.commons.math4.legacy.stat.regression.MultipleLinearRegression
Returns the standard errors of the regression parameters.
estimateRegressionParametersVariance() - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
Estimates the variance of the regression parameters, ie Var(b).
estimateRegressionParametersVariance() - Method in interface org.apache.commons.math4.legacy.stat.regression.MultipleLinearRegression
Estimates the variance of the regression parameters, ie Var(b).
estimateRegressionStandardError() - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
Estimates the standard error of the regression.
estimateResiduals() - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
Estimates the residuals, ie u = y - X*b.
estimateResiduals() - Method in interface org.apache.commons.math4.legacy.stat.regression.MultipleLinearRegression
Estimates the residuals, ie u = y - X*b.
EuclideanDistance - Class in org.apache.commons.math4.legacy.ml.distance
Calculates the L2 (Euclidean) distance between two points.
EuclideanDistance() - Constructor for class org.apache.commons.math4.legacy.ml.distance.EuclideanDistance
 
EulerFieldIntegrator<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements a simple Euler integrator for Ordinary Differential Equations.
EulerFieldIntegrator(Field<T>, T) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.EulerFieldIntegrator
Simple constructor.
EulerIntegrator - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements a simple Euler integrator for Ordinary Differential Equations.
EulerIntegrator(double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.EulerIntegrator
Simple constructor.
evaluate() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AbstractUnivariateStatistic
Returns the result of evaluating the statistic over the stored data.
evaluate(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Returns the result of evaluating the statistic over the stored data.
evaluate(double[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.AbstractStorelessUnivariateStatistic
This default implementation creates a copy of this StorelessUnivariateStatistic instance, calls AbstractStorelessUnivariateStatistic.clear() on it, then calls AbstractStorelessUnivariateStatistic.incrementAll(double[]) with the specified portion of the input array, and then uses AbstractStorelessUnivariateStatistic.getResult() to compute the return value.
evaluate(double[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.AbstractUnivariateStatistic
Returns the result of evaluating the statistic over the input array.
evaluate(double[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.StandardDeviation
Returns the Standard Deviation of the entries in the input array, or Double.NaN if the array is empty.
evaluate(double[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
Returns the variance of the entries in the input array, or Double.NaN if the array is empty.
evaluate(double[]) - Method in interface org.apache.commons.math4.legacy.stat.descriptive.UnivariateStatistic
Returns the result of evaluating the statistic over the input array.
evaluate(double[], double) - Static method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction
Uses Horner's Method to evaluate the polynomial with the given coefficients at the argument.
evaluate(double[], double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance
Returns the SemiVariance of the designated values against the cutoff, using instance properties variancDirection and biasCorrection.
evaluate(double[], double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.StandardDeviation
Returns the Standard Deviation of the entries in the input array, using the precomputed mean value.
evaluate(double[], double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
Returns the variance of the entries in the input array, using the precomputed mean value.
evaluate(double[], double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Returns an estimate of the pth percentile of the values in the values array.
evaluate(double[], double[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Mean
Returns the weighted arithmetic mean of the entries in the input array.
evaluate(double[], double[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
Returns the weighted variance of the entries in the input array.
evaluate(double[], double[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.Product
Returns the weighted product of the entries in the input array.
evaluate(double[], double[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.Sum
The weighted sum of the entries in the input array.
evaluate(double[], double[]) - Method in interface org.apache.commons.math4.legacy.stat.descriptive.WeightedEvaluation
Returns the result of evaluating the statistic over the input array, using the supplied weights.
evaluate(double[], double[], double) - Static method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionLagrangeForm
Evaluate the Lagrange polynomial using Neville's Algorithm.
evaluate(double[], double[], double) - Static method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionNewtonForm
Evaluate the Newton polynomial using nested multiplication.
evaluate(double[], double[], double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
Returns the weighted variance of the values in the input array, using the precomputed weighted mean value.
evaluate(double[], double[], double) - Method in enum org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile.EstimationType
Evaluate weighted percentile by estimation rule specified in Percentile.EstimationType.
evaluate(double[], double[], double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Returns an estimate of the pth percentile of the values in the values array with their weights.
evaluate(double[], double[], double, int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
Returns the weighted variance of the entries in the specified portion of the input array, using the precomputed weighted mean value.
evaluate(double[], double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Mean
Returns the weighted arithmetic mean of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
evaluate(double[], double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
Returns the weighted variance of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
evaluate(double[], double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Returns an estimate of the weighted quantileth percentile of the designated values in the values array.
evaluate(double[], double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.Product
Returns the weighted product of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
evaluate(double[], double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.Sum
The weighted sum of the entries in the specified portion of the input array, or 0 if the designated subarray is empty.
evaluate(double[], double[], int, int) - Method in interface org.apache.commons.math4.legacy.stat.descriptive.WeightedEvaluation
Returns the result of evaluating the statistic over the specified entries in the input array, using corresponding entries in the supplied weights array.
evaluate(double[], double[], int, int, double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Returns an estimate of the pth percentile of the values in the values array with sampleWeights, starting with the element in (0-based) position begin in the array and including length values.
evaluate(double[], double, int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.StandardDeviation
Returns the Standard Deviation of the entries in the specified portion of the input array, using the precomputed mean value.
evaluate(double[], double, int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
Returns the variance of the entries in the specified portion of the input array, using the precomputed mean value.
evaluate(double[], double, SemiVariance.Direction) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance
Returns the SemiVariance of the designated values against the cutoff in the given direction, using the current value of the biasCorrection instance property.
evaluate(double[], double, SemiVariance.Direction, boolean, int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance
Returns the SemiVariance of the designated values against the cutoff in the given direction with the provided bias correction.
evaluate(double[], double, KthSelector) - Method in enum org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile.EstimationType
Evaluate method to compute the percentile for a given bounded array.
evaluate(double[], int[], double, KthSelector) - Method in enum org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile.EstimationType
Evaluate method to compute the percentile for a given bounded array using earlier computed pivots heap.
This basically calls the index and then estimate functions to return the estimated percentile value.
evaluate(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.AbstractStorelessUnivariateStatistic
This default implementation creates a copy of this StorelessUnivariateStatistic instance, calls AbstractStorelessUnivariateStatistic.clear() on it, then calls AbstractStorelessUnivariateStatistic.incrementAll(double[]) with the specified portion of the input array, and then uses AbstractStorelessUnivariateStatistic.getResult() to compute the return value.
evaluate(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.AbstractUnivariateStatistic
Returns the result of evaluating the statistic over the specified entries in the input array.
evaluate(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.GeometricMean
Returns the geometric mean of the entries in the specified portion of the input array.
evaluate(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Kurtosis
Returns the kurtosis of the entries in the specified portion of the input array.
evaluate(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Mean
Returns the arithmetic mean of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
evaluate(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance
Returns the SemiVariance of the designated values against the mean, using instance properties varianceDirection and biasCorrection.
evaluate(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Skewness
Returns the Skewness of the entries in the specified portion of the input array.
evaluate(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.StandardDeviation
Returns the Standard Deviation of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
evaluate(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
Returns the variance of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
evaluate(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Max
Returns the maximum of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
evaluate(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Min
Returns the minimum of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
evaluate(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Returns an estimate of the quantileth percentile of the designated values in the values array.
evaluate(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.Product
Returns the product of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
evaluate(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.Sum
The sum of the entries in the specified portion of the input array, or 0 if the designated subarray is empty.
evaluate(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.SumOfLogs
Returns the sum of the natural logs of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
evaluate(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.SumOfSquares
Returns the sum of the squares of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
evaluate(double[], int, int) - Method in interface org.apache.commons.math4.legacy.stat.descriptive.UnivariateStatistic
Returns the result of evaluating the statistic over the specified entries in the input array.
evaluate(double[], int, int, double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Returns an estimate of the pth percentile of the values in the values array, starting with the element in (0-based) position begin in the array and including length values.
evaluate(double[], SemiVariance.Direction) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance
This method calculates SemiVariance for the entire array against the mean, using the current value of the biasCorrection instance property.
evaluate(MultivariateFunction, Comparator<PointValuePair>) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.Simplex
Evaluates the (non-evaluated) simplex points and returns a new instance with vertices sorted from best to worst.
evaluate(RealVector) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresAdapter
Evaluate the model at the specified point.
evaluate(RealVector) - Method in interface org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresProblem
Evaluate the model at the specified point.
evaluateStep(FieldStepInterpolator<T>) - Method in class org.apache.commons.math4.legacy.ode.events.FieldEventState
Evaluate the impact of the proposed step on the event handler.
evaluateStep(StepInterpolator) - Method in class org.apache.commons.math4.legacy.ode.events.EventState
Evaluate the impact of the proposed step on the event handler.
evaluationChecker(ConvergenceChecker<PointVectorValuePair>) - Static method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresFactory
View a convergence checker specified for a PointVectorValuePair as one specified for an LeastSquaresProblem.Evaluation.
EvaluationRmsChecker - Class in org.apache.commons.math4.legacy.fitting.leastsquares
Check if an optimization has converged based on the change in computed RMS.
EvaluationRmsChecker(double) - Constructor for class org.apache.commons.math4.legacy.fitting.leastsquares.EvaluationRmsChecker
Create a convergence checker for the RMS with the same relative and absolute tolerance.
EvaluationRmsChecker(double, double) - Constructor for class org.apache.commons.math4.legacy.fitting.leastsquares.EvaluationRmsChecker
Create a convergence checker for the RMS with a relative and absolute tolerance.
EventFilter - Class in org.apache.commons.math4.legacy.ode.events
Wrapper used to detect only increasing or decreasing events.
EventFilter(EventHandler, FilterType) - Constructor for class org.apache.commons.math4.legacy.ode.events.EventFilter
Wrap an event handler.
EventHandler - Interface in org.apache.commons.math4.legacy.ode.events
This interface represents a handler for discrete events triggered during ODE integration.
EventHandler.Action - Enum in org.apache.commons.math4.legacy.ode.events
Enumerate for actions to be performed when an event occurs.
eventOccurred(double, double[], boolean) - Method in class org.apache.commons.math4.legacy.ode.events.EventFilter
Handle an event and choose what to do next.
eventOccurred(double, double[], boolean) - Method in interface org.apache.commons.math4.legacy.ode.events.EventHandler
Handle an event and choose what to do next.
eventOccurred(FieldODEStateAndDerivative<T>, boolean) - Method in interface org.apache.commons.math4.legacy.ode.events.FieldEventHandler
Handle an event and choose what to do next.
EventState - Class in org.apache.commons.math4.legacy.ode.events
This class handles the state for one event handler during integration steps.
EventState(EventHandler, double, double, int, UnivariateSolver) - Constructor for class org.apache.commons.math4.legacy.ode.events.EventState
Simple constructor.
evolve(Population, StoppingCondition) - Method in class org.apache.commons.math4.legacy.genetics.GeneticAlgorithm
Evolve the given population.
exactP(double, int, int, boolean) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
exactP(double, int, int, boolean) - Method in class org.apache.commons.math4.legacy.stat.inference.KolmogorovSmirnovTest
Computes \(P(D_{n,m} > d)\) if strict is true; otherwise \(P(D_{n,m} \ge d)\), where \(D_{n,m}\) is the 2-sample Kolmogorov-Smirnov statistic.
exp() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
exp() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
exp(double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute exponential of a derivative structure.
Exp - Class in org.apache.commons.math4.legacy.analysis.function
Exponential function.
Exp() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Exp
 
ExpandableStatefulODE - Class in org.apache.commons.math4.legacy.ode
This class represents a combined set of first order differential equations, with at least a primary set of equations expandable by some sets of secondary equations.
ExpandableStatefulODE(FirstOrderDifferentialEquations) - Constructor for class org.apache.commons.math4.legacy.ode.ExpandableStatefulODE
Build an expandable set from its primary ODE set.
expm1() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
expm1() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
expm1(double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute exp(x) - 1 of a derivative structure.
Expm1 - Class in org.apache.commons.math4.legacy.analysis.function
ex-1 function.
Expm1() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Expm1
 
extractEquationData(double[], double[]) - Method in class org.apache.commons.math4.legacy.ode.EquationsMapper
Extract equation data from a complete state or derivative array.
extractEquationData(int, T[]) - Method in class org.apache.commons.math4.legacy.ode.FieldEquationsMapper
Extract equation data from a complete state or derivative array.
extractField(T[]) - Static method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Get the elements type from an array.
extractField(T[][]) - Static method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Get the elements type from an array.

F

FAILED - org.apache.commons.math4.legacy.stat.ranking.NaNStrategy
NaNs result in an exception.
FARTHEST_POINT - org.apache.commons.math4.legacy.ml.clustering.KMeansPlusPlusClusterer.EmptyClusterStrategy
Create a cluster around the point farthest from its centroid.
FieldBracketingNthOrderBrentSolver<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.analysis.solvers
This class implements a modification of the Brent algorithm.
FieldBracketingNthOrderBrentSolver(T, T, T, int) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.FieldBracketingNthOrderBrentSolver
Construct a solver.
FieldButcherArrayProvider<T extends RealFieldElement<T>> - Interface in org.apache.commons.math4.legacy.ode.nonstiff
This interface represents an integrator based on Butcher arrays.
FieldDecompositionSolver<T> - Interface in org.apache.commons.math4.legacy.field.linalg
Interface handling decomposition algorithms that can solve A X = B.
FieldDecompositionSolver<T extends FieldElement<T>> - Interface in org.apache.commons.math4.legacy.linear
Interface handling decomposition algorithms that can solve A × X = B.
FieldDenseMatrix<T> - Class in org.apache.commons.math4.legacy.field.linalg
Square matrix whose elements define a Field.
FieldEquationsMapper<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode
Class mapping the part of a complete state or derivative that pertains to a set of differential equations.
FieldEventHandler<T extends RealFieldElement<T>> - Interface in org.apache.commons.math4.legacy.ode.events
This interface represents a handler for discrete events triggered during ODE integration.
FieldEventState<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode.events
This class handles the state for one event handler during integration steps.
FieldEventState(FieldEventHandler<T>, double, T, int, BracketedRealFieldUnivariateSolver<T>) - Constructor for class org.apache.commons.math4.legacy.ode.events.FieldEventState
Simple constructor.
FieldExpandableODE<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode
This class represents a combined set of first order differential equations, with at least a primary set of equations expandable by some sets of secondary equations.
FieldExpandableODE(FirstOrderFieldDifferentialEquations<T>) - Constructor for class org.apache.commons.math4.legacy.ode.FieldExpandableODE
Build an expandable set from its primary ODE set.
FieldFixedStepHandler<T extends RealFieldElement<T>> - Interface in org.apache.commons.math4.legacy.ode.sampling
This interface represents a handler that should be called after each successful fixed step.
FieldHermiteInterpolator<T extends FieldElement<T>> - Class in org.apache.commons.math4.legacy.analysis.interpolation
Polynomial interpolator using both sample values and sample derivatives.
FieldHermiteInterpolator() - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.FieldHermiteInterpolator
Create an empty interpolator.
FieldLUDecomposition<T> - Class in org.apache.commons.math4.legacy.field.linalg
Calculates the LUP-decomposition of a square matrix.
FieldLUDecomposition<T extends FieldElement<T>> - Class in org.apache.commons.math4.legacy.linear
Calculates the LUP-decomposition of a square matrix.
FieldLUDecomposition(FieldMatrix<T>) - Constructor for class org.apache.commons.math4.legacy.linear.FieldLUDecomposition
Calculates the LU-decomposition of the given matrix.
FieldMatrix<T extends FieldElement<T>> - Interface in org.apache.commons.math4.legacy.linear
Interface defining field-valued matrix with basic algebraic operations.
FieldMatrixChangingVisitor<T extends FieldElement<?>> - Interface in org.apache.commons.math4.legacy.linear
Interface defining a visitor for matrix entries.
FieldMatrixPreservingVisitor<T extends FieldElement<?>> - Interface in org.apache.commons.math4.legacy.linear
Interface defining a visitor for matrix entries.
FieldODEState<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode
Container for time, main and secondary state vectors.
FieldODEState(T, T[]) - Constructor for class org.apache.commons.math4.legacy.ode.FieldODEState
Simple constructor.
FieldODEState(T, T[], T[][]) - Constructor for class org.apache.commons.math4.legacy.ode.FieldODEState
Simple constructor.
FieldODEStateAndDerivative<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode
Container for time, main and secondary state vectors as well as their derivatives.
FieldODEStateAndDerivative(T, T[], T[]) - Constructor for class org.apache.commons.math4.legacy.ode.FieldODEStateAndDerivative
Simple constructor.
FieldODEStateAndDerivative(T, T[], T[], T[][], T[][]) - Constructor for class org.apache.commons.math4.legacy.ode.FieldODEStateAndDerivative
Simple constructor.
FieldSecondaryEquations<T extends RealFieldElement<T>> - Interface in org.apache.commons.math4.legacy.ode
This interface allows users to add secondary differential equations to a primary set of differential equations.
FieldStepHandler<T extends RealFieldElement<T>> - Interface in org.apache.commons.math4.legacy.ode.sampling
This interface represents a handler that should be called after each successful step.
FieldStepInterpolator<T extends RealFieldElement<T>> - Interface in org.apache.commons.math4.legacy.ode.sampling
This interface represents an interpolator over the last step during an ODE integration.
FieldStepNormalizer<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode.sampling
This class wraps an object implementing FieldFixedStepHandler into a FieldStepHandler.
FieldStepNormalizer(double, FieldFixedStepHandler<T>) - Constructor for class org.apache.commons.math4.legacy.ode.sampling.FieldStepNormalizer
Simple constructor.
FieldStepNormalizer(double, FieldFixedStepHandler<T>, StepNormalizerBounds) - Constructor for class org.apache.commons.math4.legacy.ode.sampling.FieldStepNormalizer
Simple constructor.
FieldStepNormalizer(double, FieldFixedStepHandler<T>, StepNormalizerMode) - Constructor for class org.apache.commons.math4.legacy.ode.sampling.FieldStepNormalizer
Simple constructor.
FieldStepNormalizer(double, FieldFixedStepHandler<T>, StepNormalizerMode, StepNormalizerBounds) - Constructor for class org.apache.commons.math4.legacy.ode.sampling.FieldStepNormalizer
Simple constructor.
FieldVector<T extends FieldElement<T>> - Interface in org.apache.commons.math4.legacy.linear
Interface defining a field-valued vector with basic algebraic operations.
FieldVectorChangingVisitor<T extends FieldElement<?>> - Interface in org.apache.commons.math4.legacy.linear
This interface defines a visitor for the entries of a vector.
FieldVectorPreservingVisitor<T extends FieldElement<?>> - Interface in org.apache.commons.math4.legacy.linear
This interface defines a visitor for the entries of a vector.
fill(T) - Method in class org.apache.commons.math4.legacy.field.linalg.FieldDenseMatrix
Sets all elements to the given value.
filterStep(double, boolean, boolean) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
Filter the integration step.
filterStep(T, boolean, boolean) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeFieldIntegrator
Filter the integration step.
FilterType - Enum in org.apache.commons.math4.legacy.ode.events
Enumerate for filtering events.
finalizeStep() - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Finalize the step.
findMaxY(WeightedObservedPoint[]) - Method in class org.apache.commons.math4.legacy.fitting.SimpleCurveFitter.ParameterGuesser
Finds index of point in specified points with the largest Y.
findSameChromosome(Population) - Method in class org.apache.commons.math4.legacy.genetics.Chromosome
Searches the population for another chromosome with the same representation.
FiniteDifferencesDifferentiator - Class in org.apache.commons.math4.legacy.analysis.differentiation
Univariate functions differentiator using finite differences.
FiniteDifferencesDifferentiator(int, double) - Constructor for class org.apache.commons.math4.legacy.analysis.differentiation.FiniteDifferencesDifferentiator
Build a differentiator with number of points and step size when independent variable is unbounded.
FiniteDifferencesDifferentiator(int, double, double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.differentiation.FiniteDifferencesDifferentiator
Build a differentiator with number of points and step size when independent variable is bounded.
fireInitializationEvent(IterationEvent) - Method in class org.apache.commons.math4.legacy.linear.IterationManager
Informs all registered listeners that the initial phase (prior to the main iteration loop) has been completed.
fireIterationPerformedEvent(IterationEvent) - Method in class org.apache.commons.math4.legacy.linear.IterationManager
Informs all registered listeners that a new iteration (in the main iteration loop) has been performed.
fireIterationStartedEvent(IterationEvent) - Method in class org.apache.commons.math4.legacy.linear.IterationManager
Informs all registered listeners that a new iteration (in the main iteration loop) has been started.
fireTerminationEvent(IterationEvent) - Method in class org.apache.commons.math4.legacy.linear.IterationManager
Informs all registered listeners that the final phase (post-iterations) has been completed.
FIRST - org.apache.commons.math4.legacy.ode.sampling.StepNormalizerBounds
Include the first point, but not the last point.
firstIncluded() - Method in enum org.apache.commons.math4.legacy.ode.sampling.StepNormalizerBounds
Returns a value indicating whether the first point should be passed to the underlying fixed step size step handler.
FirstOrderConverter - Class in org.apache.commons.math4.legacy.ode
This class converts second order differential equations to first order ones.
FirstOrderConverter(SecondOrderDifferentialEquations) - Constructor for class org.apache.commons.math4.legacy.ode.FirstOrderConverter
Simple constructor.
FirstOrderDifferentialEquations - Interface in org.apache.commons.math4.legacy.ode
This interface represents a first order differential equations set.
FirstOrderFieldDifferentialEquations<T extends RealFieldElement<T>> - Interface in org.apache.commons.math4.legacy.ode
This interface represents a first order differential equations set.
FirstOrderFieldIntegrator<T extends RealFieldElement<T>> - Interface in org.apache.commons.math4.legacy.ode
This interface represents a first order integrator for differential equations.
FirstOrderIntegrator - Interface in org.apache.commons.math4.legacy.ode
This interface represents a first order integrator for differential equations.
fit(Collection<WeightedObservedPoint>) - Method in class org.apache.commons.math4.legacy.fitting.AbstractCurveFitter
Fits a curve.
fit(MixtureMultivariateNormalDistribution) - Method in class org.apache.commons.math4.legacy.distribution.fitting.MultivariateNormalMixtureExpectationMaximization
Fit a mixture model to the data supplied to the constructor.
fit(MixtureMultivariateNormalDistribution, int, double) - Method in class org.apache.commons.math4.legacy.distribution.fitting.MultivariateNormalMixtureExpectationMaximization
Fit a mixture model to the data supplied to the constructor.
fitness() - Method in interface org.apache.commons.math4.legacy.genetics.Fitness
Compute the fitness.
Fitness - Interface in org.apache.commons.math4.legacy.genetics
Fitness of a chromosome.
fix1stArgument(BivariateFunction, double) - Static method in class org.apache.commons.math4.legacy.analysis.FunctionUtils
Creates a unary function by fixing the first argument of a binary function.
fix2ndArgument(BivariateFunction, double) - Static method in class org.apache.commons.math4.legacy.analysis.FunctionUtils
Creates a unary function by fixing the second argument of a binary function.
FIXED - org.apache.commons.math4.legacy.stat.ranking.NaNStrategy
NaNs are left in place.
FixedElapsedTime - Class in org.apache.commons.math4.legacy.genetics
Stops after a fixed amount of time has elapsed.
FixedElapsedTime(long) - Constructor for class org.apache.commons.math4.legacy.genetics.FixedElapsedTime
Create a new FixedElapsedTime instance.
FixedElapsedTime(long, TimeUnit) - Constructor for class org.apache.commons.math4.legacy.genetics.FixedElapsedTime
Create a new FixedElapsedTime instance.
FixedGenerationCount - Class in org.apache.commons.math4.legacy.genetics
Stops after a fixed number of generations.
FixedGenerationCount(int) - Constructor for class org.apache.commons.math4.legacy.genetics.FixedGenerationCount
Create a new FixedGenerationCount instance.
FixedStepHandler - Interface in org.apache.commons.math4.legacy.ode.sampling
This interface represents a handler that should be called after each successful fixed step.
FLETCHER_REEVES - org.apache.commons.math4.legacy.optim.nonlinear.scalar.gradient.NonLinearConjugateGradientOptimizer.Formula
Fletcher-Reeves formula.
floor() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
floor() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Floor - Class in org.apache.commons.math4.legacy.analysis.function
floor function.
Floor() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Floor
 
forceSide(int, UnivariateFunction, BracketedUnivariateSolver<UnivariateFunction>, double, double, double, AllowedSolution) - Static method in class org.apache.commons.math4.legacy.analysis.solvers.UnivariateSolverUtils
Force a root found by a non-bracketing solver to lie on a specified side, as if the solver were a bracketing one.
format(Double) - Method in class org.apache.commons.math4.legacy.util.ComplexFormat
format(Object, StringBuffer, FieldPosition) - Method in class org.apache.commons.math4.legacy.util.ComplexFormat
Formats a object to produce a string.
format(RealMatrix) - Method in class org.apache.commons.math4.legacy.linear.RealMatrixFormat
format(RealMatrix, StringBuffer, FieldPosition) - Method in class org.apache.commons.math4.legacy.linear.RealMatrixFormat
Formats a RealMatrix object to produce a string.
format(RealVector) - Method in class org.apache.commons.math4.legacy.linear.RealVectorFormat
format(RealVector, StringBuffer, FieldPosition) - Method in class org.apache.commons.math4.legacy.linear.RealVectorFormat
Formats a RealVector object to produce a string.
format(Complex) - Method in class org.apache.commons.math4.legacy.util.ComplexFormat
format(Complex, StringBuffer, FieldPosition) - Method in class org.apache.commons.math4.legacy.util.ComplexFormat
Formats a Complex object to produce a string.
formatDouble(double, NumberFormat, StringBuffer, FieldPosition) - Static method in class org.apache.commons.math4.legacy.util.CompositeFormat
Formats a double value to produce a string.
fraction(double, double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaFieldIntegrator
Create a fraction.
fraction(int, int) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaFieldIntegrator
Create a fraction.
fraction(int, int) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.RungeKuttaFieldIntegrator
Create a fraction.
Frequency<T extends Comparable<T>> - Class in org.apache.commons.math4.legacy.stat
Maintains a frequency distribution.
Frequency() - Constructor for class org.apache.commons.math4.legacy.stat.Frequency
Default constructor.
Frequency(Comparator<T>) - Constructor for class org.apache.commons.math4.legacy.stat.Frequency
Constructor allowing values Comparator to be specified.
from(int, double[]) - Static method in class org.apache.commons.math4.legacy.distribution.EmpiricalDistribution
Factory that creates a new instance from the specified data.
from(int, double[], Function<SummaryStatistics, ContinuousDistribution>) - Static method in class org.apache.commons.math4.legacy.distribution.EmpiricalDistribution
Factory that creates a new instance from the specified data.
FunctionUtils - Class in org.apache.commons.math4.legacy.analysis
Utilities for manipulating function objects.
FuzzyKMeansClusterer<T extends Clusterable> - Class in org.apache.commons.math4.legacy.ml.clustering
Fuzzy K-Means clustering algorithm.
FuzzyKMeansClusterer(int, double) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.FuzzyKMeansClusterer
Creates a new instance of a FuzzyKMeansClusterer.
FuzzyKMeansClusterer(int, double, int, DistanceMeasure) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.FuzzyKMeansClusterer
Creates a new instance of a FuzzyKMeansClusterer.
FuzzyKMeansClusterer(int, double, int, DistanceMeasure, double, UniformRandomProvider) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.FuzzyKMeansClusterer
Creates a new instance of a FuzzyKMeansClusterer.

G

g(double[], long[]) - Method in class org.apache.commons.math4.legacy.stat.inference.GTest
Computes the G statistic for Goodness of Fit comparing observed and expected frequency counts.
g(double[], long[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
g(double, double[]) - Method in class org.apache.commons.math4.legacy.ode.events.EventFilter
Compute the value of the switching function.
g(double, double[]) - Method in interface org.apache.commons.math4.legacy.ode.events.EventHandler
Compute the value of the switching function.
g(FieldODEStateAndDerivative<T>) - Method in interface org.apache.commons.math4.legacy.ode.events.FieldEventHandler
Compute the value of the switching function.
gaussian(UniformRandomProvider) - Method in class org.apache.commons.math4.legacy.random.CorrelatedVectorFactory
 
Gaussian - Class in org.apache.commons.math4.legacy.analysis.function
Gaussian function.
Gaussian() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Gaussian
Normalized gaussian with zero mean and unit standard deviation.
Gaussian(double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.function.Gaussian
Normalized gaussian with given mean and standard deviation.
Gaussian(double, double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.function.Gaussian
Gaussian with given normalization factor, mean and standard deviation.
Gaussian.Parametric - Class in org.apache.commons.math4.legacy.analysis.function
Parametric function where the input array contains the parameters of the Gaussian.
GaussianCurveFitter - Class in org.apache.commons.math4.legacy.fitting
Fits points to a Gaussian function.
GaussianCurveFitter.ParameterGuesser - Class in org.apache.commons.math4.legacy.fitting
Guesses the parameters norm, mean, and sigma of a Gaussian.Parametric based on the specified observed points.
GaussIntegrator - Class in org.apache.commons.math4.legacy.analysis.integration.gauss
Class that implements the Gaussian rule for integrating a weighted function.
GaussIntegrator(double[], double[]) - Constructor for class org.apache.commons.math4.legacy.analysis.integration.gauss.GaussIntegrator
Creates an integrator from the given points and weights.
GaussIntegrator(Pair<double[], double[]>) - Constructor for class org.apache.commons.math4.legacy.analysis.integration.gauss.GaussIntegrator
Creates an integrator from the given pair of points (first element of the pair) and weights (second element of the pair.
GaussIntegratorFactory - Class in org.apache.commons.math4.legacy.analysis.integration.gauss
Class that provides different ways to compute the nodes and weights to be used by the Gaussian integration rule.
GaussIntegratorFactory() - Constructor for class org.apache.commons.math4.legacy.analysis.integration.gauss.GaussIntegratorFactory
 
GaussNewtonOptimizer - Class in org.apache.commons.math4.legacy.fitting.leastsquares
Gauss-Newton least-squares solver.
GaussNewtonOptimizer() - Constructor for class org.apache.commons.math4.legacy.fitting.leastsquares.GaussNewtonOptimizer
Creates a Gauss Newton optimizer.
GaussNewtonOptimizer(GaussNewtonOptimizer.Decomposition) - Constructor for class org.apache.commons.math4.legacy.fitting.leastsquares.GaussNewtonOptimizer
Create a Gauss Newton optimizer that uses the given decomposition algorithm to solve the normal equations.
GaussNewtonOptimizer.Decomposition - Enum in org.apache.commons.math4.legacy.fitting.leastsquares
The decomposition algorithm to use to solve the normal equations.
gDataSetsComparison(long[], long[]) - Method in class org.apache.commons.math4.legacy.stat.inference.GTest
Computes a G (Log-Likelihood Ratio) two sample test statistic for independence comparing frequency counts in observed1 and observed2.
gDataSetsComparison(long[], long[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
GeneticAlgorithm - Class in org.apache.commons.math4.legacy.genetics
Implementation of a genetic algorithm.
GeneticAlgorithm(CrossoverPolicy, double, MutationPolicy, double, SelectionPolicy) - Constructor for class org.apache.commons.math4.legacy.genetics.GeneticAlgorithm
Create a new genetic algorithm.
geometricMean(double[]) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the geometric mean of the entries in the input array, or Double.NaN if the array is empty.
geometricMean(double[], int, int) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the geometric mean of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
GeometricMean - Class in org.apache.commons.math4.legacy.stat.descriptive.moment
Returns the geometric mean of the available values.
GeometricMean() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.GeometricMean
Create a GeometricMean instance.
GeometricMean(GeometricMean) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.GeometricMean
Copy constructor, creates a new GeometricMean identical to the original.
GeometricMean(SumOfLogs) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.GeometricMean
Create a GeometricMean instance using the given SumOfLogs instance.
GEQ - org.apache.commons.math4.legacy.optim.linear.Relationship
Greater than or equal relationship.
get() - Method in class org.apache.commons.math4.legacy.random.HaltonSequenceGenerator
get() - Method in class org.apache.commons.math4.legacy.random.SobolSequenceGenerator
get(int) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.Simplex
Retrieves a copy of the simplex point stored at index.
get(int, int) - Method in class org.apache.commons.math4.legacy.field.linalg.FieldDenseMatrix
Gets an element.
getA() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.ClassicalRungeKuttaFieldIntegrator
Get the internal weights from Butcher array (without the first empty row).
getA() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince54FieldIntegrator
Get the internal weights from Butcher array (without the first empty row).
getA() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince853FieldIntegrator
Get the internal weights from Butcher array (without the first empty row).
getA() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EulerFieldIntegrator
Get the internal weights from Butcher array (without the first empty row).
getA() - Method in interface org.apache.commons.math4.legacy.ode.nonstiff.FieldButcherArrayProvider
Get the internal weights from Butcher array (without the first empty row).
getA() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.GillFieldIntegrator
Get the internal weights from Butcher array (without the first empty row).
getA() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.HighamHall54FieldIntegrator
Get the internal weights from Butcher array (without the first empty row).
getA() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.LutherFieldIntegrator
Get the internal weights from Butcher array (without the first empty row).
getA() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.MidpointFieldIntegrator
Get the internal weights from Butcher array (without the first empty row).
getA() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.ThreeEighthesFieldIntegrator
Get the internal weights from Butcher array (without the first empty row).
getAbsoluteAccuracy() - Method in class org.apache.commons.math4.legacy.analysis.integration.BaseAbstractUnivariateIntegrator
Get the absolute accuracy.
getAbsoluteAccuracy() - Method in interface org.apache.commons.math4.legacy.analysis.integration.UnivariateIntegrator
Get the absolute accuracy.
getAbsoluteAccuracy() - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
Get the absolute accuracy of the solver.
getAbsoluteAccuracy() - Method in interface org.apache.commons.math4.legacy.analysis.solvers.BaseUnivariateSolver
Get the absolute accuracy of the solver.
getAbsoluteAccuracy() - Method in interface org.apache.commons.math4.legacy.analysis.solvers.BracketedRealFieldUnivariateSolver
Get the absolute accuracy of the solver.
getAbsoluteAccuracy() - Method in class org.apache.commons.math4.legacy.analysis.solvers.FieldBracketingNthOrderBrentSolver
Get the absolute accuracy.
getAbsoluteThreshold() - Method in class org.apache.commons.math4.legacy.optim.AbstractConvergenceChecker
 
getAbsoluteTolerance() - Method in class org.apache.commons.math4.legacy.optim.BaseOptimizer
 
getAbsoluteTolerance() - Method in class org.apache.commons.math4.legacy.optim.Tolerance
 
getAdjustedRSquared() - Method in class org.apache.commons.math4.legacy.stat.regression.RegressionResults
Returns the adjusted R-squared statistic, defined by the formula R2adj = 1 - [SSR (n - 1)] / [SSTO (n - p)] where SSR is the sum of squared residuals}, SSTO is the total sum of squares}, n is the number of observations and p is the number of parameters estimated (including the intercept).
getAgrestiCoullInterval(int, int, double) - Static method in class org.apache.commons.math4.legacy.stat.interval.IntervalUtils
Create an Agresti-Coull binomial confidence interval for the true probability of success of an unknown binomial distribution with the given observed number of trials, successes and confidence level.
getAllDerivatives() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Get all partial derivatives.
getArity() - Method in class org.apache.commons.math4.legacy.genetics.TournamentSelection
Gets the arity (number of chromosomes drawn to the tournament).
getAvailableLocales() - Static method in class org.apache.commons.math4.legacy.linear.RealMatrixFormat
Get the set of locales for which real vectors formats are available.
getAvailableLocales() - Static method in class org.apache.commons.math4.legacy.linear.RealVectorFormat
Get the set of locales for which real vectors formats are available.
getAvailableLocales() - Static method in class org.apache.commons.math4.legacy.util.ComplexFormat
Get the set of locales for which complex formats are available.
getB() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.ClassicalRungeKuttaFieldIntegrator
Get the external weights for the high order method from Butcher array.
getB() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince54FieldIntegrator
Get the external weights for the high order method from Butcher array.
getB() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince853FieldIntegrator
Get the external weights for the high order method from Butcher array.
getB() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EulerFieldIntegrator
Get the external weights for the high order method from Butcher array.
getB() - Method in interface org.apache.commons.math4.legacy.ode.nonstiff.FieldButcherArrayProvider
Get the external weights for the high order method from Butcher array.
getB() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.GillFieldIntegrator
Get the external weights for the high order method from Butcher array.
getB() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.HighamHall54FieldIntegrator
Get the external weights for the high order method from Butcher array.
getB() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.LutherFieldIntegrator
Get the external weights for the high order method from Butcher array.
getB() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.MidpointFieldIntegrator
Get the external weights for the high order method from Butcher array.
getB() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.ThreeEighthesFieldIntegrator
Get the external weights for the high order method from Butcher array.
getBinCount() - Method in class org.apache.commons.math4.legacy.distribution.EmpiricalDistribution
Returns the number of bins.
getBinStats() - Method in class org.apache.commons.math4.legacy.distribution.EmpiricalDistribution
Returns a copy of the SummaryStatistics instances containing statistics describing the values in each of the bins.
getC() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.ClassicalRungeKuttaFieldIntegrator
Get the time steps from Butcher array (without the first zero).
getC() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince54FieldIntegrator
Get the time steps from Butcher array (without the first zero).
getC() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince853FieldIntegrator
Get the time steps from Butcher array (without the first zero).
getC() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EulerFieldIntegrator
Get the time steps from Butcher array (without the first zero).
getC() - Method in interface org.apache.commons.math4.legacy.ode.nonstiff.FieldButcherArrayProvider
Get the time steps from Butcher array (without the first zero).
getC() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.GillFieldIntegrator
Get the time steps from Butcher array (without the first zero).
getC() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.HighamHall54FieldIntegrator
Get the time steps from Butcher array (without the first zero).
getC() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.LutherFieldIntegrator
Get the time steps from Butcher array (without the first zero).
getC() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.MidpointFieldIntegrator
Get the time steps from Butcher array (without the first zero).
getC() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.ThreeEighthesFieldIntegrator
Get the time steps from Butcher array (without the first zero).
getCenters() - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionNewtonForm
Returns a copy of the centers array.
getCheck() - Method in class org.apache.commons.math4.legacy.linear.ConjugateGradient
Returns true if positive-definiteness should be checked for both matrix and preconditioner.
getCheck() - Method in class org.apache.commons.math4.legacy.linear.SymmLQ
Returns true if symmetry of the matrix, and symmetry as well as positive definiteness of the preconditioner should be checked.
getChiSquare() - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.AbstractEvaluation
Get the sum of the squares of the residuals.
getChiSquare() - Method in interface org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresProblem.Evaluation
Get the sum of the squares of the residuals.
getChromosomeList() - Method in class org.apache.commons.math4.legacy.genetics.ListPopulation
Access the list of chromosomes.
getChromosomes() - Method in class org.apache.commons.math4.legacy.genetics.ListPopulation
Returns an unmodifiable list of the chromosomes in this population.
getClopperPearsonInterval(int, int, double) - Static method in class org.apache.commons.math4.legacy.stat.interval.IntervalUtils
Create a Clopper-Pearson binomial confidence interval for the true probability of success of an unknown binomial distribution with the given observed number of trials, successes and confidence level.
getClusters() - Method in class org.apache.commons.math4.legacy.ml.clustering.FuzzyKMeansClusterer
Returns the list of clusters resulting from the last call to FuzzyKMeansClusterer.cluster(Collection).
getCoefficients() - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction
Returns a copy of the coefficients array.
getCoefficients() - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionLagrangeForm
Returns a copy of the coefficients array.
getCoefficients() - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionNewtonForm
Returns a copy of the coefficients array.
getCoefficients() - Method in class org.apache.commons.math4.legacy.analysis.solvers.AbstractPolynomialSolver
 
getCoefficients() - Method in class org.apache.commons.math4.legacy.optim.linear.LinearConstraint
Gets the coefficients of the constraint (left hand side).
getCoefficients() - Method in class org.apache.commons.math4.legacy.optim.linear.LinearObjectiveFunction
Gets the coefficients of the linear equation being optimized.
getColumn() - Method in exception org.apache.commons.math4.legacy.linear.NonPositiveDefiniteMatrixException
 
getColumn() - Method in exception org.apache.commons.math4.legacy.linear.NonSymmetricMatrixException
 
getColumn(int) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Get the entries in column number col as an array.
getColumn(int) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Get the entries at the given column index as an array.
getColumn(int) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Get the entries in column number col as an array.
getColumn(int) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Get the entries at the given column index as an array.
getColumn(int) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Get the entries in column number col as an array.
getColumn(int) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Get the entries at the given column index as an array.
getColumnDimension() - Method in class org.apache.commons.math4.legacy.field.linalg.FieldDenseMatrix
Gets the number of columns.
getColumnDimension() - Method in interface org.apache.commons.math4.legacy.linear.AnyMatrix
Gets the number of columns.
getColumnDimension() - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Gets the number of columns.
getColumnDimension() - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Returns the dimension of the domain of this operator.
getColumnDimension() - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Gets the number of columns.
getColumnDimension() - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Returns the dimension of the domain of this operator.
getColumnDimension() - Method in class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Returns the dimension of the domain of this operator.
getColumnDimension() - Method in class org.apache.commons.math4.legacy.linear.JacobiPreconditioner
Returns the dimension of the domain of this operator.
getColumnDimension() - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealMatrix
Returns the dimension of the domain of this operator.
getColumnDimension() - Method in class org.apache.commons.math4.legacy.linear.RealLinearOperator
Returns the dimension of the domain of this operator.
getColumnDimension() - Method in class org.apache.commons.math4.legacy.linear.SparseFieldMatrix
Gets the number of columns.
getColumnMatrix(int) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Get the entries in column number column as a column matrix.
getColumnMatrix(int) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Get the entries at the given column index as a column matrix.
getColumnMatrix(int) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Get the entries in column number column as a column matrix.
getColumnMatrix(int) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Get the entries at the given column index as a column matrix.
getColumnMatrix(int) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Get the entries in column number column as a column matrix.
getColumnMatrix(int) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Get the entries at the given column index as a column matrix.
getColumnSeparator() - Method in class org.apache.commons.math4.legacy.linear.RealMatrixFormat
Get the format separator between components.
getColumnVector(int) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Returns the entries in column number column as a vector.
getColumnVector(int) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Get the entries at the given column index as a vector.
getColumnVector(int) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Returns the entries in column number column as a vector.
getColumnVector(int) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Get the entries at the given column index as a vector.
getColumnVector(int) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Returns the entries in column number column as a vector.
getColumnVector(int) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Get the entries at the given column index as a vector.
getCompiler(int, int) - Static method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Get the compiler for number of free parameters and order.
getCompleteState() - Method in class org.apache.commons.math4.legacy.ode.ExpandableStatefulODE
Get the complete current state.
getComponents() - Method in class org.apache.commons.math4.legacy.distribution.MixtureMultivariateRealDistribution
Gets the distributions that make up the mixture model.
getConditionNumber() - Method in class org.apache.commons.math4.legacy.linear.SingularValueDecomposition
Return the condition number of the matrix.
getConfidenceLevel() - Method in class org.apache.commons.math4.legacy.stat.interval.ConfidenceInterval
 
getConstantTerm() - Method in class org.apache.commons.math4.legacy.optim.linear.LinearObjectiveFunction
Gets the constant of the linear equation being optimized.
getConstraints() - Method in class org.apache.commons.math4.legacy.optim.linear.LinearConstraintSet
Gets the set of linear constraints.
getConstraints() - Method in class org.apache.commons.math4.legacy.optim.linear.LinearOptimizer
 
getControlMatrix() - Method in class org.apache.commons.math4.legacy.filter.DefaultProcessModel
Returns the control matrix.
getControlMatrix() - Method in interface org.apache.commons.math4.legacy.filter.ProcessModel
Returns the control matrix.
getConvergence() - Method in class org.apache.commons.math4.legacy.ode.events.EventState
Get the convergence threshold for event localization.
getConvergence() - Method in class org.apache.commons.math4.legacy.ode.events.FieldEventState
Get the convergence threshold for event localization.
getConvergenceChecker() - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresAdapter
Gets the convergence checker.
getConvergenceChecker() - Method in class org.apache.commons.math4.legacy.optim.AbstractOptimizationProblem
Gets the convergence checker.
getConvergenceChecker() - Method in class org.apache.commons.math4.legacy.optim.BaseOptimizer
Gets the convergence checker.
getConvergenceChecker() - Method in interface org.apache.commons.math4.legacy.optim.OptimizationProblem
Gets the convergence checker.
getCoolingSchedule() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.SimulatedAnnealing
 
getCorrelationMatrix() - Method in class org.apache.commons.math4.legacy.stat.correlation.KendallsCorrelation
Returns the correlation matrix.
getCorrelationMatrix() - Method in class org.apache.commons.math4.legacy.stat.correlation.PearsonsCorrelation
Returns the correlation matrix.
getCorrelationMatrix() - Method in class org.apache.commons.math4.legacy.stat.correlation.SpearmansCorrelation
Calculate the Spearman Rank Correlation Matrix.
getCorrelationPValues() - Method in class org.apache.commons.math4.legacy.stat.correlation.PearsonsCorrelation
Returns a matrix of p-values associated with the (two-sided) null hypothesis that the corresponding correlation coefficient is zero.
getCorrelationStandardErrors() - Method in class org.apache.commons.math4.legacy.stat.correlation.PearsonsCorrelation
Returns a matrix of standard errors associated with the estimates in the correlation matrix.
getCorrelationStandardErrors().getEntry(i,j) is the standard error associated with getCorrelationMatrix.getEntry(i,j)
getCost() - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.AbstractEvaluation
Get the cost.
getCost() - Method in interface org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresProblem.Evaluation
Get the cost.
getCostRelativeTolerance() - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LevenbergMarquardtOptimizer
Gets the value of a tuning parameter.
getCount(T) - Method in class org.apache.commons.math4.legacy.stat.Frequency
Returns the number of values equal to v.
getCounter() - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Get the evaluations counter.
getCovariance() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Returns the covariance matrix of the values that have been added.
getCovariance() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StatisticalMultivariateSummary
Returns the covariance of the available values.
getCovariance() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Returns the covariance matrix of the values that have been added.
getCovariance(double) - Method in class org.apache.commons.math4.legacy.linear.SingularValueDecomposition
Returns the n × n covariance matrix.
getCovariance(int, int) - Method in class org.apache.commons.math4.legacy.stat.correlation.StorelessCovariance
Get the covariance for an individual element of the covariance matrix.
getCovarianceMatrix() - Method in class org.apache.commons.math4.legacy.stat.correlation.Covariance
Returns the covariance matrix.
getCovarianceMatrix() - Method in class org.apache.commons.math4.legacy.stat.correlation.StorelessCovariance
Returns the covariance matrix.
getCovarianceOfParameters(int, int) - Method in class org.apache.commons.math4.legacy.stat.regression.RegressionResults
Returns the covariance between regression parameters i and j.
getCovariances() - Method in class org.apache.commons.math4.legacy.distribution.MultivariateNormalDistribution
Gets the covariance matrix.
getCovariances(double) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.AbstractEvaluation
Get the covariance matrix of the optimized parameters.
getCovariances(double) - Method in interface org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresProblem.Evaluation
Get the covariance matrix of the optimized parameters.
getCrossoverPoints() - Method in class org.apache.commons.math4.legacy.genetics.NPointCrossover
Returns the number of crossover points used by this CrossoverPolicy.
getCrossoverPolicy() - Method in class org.apache.commons.math4.legacy.genetics.GeneticAlgorithm
Returns the crossover policy.
getCrossoverRate() - Method in class org.apache.commons.math4.legacy.genetics.GeneticAlgorithm
Returns the crossover rate.
getCumFreq(T) - Method in class org.apache.commons.math4.legacy.stat.Frequency
Returns the cumulative frequency of values less than or equal to v.
getCumPct(T) - Method in class org.apache.commons.math4.legacy.stat.Frequency
Returns the cumulative percentage of values less than or equal to v (as a proportion between 0 and 1).
getCurrentMainSetJacobian(double[][]) - Method in class org.apache.commons.math4.legacy.ode.JacobianMatrices
Get the current value of the Jacobian matrix with respect to state.
getCurrentParameterJacobian(String, double[]) - Method in class org.apache.commons.math4.legacy.ode.JacobianMatrices
Get the current value of the Jacobian matrix with respect to one parameter.
getCurrentSignedStepsize() - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Get the current signed value of the integration stepsize.
getCurrentSignedStepsize() - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Get the current signed value of the integration stepsize.
getCurrentSignedStepsize() - Method in interface org.apache.commons.math4.legacy.ode.FirstOrderFieldIntegrator
Get the current signed value of the integration stepsize.
getCurrentSignedStepsize() - Method in interface org.apache.commons.math4.legacy.ode.ODEIntegrator
Get the current signed value of the integration stepsize.
getCurrentState() - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractFieldStepInterpolator
Get the state at current grid point time.
getCurrentState() - Method in interface org.apache.commons.math4.legacy.ode.sampling.FieldStepInterpolator
Get the state at current grid point time.
getCurrentStepStart() - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Get the current value of the step start time ti.
getCurrentStepStart() - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Get the current value of the step start time ti.
getCurrentStepStart() - Method in interface org.apache.commons.math4.legacy.ode.FirstOrderFieldIntegrator
Get the current value of the step start time ti.
getCurrentStepStart() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
Get the current value of the step start time ti.
getCurrentStepStart() - Method in interface org.apache.commons.math4.legacy.ode.ODEIntegrator
Get the current value of the step start time ti.
getCurrentTime() - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Get the current soft grid point time.
getCurrentTime() - Method in interface org.apache.commons.math4.legacy.ode.sampling.StepInterpolator
Get the current grid point time.
getD() - Method in class org.apache.commons.math4.legacy.linear.EigenDecomposition
Gets the block diagonal matrix D of the decomposition.
getData() - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Returns matrix entries as a two-dimensional array.
getData() - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Returns matrix entries as a two-dimensional array.
getData() - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Returns matrix entries as a two-dimensional array.
getData() - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Returns matrix entries as a two-dimensional array.
getData() - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Returns matrix entries as a two-dimensional array.
getData() - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Returns matrix entries as a two-dimensional array.
getData() - Method in class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Returns matrix entries as a two-dimensional array.
getData() - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Returns matrix entries as a two-dimensional array.
getData() - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Returns matrix entries as a two-dimensional array.
getData() - Method in class org.apache.commons.math4.legacy.stat.correlation.StorelessCovariance
Return the covariance matrix as two-dimensional array.
getData() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AbstractUnivariateStatistic
Get a copy of the stored data array.
getDataPoints() - Method in class org.apache.commons.math4.legacy.ml.clustering.FuzzyKMeansClusterer
Returns an unmodifiable list of the data points used in the last call to FuzzyKMeansClusterer.cluster(Collection).
getDataRef() - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Get a reference to the underlying data array.
getDataRef() - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Get a reference to the underlying data array.
getDataRef() - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Returns a reference to the underlying data array.
getDataRef() - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Get a reference to the underlying data array.
getDataRef() - Method in class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Gets a reference to the underlying data array.
getDataRef() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AbstractUnivariateStatistic
Get a reference to the stored data array.
getDecomposition() - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.GaussNewtonOptimizer
Get the matrix decomposition algorithm used to solve the normal equations.
getDefaultNumberFormat() - Static method in class org.apache.commons.math4.legacy.util.CompositeFormat
Create a default number format.
getDefaultNumberFormat(Locale) - Static method in class org.apache.commons.math4.legacy.util.CompositeFormat
Create a default number format.
getDerivative() - Method in class org.apache.commons.math4.legacy.ode.FieldODEStateAndDerivative
Get derivative of the main state at time.
getDerivative(int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Get the derivative with respect to a particular index variable.
getDeterminant() - Method in class org.apache.commons.math4.legacy.field.linalg.FieldLUDecomposition
Return the determinant of the matrix.
getDeterminant() - Method in class org.apache.commons.math4.legacy.linear.CholeskyDecomposition
Return the determinant of the matrix.
getDeterminant() - Method in class org.apache.commons.math4.legacy.linear.EigenDecomposition
Computes the determinant of the matrix.
getDeterminant() - Method in class org.apache.commons.math4.legacy.linear.FieldLUDecomposition
Return the determinant of the matrix.
getDeterminant() - Method in class org.apache.commons.math4.legacy.linear.LUDecomposition
Return the determinant of the matrix.
getDiagonalOfHatMatrix(double[]) - Method in class org.apache.commons.math4.legacy.stat.regression.MillerUpdatingRegression
Gets the diagonal of the Hat matrix also known as the leverage matrix.
getDimension() - Method in class org.apache.commons.math4.legacy.analysis.interpolation.InterpolatingMicrosphere
Get the space dimensionality.
getDimension() - Method in class org.apache.commons.math4.legacy.distribution.AbstractMultivariateRealDistribution
Gets the number of random variables of the distribution.
getDimension() - Method in interface org.apache.commons.math4.legacy.distribution.MultivariateRealDistribution
Gets the number of random variables of the distribution.
getDimension() - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Returns the size of the vector.
getDimension() - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Returns the size of the vector.
getDimension() - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Returns the size of the vector.
getDimension() - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Returns the size of the vector.
getDimension() - Method in class org.apache.commons.math4.legacy.linear.RealVector
Returns the size of the vector.
getDimension() - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Returns the size of the vector.
getDimension() - Method in class org.apache.commons.math4.legacy.ode.EquationsMapper
Get the dimension of the secondary state parameters.
getDimension() - Method in interface org.apache.commons.math4.legacy.ode.FieldSecondaryEquations
Get the dimension of the secondary state parameters.
getDimension() - Method in class org.apache.commons.math4.legacy.ode.FirstOrderConverter
Get the dimension of the problem.
getDimension() - Method in interface org.apache.commons.math4.legacy.ode.FirstOrderDifferentialEquations
Get the dimension of the problem.
getDimension() - Method in interface org.apache.commons.math4.legacy.ode.FirstOrderFieldDifferentialEquations
Get the dimension of the problem.
getDimension() - Method in interface org.apache.commons.math4.legacy.ode.SecondaryEquations
Get the dimension of the secondary state parameters.
getDimension() - Method in interface org.apache.commons.math4.legacy.ode.SecondOrderDifferentialEquations
Get the dimension of the problem.
getDimension() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.Simplex
Returns the space dimension.
getDimension() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Returns the dimension of the data.
getDimension() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StatisticalMultivariateSummary
Returns the dimension of the data.
getDimension() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Returns the dimension of the data.
getDistance(OpenMapRealVector) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Optimized method to compute distance.
getDistance(RealVector) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Distance between two vectors.
getDistance(RealVector) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Distance between two vectors.
getDistance(RealVector) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Distance between two vectors.
getDistanceMeasure() - Method in class org.apache.commons.math4.legacy.ml.clustering.Clusterer
Returns the DistanceMeasure instance used by this clusterer.
getEigenvector(int) - Method in class org.apache.commons.math4.legacy.linear.EigenDecomposition
Gets a copy of the ith eigenvector of the original matrix.
getElement(int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the element at the specified index.
getElement(int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedDescriptiveStatistics
Returns the element at the specified index.
getElitismRate() - Method in class org.apache.commons.math4.legacy.genetics.ElitisticListPopulation
Access the elitism rate.
getEndProbability() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.SimulatedAnnealing
 
getEntry(int) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Returns the entry in the specified index.
getEntry(int) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Return the entry at the specified index.
getEntry(int) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Returns the entry in the specified index.
getEntry(int) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Return the entry at the specified index.
getEntry(int) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Return the entry at the specified index.
getEntry(int) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Returns the entry in the specified index.
getEntry(int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Returns the entry in the specified row and column.
getEntry(int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Get the entry in the specified row and column.
getEntry(int, int) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Returns the entry in the specified row and column.
getEntry(int, int) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Get the entry in the specified row and column.
getEntry(int, int) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Returns the entry in the specified row and column.
getEntry(int, int) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Get the entry in the specified row and column.
getEntry(int, int) - Method in class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Get the entry in the specified row and column.
getEntry(int, int) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Returns the entry in the specified row and column.
getEntry(int, int) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealMatrix
Get the entry in the specified row and column.
getEntry(int, int) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Get the entry in the specified row and column.
getEntry(int, int) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldMatrix
Returns the entry in the specified row and column.
getEpochDuration() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.SimulatedAnnealing
 
getEps() - Method in class org.apache.commons.math4.legacy.ml.clustering.DBSCANClusterer
Returns the maximum radius of the neighborhood to be considered.
getEpsilon() - Method in class org.apache.commons.math4.legacy.ml.clustering.FuzzyKMeansClusterer
Returns the convergence criteria used by this instance.
getEquations() - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Get the differential equations to integrate.
getErrorCovariance() - Method in class org.apache.commons.math4.legacy.filter.KalmanFilter
Returns the current error covariance matrix.
getErrorCovarianceMatrix() - Method in class org.apache.commons.math4.legacy.filter.KalmanFilter
Returns a copy of the current error covariance matrix.
getErrorSumSquares() - Method in class org.apache.commons.math4.legacy.stat.regression.RegressionResults
Returns the sum of squared errors (SSE) associated with the regression model.
getEstimationType() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Get the estimation type used for computation.
getEvaluationCounter() - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresAdapter
Get a independent Incrementor that counts up to the maximum number of evaluations and then throws an exception.
getEvaluationCounter() - Method in class org.apache.commons.math4.legacy.optim.AbstractOptimizationProblem
Get a independent Incrementor that counts up to the maximum number of evaluations and then throws an exception.
getEvaluationCounter() - Method in interface org.apache.commons.math4.legacy.optim.OptimizationProblem
Get a independent Incrementor that counts up to the maximum number of evaluations and then throws an exception.
getEvaluations() - Method in class org.apache.commons.math4.legacy.analysis.integration.BaseAbstractUnivariateIntegrator
Get the number of function evaluations of the last run of the integrator.
getEvaluations() - Method in interface org.apache.commons.math4.legacy.analysis.integration.UnivariateIntegrator
Get the number of function evaluations of the last run of the integrator.
getEvaluations() - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
Get the number of evaluations of the objective function.
getEvaluations() - Method in interface org.apache.commons.math4.legacy.analysis.solvers.BaseUnivariateSolver
Get the number of evaluations of the objective function.
getEvaluations() - Method in interface org.apache.commons.math4.legacy.analysis.solvers.BracketedRealFieldUnivariateSolver
Get the number of evaluations of the objective function.
getEvaluations() - Method in class org.apache.commons.math4.legacy.analysis.solvers.FieldBracketingNthOrderBrentSolver
Get the number of evaluations of the objective function.
getEvaluations() - Method in interface org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresOptimizer.Optimum
Get the number of times the model was evaluated in order to produce this optimum.
getEvaluations() - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Get the number of evaluations of the differential equations function.
getEvaluations() - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Get the number of evaluations of the differential equations function.
getEvaluations() - Method in interface org.apache.commons.math4.legacy.ode.FirstOrderFieldIntegrator
Get the number of evaluations of the differential equations function.
getEvaluations() - Method in interface org.apache.commons.math4.legacy.ode.ODEIntegrator
Get the number of evaluations of the differential equations function.
getEvaluations() - Method in class org.apache.commons.math4.legacy.optim.BaseMultiStartMultivariateOptimizer
Gets the number of evaluations of the objective function.
getEvaluations() - Method in class org.apache.commons.math4.legacy.optim.BaseOptimizer
Gets the number of evaluations of the objective function.
getEvaluations() - Method in class org.apache.commons.math4.legacy.optim.univariate.BracketFinder
 
getEvaluations() - Method in class org.apache.commons.math4.legacy.optim.univariate.MultiStartUnivariateOptimizer
Gets the number of evaluations of the objective function.
getEvaluationsCounter() - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Get the evaluations counter.
getEventHandler() - Method in class org.apache.commons.math4.legacy.ode.events.EventState
Get the underlying event handler.
getEventHandler() - Method in class org.apache.commons.math4.legacy.ode.events.FieldEventState
Get the underlying event handler.
getEventHandlers() - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Get all the event handlers that have been added to the integrator.
getEventHandlers() - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Get all the event handlers that have been added to the integrator.
getEventHandlers() - Method in interface org.apache.commons.math4.legacy.ode.FirstOrderFieldIntegrator
Get all the event handlers that have been added to the integrator.
getEventHandlers() - Method in interface org.apache.commons.math4.legacy.ode.ODEIntegrator
Get all the event handlers that have been added to the integrator.
getEventTime() - Method in class org.apache.commons.math4.legacy.ode.events.EventState
Get the occurrence time of the event triggered in the current step.
getEventTime() - Method in class org.apache.commons.math4.legacy.ode.events.FieldEventState
Get the occurrence time of the event triggered in the current step.
getExpandable() - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Get the differential equations to integrate.
getExpectedColumnDimension() - Method in exception org.apache.commons.math4.legacy.linear.MatrixDimensionMismatchException
 
getExpectedRowDimension() - Method in exception org.apache.commons.math4.legacy.linear.MatrixDimensionMismatchException
 
getExponent() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Return the exponent of the instance value, removing the bias.
getFHi() - Method in class org.apache.commons.math4.legacy.optim.univariate.BracketFinder
Get function value at BracketFinder.getHi().
getField() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
getField() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
getField() - Method in class org.apache.commons.math4.legacy.field.linalg.FieldDenseMatrix
 
getField() - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Get the type of field elements of the matrix.
getField() - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Get the type of field elements of the vector.
getField() - Method in class org.apache.commons.math4.legacy.linear.BigReal
getField() - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Get the type of field elements of the matrix.
getField() - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Get the type of field elements of the vector.
getField() - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Get the type of field elements of the vector.
getField() - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Get the field to which state vector elements belong.
getFinalTime() - Method in class org.apache.commons.math4.legacy.ode.ContinuousOutputFieldModel
Get the final integration time.
getFinalTime() - Method in class org.apache.commons.math4.legacy.ode.ContinuousOutputModel
Get the final integration time.
getFirst() - Method in class org.apache.commons.math4.legacy.genetics.ChromosomePair
Access the first chromosome.
getFirstIndex() - Method in class org.apache.commons.math4.legacy.ode.EquationsMapper
Get the index of the first equation element in complete state arrays.
getFitness() - Method in class org.apache.commons.math4.legacy.genetics.Chromosome
Access the fitness of this chromosome.
getFittedModel() - Method in class org.apache.commons.math4.legacy.distribution.fitting.MultivariateNormalMixtureExpectationMaximization
Gets the fitted model.
getFittestChromosome() - Method in class org.apache.commons.math4.legacy.genetics.ListPopulation
Access the fittest chromosome in this population.
getFittestChromosome() - Method in interface org.apache.commons.math4.legacy.genetics.Population
Access the fittest chromosome in this population.
getFLo() - Method in class org.apache.commons.math4.legacy.optim.univariate.BracketFinder
Get function value at BracketFinder.getLo().
getFMid() - Method in class org.apache.commons.math4.legacy.optim.univariate.BracketFinder
Get function value at BracketFinder.getMid().
getFormat() - Method in class org.apache.commons.math4.legacy.linear.RealMatrixFormat
Get the components format.
getFormat() - Method in class org.apache.commons.math4.legacy.linear.RealVectorFormat
Get the components format.
getFreeParameters() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Get the number of free parameters.
getFreeParameters() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Get the number of free parameters.
getFrobeniusNorm() - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Returns the Frobenius norm of the matrix.
getFrobeniusNorm() - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Returns the Frobenius norm of the matrix.
getFrobeniusNorm() - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Returns the Frobenius norm of the matrix.
getFunction() - Method in class org.apache.commons.math4.legacy.optim.linear.LinearOptimizer
 
getFunctionValueAccuracy() - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
Get the function value accuracy of the solver.
getFunctionValueAccuracy() - Method in interface org.apache.commons.math4.legacy.analysis.solvers.BaseUnivariateSolver
Get the function value accuracy of the solver.
getFunctionValueAccuracy() - Method in interface org.apache.commons.math4.legacy.analysis.solvers.BracketedRealFieldUnivariateSolver
Get the function value accuracy of the solver.
getFunctionValueAccuracy() - Method in class org.apache.commons.math4.legacy.analysis.solvers.FieldBracketingNthOrderBrentSolver
Get the function accuracy.
getFuzziness() - Method in class org.apache.commons.math4.legacy.ml.clustering.FuzzyKMeansClusterer
Returns the fuzziness factor used by this instance.
getGenerationsEvolved() - Method in class org.apache.commons.math4.legacy.genetics.GeneticAlgorithm
Returns the number of generations evolved to reach StoppingCondition in the last run.
getGeneratorUpperBounds() - Method in class org.apache.commons.math4.legacy.distribution.EmpiricalDistribution
Returns the upper bounds of the subintervals of [0, 1] used in generating data from the empirical distribution.
getGeoMeanImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Returns the currently configured geometric mean implementation.
getGeoMeanImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns the currently configured geometric mean implementation.
getGeoMeanImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Returns the currently configured geometric mean implementation.
getGeoMeanImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns the currently configured geometric mean implementation.
getGeometricMean() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AggregateSummaryStatistics
Returns the geometric mean of all the aggregated data.
getGeometricMean() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the geometric mean of the available values.
getGeometricMean() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Returns an array whose ith entry is the geometric mean of the.
getGeometricMean() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StatisticalMultivariateSummary
Returns an array whose ith entry is the.
getGeometricMean() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns the geometric mean of the values that have been added.
getGeometricMean() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Returns an array whose ith entry is the geometric mean of the.
getGeometricMean() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns the geometric mean of the values that have been added.
getGeometricMeanImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the currently configured geometric mean implementation.
getGlobalCurrentState() - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractFieldStepInterpolator
Get the current global grid point state.
getGlobalCurrentTime() - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Get the current global grid point time.
getGlobalPreviousState() - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractFieldStepInterpolator
Get the previous global grid point state.
getGlobalPreviousTime() - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Get the previous global grid point time.
getGoalType() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer
 
getGoalType() - Method in class org.apache.commons.math4.legacy.optim.univariate.UnivariateOptimizer
 
getH() - Method in class org.apache.commons.math4.legacy.linear.QRDecomposition
Returns the Householder reflector vectors.
getHi() - Method in class org.apache.commons.math4.legacy.optim.univariate.BracketFinder
 
getImagEigenvalue(int) - Method in class org.apache.commons.math4.legacy.linear.EigenDecomposition
Gets the imaginary part of the ith eigenvalue of the original matrix.
getImagEigenvalues() - Method in class org.apache.commons.math4.legacy.linear.EigenDecomposition
Gets a copy of the imaginary parts of the eigenvalues of the original matrix.
getImaginaryCharacter() - Method in class org.apache.commons.math4.legacy.util.ComplexFormat
Access the imaginaryCharacter.
getImaginaryFormat() - Method in class org.apache.commons.math4.legacy.util.ComplexFormat
Access the imaginaryFormat.
getIndex() - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector.OpenMapEntry
Get the index of the entry.
getIndex() - Method in class org.apache.commons.math4.legacy.linear.RealVector.Entry
Get the index of the entry.
getInitialBracketingRange() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.LineSearchTolerance
 
getInitialErrorCovariance() - Method in class org.apache.commons.math4.legacy.filter.DefaultProcessModel
Returns the initial error covariance matrix.
getInitialErrorCovariance() - Method in interface org.apache.commons.math4.legacy.filter.ProcessModel
Returns the initial error covariance matrix.
getInitialGuess() - Method in class org.apache.commons.math4.legacy.optim.InitialGuess
Gets the initial guess.
getInitialStateEstimate() - Method in class org.apache.commons.math4.legacy.filter.DefaultProcessModel
Returns the initial state estimation vector.
getInitialStateEstimate() - Method in interface org.apache.commons.math4.legacy.filter.ProcessModel
Returns the initial state estimation vector.
getInitialStepBoundFactor() - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LevenbergMarquardtOptimizer
Gets the value of a tuning parameter.
getInitialTime() - Method in class org.apache.commons.math4.legacy.ode.ContinuousOutputFieldModel
Get the initial integration time.
getInitialTime() - Method in class org.apache.commons.math4.legacy.ode.ContinuousOutputModel
Get the initial integration time.
getInstance() - Static method in class org.apache.commons.math4.legacy.linear.BigRealField
Get the unique instance.
getInstance() - Static method in class org.apache.commons.math4.legacy.linear.RealMatrixFormat
Returns the default real vector format for the current locale.
getInstance() - Static method in class org.apache.commons.math4.legacy.linear.RealVectorFormat
Returns the default real vector format for the current locale.
getInstance() - Static method in class org.apache.commons.math4.legacy.ode.sampling.DummyStepHandler
Get the only instance.
getInstance() - Static method in class org.apache.commons.math4.legacy.util.ComplexFormat
Returns the default complex format for the current locale.
getInstance(int) - Static method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsNordsieckTransformer
Get the Nordsieck transformer for a given number of steps.
getInstance(String, Locale) - Static method in class org.apache.commons.math4.legacy.util.ComplexFormat
Returns the default complex format for the given locale.
getInstance(Locale) - Static method in class org.apache.commons.math4.legacy.linear.RealMatrixFormat
Returns the default real vector format for the given locale.
getInstance(Locale) - Static method in class org.apache.commons.math4.legacy.linear.RealVectorFormat
Returns the default real vector format for the given locale.
getInstance(Locale) - Static method in class org.apache.commons.math4.legacy.util.ComplexFormat
Returns the default complex format for the given locale.
getInstance(Field<T>, int) - Static method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsNordsieckFieldTransformer
Get the Nordsieck transformer for a given field and number of steps.
getIntercept() - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Returns the intercept of the estimated regression line, if SimpleRegression.hasIntercept() is true; otherwise 0.
getInterceptStdErr() - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Returns the standard error of the intercept estimate, usually denoted s(b0).
getInterpolatedDerivatives() - Method in class org.apache.commons.math4.legacy.ode.ContinuousOutputModel
Get the derivatives of the state vector of the interpolated point.
getInterpolatedDerivatives() - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Get the derivatives of the state vector of the interpolated point.
getInterpolatedDerivatives() - Method in interface org.apache.commons.math4.legacy.ode.sampling.StepInterpolator
Get the derivatives of the state vector of the interpolated point.
getInterpolatedSecondaryDerivatives(int) - Method in class org.apache.commons.math4.legacy.ode.ContinuousOutputModel
Get the interpolated secondary derivatives corresponding to the secondary equations.
getInterpolatedSecondaryDerivatives(int) - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Get the interpolated secondary derivatives corresponding to the secondary equations.
getInterpolatedSecondaryDerivatives(int) - Method in interface org.apache.commons.math4.legacy.ode.sampling.StepInterpolator
Get the interpolated secondary derivatives corresponding to the secondary equations.
getInterpolatedSecondaryState(int) - Method in class org.apache.commons.math4.legacy.ode.ContinuousOutputModel
Get the interpolated secondary state corresponding to the secondary equations.
getInterpolatedSecondaryState(int) - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Get the interpolated secondary state corresponding to the secondary equations.
getInterpolatedSecondaryState(int) - Method in interface org.apache.commons.math4.legacy.ode.sampling.StepInterpolator
Get the interpolated secondary state corresponding to the secondary equations.
getInterpolatedState() - Method in class org.apache.commons.math4.legacy.ode.ContinuousOutputModel
Get the state vector of the interpolated point.
getInterpolatedState() - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Get the state vector of the interpolated point.
getInterpolatedState() - Method in interface org.apache.commons.math4.legacy.ode.sampling.StepInterpolator
Get the state vector of the interpolated point.
getInterpolatedState(T) - Method in class org.apache.commons.math4.legacy.ode.ContinuousOutputFieldModel
Get the state at interpolated time.
getInterpolatedState(T) - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractFieldStepInterpolator
Get the state at interpolated time.
getInterpolatedState(T) - Method in interface org.apache.commons.math4.legacy.ode.sampling.FieldStepInterpolator
Get the state at interpolated time.
getInterpolatedStateVariation() - Method in class org.apache.commons.math4.legacy.ode.sampling.NordsieckStepInterpolator
Get the state vector variation from current to interpolated state.
getInterpolatedTime() - Method in class org.apache.commons.math4.legacy.ode.ContinuousOutputModel
Get the time of the interpolated point.
getInterpolatedTime() - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Get the time of the interpolated point.
getInterpolatedTime() - Method in interface org.apache.commons.math4.legacy.ode.sampling.StepInterpolator
Get the time of the interpolated point.
getInterpolatingPoints() - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionLagrangeForm
Returns a copy of the interpolating points array.
getInterpolatingValues() - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionLagrangeForm
Returns a copy of the interpolating values array.
getInverse() - Method in interface org.apache.commons.math4.legacy.field.linalg.FieldDecompositionSolver
Computes the inverse of a decomposed (square) matrix.
getInverse() - Method in interface org.apache.commons.math4.legacy.linear.DecompositionSolver
Get the pseudo-inverse of the decomposed matrix.
getInverse() - Method in interface org.apache.commons.math4.legacy.linear.FieldDecompositionSolver
Get the inverse (or pseudo-inverse) of the decomposed matrix.
getInverseConditionNumber() - Method in class org.apache.commons.math4.legacy.linear.SingularValueDecomposition
Computes the inverse of the condition number.
getIterationCounter() - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresAdapter
Get a independent Incrementor that counts up to the maximum number of iterations and then throws an exception.
getIterationCounter() - Method in class org.apache.commons.math4.legacy.optim.AbstractOptimizationProblem
Get a independent Incrementor that counts up to the maximum number of iterations and then throws an exception.
getIterationCounter() - Method in interface org.apache.commons.math4.legacy.optim.OptimizationProblem
Get a independent Incrementor that counts up to the maximum number of iterations and then throws an exception.
getIterationManager() - Method in class org.apache.commons.math4.legacy.linear.IterativeLinearSolver
Returns the iteration manager attached to this solver.
getIterations() - Method in class org.apache.commons.math4.legacy.analysis.integration.BaseAbstractUnivariateIntegrator
Get the number of iterations of the last run of the integrator.
getIterations() - Method in interface org.apache.commons.math4.legacy.analysis.integration.UnivariateIntegrator
Get the number of iterations of the last run of the integrator.
getIterations() - Method in interface org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresOptimizer.Optimum
Get the number of times the algorithm iterated in order to produce this optimum.
getIterations() - Method in class org.apache.commons.math4.legacy.linear.IterationEvent
Returns the number of iterations performed at the time this event is created.
getIterations() - Method in class org.apache.commons.math4.legacy.linear.IterationManager
Returns the number of iterations of this solver, 0 if no iterations has been performed yet.
getIterations() - Method in class org.apache.commons.math4.legacy.optim.BaseOptimizer
Gets the number of iterations performed by the algorithm.
getJacobian() - Method in interface org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresProblem.Evaluation
Get the weighted Jacobian matrix.
getK() - Method in class org.apache.commons.math4.legacy.ml.clustering.FuzzyKMeansClusterer
Return the number of clusters this instance will use.
getKnots() - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialSplineFunction
Get an array copy of the knot points.
getKthSelector() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Get the kthSelector used for computation.
getKurtosis() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the Kurtosis of the available values.
getKurtosisImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the currently configured kurtosis implementation.
getL() - Method in class org.apache.commons.math4.legacy.field.linalg.FieldLUDecomposition
Builds the "L" matrix of the decomposition.
getL() - Method in class org.apache.commons.math4.legacy.linear.CholeskyDecomposition
Returns the matrix L of the decomposition.
getL() - Method in class org.apache.commons.math4.legacy.linear.FieldLUDecomposition
Returns the matrix L of the decomposition.
getL() - Method in class org.apache.commons.math4.legacy.linear.LUDecomposition
Returns the matrix L of the decomposition.
getL1Distance(OpenMapRealVector) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Distance between two vectors.
getL1Distance(RealVector) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Distance between two vectors.
getL1Distance(RealVector) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Distance between two vectors.
getL1Distance(RealVector) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Distance between two vectors.
getL1Norm() - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Returns the L1 norm of the vector.
getL1Norm() - Method in class org.apache.commons.math4.legacy.linear.RealVector
Returns the L1 norm of the vector.
getLength() - Method in class org.apache.commons.math4.legacy.genetics.AbstractListChromosome
Returns the length of the chromosome.
getLInfDistance(RealVector) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Distance between two vectors.
getLInfDistance(RealVector) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Distance between two vectors.
getLInfDistance(RealVector) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Distance between two vectors.
getLInfNorm() - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Returns the L norm of the vector.
getLInfNorm() - Method in class org.apache.commons.math4.legacy.linear.RealVector
Returns the L norm of the vector.
getLo() - Method in class org.apache.commons.math4.legacy.optim.univariate.BracketFinder
 
getLogLikelihood() - Method in class org.apache.commons.math4.legacy.distribution.fitting.MultivariateNormalMixtureExpectationMaximization
Gets the log likelihood of the data under the fitted model.
getLower() - Method in class org.apache.commons.math4.legacy.optim.SimpleBounds
Gets the lower bounds.
getLowerBound() - Method in class org.apache.commons.math4.legacy.optim.BaseMultivariateOptimizer
 
getLowerBound() - Method in class org.apache.commons.math4.legacy.stat.interval.ConfidenceInterval
 
getLT() - Method in class org.apache.commons.math4.legacy.linear.CholeskyDecomposition
Returns the transpose of the matrix L of the decomposition.
getMapper() - Method in class org.apache.commons.math4.legacy.ode.FieldExpandableODE
Get the mapper for the set of equations.
getMax() - Method in class org.apache.commons.math4.legacy.analysis.integration.BaseAbstractUnivariateIntegrator
 
getMax() - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
 
getMax() - Method in class org.apache.commons.math4.legacy.optim.univariate.SearchInterval
Gets the upper bound.
getMax() - Method in class org.apache.commons.math4.legacy.optim.univariate.UnivariateOptimizer
 
getMax() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AggregateSummaryStatistics
Returns the maximum of the available values.
getMax() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the maximum of the available values.
getMax() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Returns an array whose ith entry is the maximum of the.
getMax() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StatisticalMultivariateSummary
Returns an array whose ith entry is the.
getMax() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StatisticalSummary
Returns the maximum of the available values.
getMax() - Method in class org.apache.commons.math4.legacy.stat.descriptive.StatisticalSummaryValues
 
getMax() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns the maximum of the values that have been added.
getMax() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Returns an array whose ith entry is the maximum of the.
getMax() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns the maximum of the values that have been added.
getMaxCheckInterval() - Method in class org.apache.commons.math4.legacy.ode.events.EventState
Get the maximal time interval between events handler checks.
getMaxCheckInterval() - Method in class org.apache.commons.math4.legacy.ode.events.FieldEventState
Get the maximal time interval between events handler checks.
getMaxEval() - Method in class org.apache.commons.math4.legacy.optim.MaxEval
Gets the maximum number of evaluations.
getMaxEvaluations() - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
Get the maximum number of function evaluations.
getMaxEvaluations() - Method in interface org.apache.commons.math4.legacy.analysis.solvers.BaseUnivariateSolver
Get the maximum number of function evaluations.
getMaxEvaluations() - Method in interface org.apache.commons.math4.legacy.analysis.solvers.BracketedRealFieldUnivariateSolver
Get the maximum number of function evaluations.
getMaxEvaluations() - Method in class org.apache.commons.math4.legacy.analysis.solvers.FieldBracketingNthOrderBrentSolver
Get the maximal number of function evaluations.
getMaxEvaluations() - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Get the maximal number of functions evaluations.
getMaxEvaluations() - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Get the maximal number of functions evaluations.
getMaxEvaluations() - Method in interface org.apache.commons.math4.legacy.ode.FirstOrderFieldIntegrator
Get the maximal number of functions evaluations.
getMaxEvaluations() - Method in interface org.apache.commons.math4.legacy.ode.ODEIntegrator
Get the maximal number of functions evaluations.
getMaxEvaluations() - Method in class org.apache.commons.math4.legacy.optim.BaseOptimizer
Gets the maximal number of function evaluations.
getMaxEvaluations() - Method in class org.apache.commons.math4.legacy.optim.univariate.BracketFinder
 
getMaxGrowth() - Method in class org.apache.commons.math4.legacy.ode.MultistepFieldIntegrator
Get the maximal growth factor for stepsize control.
getMaxGrowth() - Method in class org.apache.commons.math4.legacy.ode.MultistepIntegrator
Get the maximal growth factor for stepsize control.
getMaxGrowth() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaFieldIntegrator
Get the maximal growth factor for stepsize control.
getMaxGrowth() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaIntegrator
Get the maximal growth factor for stepsize control.
getMaximalIterationCount() - Method in class org.apache.commons.math4.legacy.analysis.integration.BaseAbstractUnivariateIntegrator
Get the upper limit for the number of iterations.
getMaximalIterationCount() - Method in interface org.apache.commons.math4.legacy.analysis.integration.UnivariateIntegrator
Get the upper limit for the number of iterations.
getMaximalOrder() - Method in class org.apache.commons.math4.legacy.analysis.solvers.BracketingNthOrderBrentSolver
Get the maximal order.
getMaximalOrder() - Method in class org.apache.commons.math4.legacy.analysis.solvers.FieldBracketingNthOrderBrentSolver
Get the maximal order.
getMaxImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the currently configured maximum implementation.
getMaxImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Returns the currently configured maximum implementation.
getMaxImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns the currently configured maximum implementation.
getMaxImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Returns the currently configured maximum implementation.
getMaxImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns the currently configured maximum implementation.
getMaxIndex() - Method in class org.apache.commons.math4.legacy.linear.RealVector
Get the index of the maximum entry.
getMaxIter() - Method in class org.apache.commons.math4.legacy.optim.MaxIter
Gets the maximum number of evaluations.
getMaxIterationCount() - Method in class org.apache.commons.math4.legacy.ode.events.EventState
Get the upper limit in the iteration count for event localization.
getMaxIterationCount() - Method in class org.apache.commons.math4.legacy.ode.events.FieldEventState
Get the upper limit in the iteration count for event localization.
getMaxIterations() - Method in class org.apache.commons.math4.legacy.linear.IterationManager
Returns the maximum number of iterations.
getMaxIterations() - Method in class org.apache.commons.math4.legacy.ml.clustering.FuzzyKMeansClusterer
Returns the maximum number of iterations this instance will use.
getMaxIterations() - Method in class org.apache.commons.math4.legacy.ml.clustering.KMeansPlusPlusClusterer
Returns the maximum number of iterations this instance will use.
getMaxIterations() - Method in class org.apache.commons.math4.legacy.optim.BaseOptimizer
Gets the maximal number of iterations.
getMaxStep() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeFieldIntegrator
Get the maximal step.
getMaxStep() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
Get the maximal step.
getMaxValue() - Method in class org.apache.commons.math4.legacy.linear.RealVector
Get the value of the maximum entry.
getMean() - Method in class org.apache.commons.math4.legacy.distribution.EmpiricalDistribution
getMean() - Method in class org.apache.commons.math4.legacy.distribution.EnumeratedIntegerDistribution
getMean() - Method in class org.apache.commons.math4.legacy.distribution.EnumeratedRealDistribution
getMean() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AggregateSummaryStatistics
Returns the arithmetic mean of the available values.
getMean() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the arithmetic mean of the available values.
getMean() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Returns an array whose ith entry is the mean of the.
getMean() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StatisticalMultivariateSummary
Returns an array whose ith entry is the.
getMean() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StatisticalSummary
Returns the arithmetic mean of the available values.
getMean() - Method in class org.apache.commons.math4.legacy.stat.descriptive.StatisticalSummaryValues
 
getMean() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns the mean of the values that have been added.
getMean() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Returns an array whose ith entry is the mean of the.
getMean() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns the mean of the values that have been added.
getMeanImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the currently configured mean implementation.
getMeanImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Returns the currently configured mean implementation.
getMeanImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns the currently configured mean implementation.
getMeanImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Returns the currently configured mean implementation.
getMeanImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns the currently configured mean implementation.
getMeans() - Method in class org.apache.commons.math4.legacy.distribution.MultivariateNormalDistribution
Gets the mean vector.
getMeanSquareError() - Method in class org.apache.commons.math4.legacy.stat.regression.RegressionResults
Returns the sum of squared errors divided by the degrees of freedom, usually abbreviated MSE.
getMeanSquareError() - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Returns the sum of squared errors divided by the degrees of freedom, usually abbreviated MSE.
getMeasurementDimension() - Method in class org.apache.commons.math4.legacy.filter.KalmanFilter
Returns the dimension of the measurement vector.
getMeasurementMatrix() - Method in class org.apache.commons.math4.legacy.filter.DefaultMeasurementModel
Returns the measurement matrix.
getMeasurementMatrix() - Method in interface org.apache.commons.math4.legacy.filter.MeasurementModel
Returns the measurement matrix.
getMeasurementNoise() - Method in class org.apache.commons.math4.legacy.filter.DefaultMeasurementModel
Returns the measurement noise matrix.
getMeasurementNoise() - Method in interface org.apache.commons.math4.legacy.filter.MeasurementModel
Returns the measurement noise matrix.
getMembershipMatrix() - Method in class org.apache.commons.math4.legacy.ml.clustering.FuzzyKMeansClusterer
Returns the nxk membership matrix, where n is the number of data points and k the number of clusters.
getMid() - Method in class org.apache.commons.math4.legacy.optim.univariate.BracketFinder
 
getMin() - Method in class org.apache.commons.math4.legacy.analysis.integration.BaseAbstractUnivariateIntegrator
 
getMin() - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
 
getMin() - Method in class org.apache.commons.math4.legacy.optim.univariate.SearchInterval
Gets the lower bound.
getMin() - Method in class org.apache.commons.math4.legacy.optim.univariate.UnivariateOptimizer
 
getMin() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AggregateSummaryStatistics
Returns the minimum of the available values.
getMin() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the minimum of the available values.
getMin() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Returns an array whose ith entry is the minimum of the.
getMin() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StatisticalMultivariateSummary
Returns an array whose ith entry is the.
getMin() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StatisticalSummary
Returns the minimum of the available values.
getMin() - Method in class org.apache.commons.math4.legacy.stat.descriptive.StatisticalSummaryValues
 
getMin() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns the minimum of the values that have been added.
getMin() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Returns an array whose ith entry is the minimum of the.
getMin() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns the minimum of the values that have been added.
getMinimalIterationCount() - Method in class org.apache.commons.math4.legacy.analysis.integration.BaseAbstractUnivariateIntegrator
Get the min limit for the number of iterations.
getMinimalIterationCount() - Method in interface org.apache.commons.math4.legacy.analysis.integration.UnivariateIntegrator
Get the min limit for the number of iterations.
getMinImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the currently configured minimum implementation.
getMinImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Returns the currently configured minimum implementation.
getMinImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns the currently configured minimum implementation.
getMinImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Returns the currently configured minimum implementation.
getMinImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns the currently configured minimum implementation.
getMinIndex() - Method in class org.apache.commons.math4.legacy.linear.RealVector
Get the index of the minimum entry.
getMinPts() - Method in class org.apache.commons.math4.legacy.ml.clustering.DBSCANClusterer
Returns the minimum number of points needed for a cluster.
getMinReduction() - Method in class org.apache.commons.math4.legacy.ode.MultistepFieldIntegrator
Get the minimal reduction factor for stepsize control.
getMinReduction() - Method in class org.apache.commons.math4.legacy.ode.MultistepIntegrator
Get the minimal reduction factor for stepsize control.
getMinReduction() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaFieldIntegrator
Get the minimal reduction factor for stepsize control.
getMinReduction() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaIntegrator
Get the minimal reduction factor for stepsize control.
getMinStep() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeFieldIntegrator
Get the minimal step.
getMinStep() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
Get the minimal step.
getMinValue() - Method in class org.apache.commons.math4.legacy.linear.RealVector
Get the value of the minimum entry.
getMode() - Method in class org.apache.commons.math4.legacy.stat.Frequency
Returns the mode value(s) in comparator order.
getModelFunction() - Method in class org.apache.commons.math4.legacy.fitting.AbstractCurveFitter.TheoreticalValuesFunction
 
getModelFunctionJacobian() - Method in class org.apache.commons.math4.legacy.fitting.AbstractCurveFitter.TheoreticalValuesFunction
 
getMutationPolicy() - Method in class org.apache.commons.math4.legacy.genetics.GeneticAlgorithm
Returns the mutation policy.
getMutationRate() - Method in class org.apache.commons.math4.legacy.genetics.GeneticAlgorithm
Returns the mutation rate.
getN() - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialSplineFunction
Get the number of spline segments.
getN() - Method in class org.apache.commons.math4.legacy.stat.correlation.Covariance
Returns the number of observations (length of covariate vectors).
getN() - Method in class org.apache.commons.math4.legacy.stat.correlation.StorelessCovariance
This Covariance method is not supported by a StorelessCovariance, since the number of bivariate observations does not have to be the same for different pairs of covariates - i.e., N as defined in Covariance.getN() is undefined.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AggregateSummaryStatistics
Returns the number of available values.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the number of available values.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.GeometricMean
Returns the number of values that have been added.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Kurtosis
Returns the number of values that have been added.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Mean
Returns the number of values that have been added.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Skewness
Returns the number of values that have been added.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.StandardDeviation
Returns the number of values that have been added.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
Returns the number of values that have been added.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.VectorialCovariance
Get the number of vectors in the sample.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.VectorialMean
Get the number of vectors in the sample.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Returns the number of available values.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Max
Returns the number of values that have been added.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Min
Returns the number of values that have been added.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.PSquarePercentile
Returns the number of values that have been added.
getN() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StatisticalMultivariateSummary
Returns the number of available values.
getN() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StatisticalSummary
Returns the number of available values.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.StatisticalSummaryValues
 
getN() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StorelessUnivariateStatistic
Returns the number of values that have been added.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.Product
Returns the number of values that have been added.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.Sum
Returns the number of values that have been added.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.SumOfLogs
Returns the number of values that have been added.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.SumOfSquares
Returns the number of values that have been added.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns the number of available values.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedDescriptiveStatistics
Returns the number of available values.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Returns the number of available values.
getN() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns the number of available values.
getN() - Method in class org.apache.commons.math4.legacy.stat.regression.MillerUpdatingRegression
Gets the number of observations added to the regression model.
getN() - Method in class org.apache.commons.math4.legacy.stat.regression.RegressionResults
Returns the number of observations added to the regression model.
getN() - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Returns the number of observations that have been added to the model.
getN() - Method in interface org.apache.commons.math4.legacy.stat.regression.UpdatingMultipleLinearRegression
Returns the number of observations added to the regression model.
getName() - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Get the name of the method.
getName() - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Get the name of the method.
getName() - Method in interface org.apache.commons.math4.legacy.ode.FirstOrderFieldIntegrator
Get the name of the method.
getName() - Method in interface org.apache.commons.math4.legacy.ode.ODEIntegrator
Get the name of the method.
getName() - Method in exception org.apache.commons.math4.legacy.ode.UnknownParameterException
 
getNanStrategy() - Method in class org.apache.commons.math4.legacy.stat.ranking.NaturalRanking
Return the NaNStrategy.
getNaNStrategy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Get the NaN Handling strategy used for computation.
getNbPoints() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.FiniteDifferencesDifferentiator
Get the number of points to use.
getNewtonCoefficients() - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionNewtonForm
Returns a copy of coefficients in Newton form formula.
getNextIndex() - Method in class org.apache.commons.math4.legacy.random.HaltonSequenceGenerator
Returns the index i of the next point in the Halton sequence that will be returned by calling HaltonSequenceGenerator.get().
getNextIndex() - Method in class org.apache.commons.math4.legacy.random.SobolSequenceGenerator
Returns the index i of the next point in the Sobol sequence that will be returned by calling SobolSequenceGenerator.get().
getNorm() - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Returns the maximum absolute row sum norm of the matrix.
getNorm() - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Returns the L2 norm of the vector.
getNorm() - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Returns the maximum absolute row sum norm of the matrix.
getNorm() - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Returns the maximum absolute row sum norm of the matrix.
getNorm() - Method in class org.apache.commons.math4.legacy.linear.RealVector
Returns the L2 norm of the vector.
getNorm() - Method in class org.apache.commons.math4.legacy.linear.SingularValueDecomposition
Returns the L2 norm of the matrix.
getNormalApproximationInterval(int, int, double) - Static method in class org.apache.commons.math4.legacy.stat.interval.IntervalUtils
Create a binomial confidence interval for the true probability of success of an unknown binomial distribution with the given observed number of trials, successes and confidence level using the Normal approximation to the binomial distribution.
getNormOfResidual() - Method in class org.apache.commons.math4.legacy.linear.DefaultIterativeLinearSolverEvent
Returns the norm of the residual.
getNormOfResidual() - Method in class org.apache.commons.math4.legacy.linear.IterativeLinearSolverEvent
Returns the norm of the residual.
getNSteps() - Method in class org.apache.commons.math4.legacy.ode.MultistepFieldIntegrator
Get the number of steps of the multistep method (excluding the one being computed).
getNSteps() - Method in class org.apache.commons.math4.legacy.ode.MultistepIntegrator
Get the number of steps of the multistep method (excluding the one being computed).
getNSteps() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsNordsieckTransformer
Deprecated.
as of 3.6, this method is not used anymore
getNumberOfClusters() - Method in class org.apache.commons.math4.legacy.ml.clustering.KMeansPlusPlusClusterer
Return the number of clusters this instance will use.
getNumberOfEquations() - Method in class org.apache.commons.math4.legacy.ode.FieldEquationsMapper
Get the number of equations mapped.
getNumberOfParameters() - Method in class org.apache.commons.math4.legacy.stat.regression.RegressionResults
Returns the number of parameters estimated in the model.
getNumberOfPoints() - Method in class org.apache.commons.math4.legacy.analysis.integration.gauss.GaussIntegrator
 
getNumberOfSecondaryStates() - Method in class org.apache.commons.math4.legacy.ode.FieldODEState
Get the number of secondary states.
getNumGenerations() - Method in class org.apache.commons.math4.legacy.genetics.FixedGenerationCount
Returns the number of generations that have already passed.
getnVals() - Method in class org.apache.commons.math4.legacy.special.BesselJ.BesselJResult
 
getObjectiveFunction() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer
 
getObjectiveFunction() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.ObjectiveFunction
Gets the function to be optimized.
getObjectiveFunction() - Method in class org.apache.commons.math4.legacy.optim.univariate.UnivariateObjectiveFunction
Gets the function to be optimized.
getObjectiveFunction() - Method in class org.apache.commons.math4.legacy.optim.univariate.UnivariateOptimizer
 
getObjectiveFunctionGradient() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.ObjectiveFunctionGradient
Gets the gradient of the function to be optimized.
getObjectiveFunctionValue() - Method in class org.apache.commons.math4.legacy.ml.clustering.FuzzyKMeansClusterer
Get the value of the objective function.
getObservationSize() - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresAdapter
Get the number of observations (rows in the Jacobian) in this problem.
getObservationSize() - Method in interface org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresProblem
Get the number of observations (rows in the Jacobian) in this problem.
getOmegaInverse() - Method in class org.apache.commons.math4.legacy.stat.regression.GLSMultipleLinearRegression
Get the inverse of the covariance.
getOne() - Method in class org.apache.commons.math4.legacy.linear.BigRealField
getOptima() - Method in class org.apache.commons.math4.legacy.optim.BaseMultiStartMultivariateOptimizer
Gets all the optima found during the last call to optimize.
getOptima() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultiStartMultivariateOptimizer
Gets all the optima found during the last call to optimize.
getOptima() - Method in class org.apache.commons.math4.legacy.optim.univariate.MultiStartUnivariateOptimizer
Gets all the optima found during the last call to optimize.
getOptimizer() - Method in class org.apache.commons.math4.legacy.fitting.AbstractCurveFitter
Creates an optimizer set up to fit the appropriate curve.
getOrder() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Get the derivation order.
getOrder() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Get the derivation order.
getOrder() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince54FieldIntegrator
Get the order of the method.
getOrder() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince54Integrator
Get the order of the method.
getOrder() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince853FieldIntegrator
Get the order of the method.
getOrder() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince853Integrator
Get the order of the method.
getOrder() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaFieldIntegrator
Get the order of the method.
getOrder() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaIntegrator
Get the order of the method.
getOrder() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.HighamHall54FieldIntegrator
Get the order of the method.
getOrder() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.HighamHall54Integrator
Get the order of the method.
getOrderOfRegressors() - Method in class org.apache.commons.math4.legacy.stat.regression.MillerUpdatingRegression
Gets the order of the regressors, useful if some type of reordering has been called.
getOrthoTolerance() - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LevenbergMarquardtOptimizer
Gets the value of a tuning parameter.
getP() - Method in class org.apache.commons.math4.legacy.field.linalg.FieldLUDecomposition
Builds the "P" matrix.
getP() - Method in class org.apache.commons.math4.legacy.linear.FieldLUDecomposition
Returns the P rows permutation matrix.
getP() - Method in class org.apache.commons.math4.legacy.linear.LUDecomposition
Returns the P rows permutation matrix.
getP() - Method in class org.apache.commons.math4.legacy.linear.RRQRDecomposition
Returns the pivot matrix, P, used in the QR Decomposition of matrix A such that AP = QR.
getParameter(String) - Method in interface org.apache.commons.math4.legacy.ode.ParameterizedODE
Get parameter value from its name.
getParameterEstimate(int) - Method in class org.apache.commons.math4.legacy.stat.regression.RegressionResults
Returns the parameter estimate for the regressor at the given index.
getParameterEstimates() - Method in class org.apache.commons.math4.legacy.stat.regression.RegressionResults
Returns a copy of the regression parameters estimates.
getParameterRelativeTolerance() - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LevenbergMarquardtOptimizer
Gets the value of a tuning parameter.
getParameterSize() - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresAdapter
Get the number of parameters (columns in the Jacobian) in this problem.
getParameterSize() - Method in interface org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresProblem
Get the number of parameters (columns in the Jacobian) in this problem.
getParametersNames() - Method in class org.apache.commons.math4.legacy.ode.AbstractParameterizable
Get the names of the supported parameters.
getParametersNames() - Method in interface org.apache.commons.math4.legacy.ode.Parameterizable
Get the names of the supported parameters.
getPartialCorrelations(int) - Method in class org.apache.commons.math4.legacy.stat.regression.MillerUpdatingRegression
In the original algorithm only the partial correlations of the regressors is returned to the user.
getPartialDerivative(int...) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Get a partial derivative.
getPartialDerivativeIndex(int...) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Get the index of a partial derivative in the array.
getPartialDerivativeOrders(int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Get the derivation orders for a specific index in the array.
getPct(T) - Method in class org.apache.commons.math4.legacy.stat.Frequency
Returns the percentage of values that are equal to v (as a proportion between 0 and 1).
getPercentile(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns an estimate for the pth percentile of the stored values.
getPercentileImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the currently configured percentile implementation.
getPivot() - Method in class org.apache.commons.math4.legacy.field.linalg.FieldLUDecomposition
Gets the pivot permutation vector.
getPivot() - Method in class org.apache.commons.math4.legacy.linear.FieldLUDecomposition
Returns the pivot permutation vector.
getPivot() - Method in class org.apache.commons.math4.legacy.linear.LUDecomposition
Returns the pivot permutation vector.
getPivotingStrategy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.KthSelector
Get the pivoting strategy.
getPivotingStrategy() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Get the PivotingStrategy used in KthSelector for computation.
getPmf() - Method in class org.apache.commons.math4.legacy.distribution.EnumeratedDistribution
Return the probability mass function as a list of <value, probability> pairs.
getPoint() - Method in interface org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresProblem.Evaluation
Get the abscissa (independent variables) of this evaluation.
getPoint() - Method in interface org.apache.commons.math4.legacy.ml.clustering.Clusterable
Gets the n-dimensional point.
getPoint() - Method in class org.apache.commons.math4.legacy.ml.clustering.DoublePoint
Gets the n-dimensional point.
getPoint() - Method in class org.apache.commons.math4.legacy.optim.PointValuePair
Gets the point.
getPoint() - Method in class org.apache.commons.math4.legacy.optim.PointVectorValuePair
Gets the point.
getPoint() - Method in class org.apache.commons.math4.legacy.optim.univariate.UnivariatePointValuePair
Get the point.
getPoint(int) - Method in class org.apache.commons.math4.legacy.analysis.integration.gauss.GaussIntegrator
Gets the integration point at the given index.
getPointRef() - Method in class org.apache.commons.math4.legacy.optim.PointValuePair
Gets a reference to the point.
getPointRef() - Method in class org.apache.commons.math4.legacy.optim.PointVectorValuePair
Gets a reference to the point.
getPoints() - Method in class org.apache.commons.math4.legacy.ml.clustering.Cluster
Get the points contained in the cluster.
getPolynomials() - Method in class org.apache.commons.math4.legacy.analysis.interpolation.HermiteInterpolator
Compute the interpolation polynomials.
getPolynomials() - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialSplineFunction
Get a copy of the interpolating polynomials array.
getPopulationLimit() - Method in class org.apache.commons.math4.legacy.genetics.ListPopulation
Access the maximum population size.
getPopulationLimit() - Method in interface org.apache.commons.math4.legacy.genetics.Population
Access the maximum population size.
getPopulationSize() - Method in class org.apache.commons.math4.legacy.genetics.ListPopulation
Access the current population size.
getPopulationSize() - Method in interface org.apache.commons.math4.legacy.genetics.Population
Access the current population size.
getPopulationSize() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.PopulationSize
 
getPopulationVariance() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the population variance of the available values.
getPopulationVariance() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns the population variance of the values that have been added.
getPopulationVariance() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns the population variance of the values that have been added.
getPrefix() - Method in class org.apache.commons.math4.legacy.linear.RealMatrixFormat
Get the format prefix.
getPrefix() - Method in class org.apache.commons.math4.legacy.linear.RealVectorFormat
Get the format prefix.
getPreviousState() - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractFieldStepInterpolator
Get the state at previous grid point time.
getPreviousState() - Method in interface org.apache.commons.math4.legacy.ode.sampling.FieldStepInterpolator
Get the state at previous grid point time.
getPreviousTime() - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Get the previous soft grid point time.
getPreviousTime() - Method in interface org.apache.commons.math4.legacy.ode.sampling.StepInterpolator
Get the previous grid point time.
getPrimary() - Method in class org.apache.commons.math4.legacy.ode.ExpandableStatefulODE
Get the primary set of differential equations.
getPrimaryMapper() - Method in class org.apache.commons.math4.legacy.ode.ExpandableStatefulODE
Get an equations mapper for the primary equations set.
getPrimaryState() - Method in class org.apache.commons.math4.legacy.ode.ExpandableStatefulODE
Get primary part of the current state.
getPrimaryStateDot() - Method in class org.apache.commons.math4.legacy.ode.ExpandableStatefulODE
Get primary part of the current state derivative.
getProblem(Collection<WeightedObservedPoint>) - Method in class org.apache.commons.math4.legacy.fitting.AbstractCurveFitter
Creates a least squares problem corresponding to the appropriate curve.
getProblem(Collection<WeightedObservedPoint>) - Method in class org.apache.commons.math4.legacy.fitting.SimpleCurveFitter
Creates a least squares problem corresponding to the appropriate curve.
getProcessNoise() - Method in class org.apache.commons.math4.legacy.filter.DefaultProcessModel
Returns the process noise matrix.
getProcessNoise() - Method in interface org.apache.commons.math4.legacy.filter.ProcessModel
Returns the process noise matrix.
getQ() - Method in class org.apache.commons.math4.legacy.linear.QRDecomposition
Returns the matrix Q of the decomposition.
getQT() - Method in class org.apache.commons.math4.legacy.linear.QRDecomposition
Returns the transpose of the matrix Q of the decomposition.
getQuadraticMean() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the quadratic mean, a.k.a.
getQuadraticMean() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns the quadratic mean, a.k.a.
getQuadraticMean() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedDescriptiveStatistics
Returns the quadratic mean, a.k.a.
getQuadraticMean() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns the quadratic mean, a.k.a.
getQuantile() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Returns the value of the quantile field (determines what percentile is computed when evaluate() is called with no quantile argument).
getR() - Method in class org.apache.commons.math4.legacy.linear.QRDecomposition
Returns the matrix R of the decomposition.
getR() - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
getRandomGenerator() - Static method in class org.apache.commons.math4.legacy.genetics.GeneticAlgorithm
Returns the (static) random generator.
getRandomGenerator() - Method in class org.apache.commons.math4.legacy.ml.clustering.FuzzyKMeansClusterer
Returns the random generator this instance will use.
getRank() - Method in class org.apache.commons.math4.legacy.linear.RectangularCholeskyDecomposition
Get the rank of the symmetric positive semidefinite matrix.
getRank() - Method in class org.apache.commons.math4.legacy.linear.SingularValueDecomposition
Return the effective numerical matrix rank.
getRank(double) - Method in class org.apache.commons.math4.legacy.linear.RRQRDecomposition
Return the effective numerical matrix rank.
getRankCorrelation() - Method in class org.apache.commons.math4.legacy.stat.correlation.SpearmansCorrelation
Returns a PearsonsCorrelation instance constructed from the ranked input data.
getRankingThreshold() - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LevenbergMarquardtOptimizer
Gets the value of a tuning parameter.
getRatio() - Method in class org.apache.commons.math4.legacy.genetics.UniformCrossover
Returns the mixing ratio used by this CrossoverPolicy.
getReal() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
getReal() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
getRealEigenvalue(int) - Method in class org.apache.commons.math4.legacy.linear.EigenDecomposition
Returns the real part of the ith eigenvalue of the original matrix.
getRealEigenvalues() - Method in class org.apache.commons.math4.legacy.linear.EigenDecomposition
Gets a copy of the real parts of the eigenvalues of the original matrix.
getRealFormat() - Method in class org.apache.commons.math4.legacy.util.ComplexFormat
Access the realFormat.
getReducedChiSquare(int) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.AbstractEvaluation
Get the reduced chi-square.
getReducedChiSquare(int) - Method in interface org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresProblem.Evaluation
Get the reduced chi-square.
getRegressionSumSquares() - Method in class org.apache.commons.math4.legacy.stat.regression.RegressionResults
Returns the sum of squared deviations of the predicted y values about their mean (which equals the mean of y).
getRegressionSumSquares() - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Returns the sum of squared deviations of the predicted y values about their mean (which equals the mean of y).
getRelationship() - Method in class org.apache.commons.math4.legacy.optim.linear.LinearConstraint
Gets the relationship between left and right hand sides.
getRelativeAccuracy() - Method in class org.apache.commons.math4.legacy.analysis.integration.BaseAbstractUnivariateIntegrator
Get the relative accuracy.
getRelativeAccuracy() - Method in interface org.apache.commons.math4.legacy.analysis.integration.UnivariateIntegrator
Get the relative accuracy.
getRelativeAccuracy() - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
Get the relative accuracy of the solver.
getRelativeAccuracy() - Method in interface org.apache.commons.math4.legacy.analysis.solvers.BaseUnivariateSolver
Get the relative accuracy of the solver.
getRelativeAccuracy() - Method in interface org.apache.commons.math4.legacy.analysis.solvers.BracketedRealFieldUnivariateSolver
Get the relative accuracy of the solver.
getRelativeAccuracy() - Method in class org.apache.commons.math4.legacy.analysis.solvers.FieldBracketingNthOrderBrentSolver
Get the relative accuracy.
getRelativeThreshold() - Method in class org.apache.commons.math4.legacy.optim.AbstractConvergenceChecker
 
getRelativeTolerance() - Method in class org.apache.commons.math4.legacy.optim.BaseOptimizer
 
getRelativeTolerance() - Method in class org.apache.commons.math4.legacy.optim.Tolerance
 
getRepresentation() - Method in class org.apache.commons.math4.legacy.genetics.AbstractListChromosome
Returns the (immutable) inner representation of the chromosome.
getResidual() - Method in class org.apache.commons.math4.legacy.linear.DefaultIterativeLinearSolverEvent
Returns the residual.
getResidual() - Method in class org.apache.commons.math4.legacy.linear.IterativeLinearSolverEvent
Returns the residual.
getResiduals() - Method in interface org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresProblem.Evaluation
Get the weighted residuals.
getResult() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AbstractStorelessUnivariateStatistic
Returns the current value of the Statistic.
getResult() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.GeometricMean
Returns the current value of the Statistic.
getResult() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Kurtosis
Returns the current value of the Statistic.
getResult() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Mean
Returns the current value of the Statistic.
getResult() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.SecondMoment
Returns the current value of the Statistic.
getResult() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Skewness
Returns the value of the statistic based on the values that have been added.
getResult() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.StandardDeviation
Returns the current value of the Statistic.
getResult() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
Returns the current value of the Statistic.
getResult() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.VectorialCovariance
Get the covariance matrix.
getResult() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.VectorialMean
Get the mean vector.
getResult() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Max
Returns the current value of the Statistic.
getResult() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Min
Returns the current value of the Statistic.
getResult() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.PSquarePercentile
Returns the current value of the Statistic.
getResult() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StorelessUnivariateStatistic
Returns the current value of the Statistic.
getResult() - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.Product
Returns the current value of the Statistic.
getResult() - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.Sum
Returns the current value of the Statistic.
getResult() - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.SumOfLogs
Returns the current value of the Statistic.
getResult() - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.SumOfSquares
Returns the current value of the Statistic.
getRightHandSideVector() - Method in class org.apache.commons.math4.legacy.linear.DefaultIterativeLinearSolverEvent
Returns the current right-hand side of the linear system to be solved.
getRightHandSideVector() - Method in class org.apache.commons.math4.legacy.linear.IterativeLinearSolverEvent
Returns the current right-hand side of the linear system to be solved.
getRMS() - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.AbstractEvaluation
Get the normalized cost.
getRMS() - Method in interface org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresProblem.Evaluation
Get the normalized cost.
getRootMatrix() - Method in class org.apache.commons.math4.legacy.linear.RectangularCholeskyDecomposition
Get the root of the covariance matrix.
getRoundingMode() - Method in class org.apache.commons.math4.legacy.linear.BigReal
Gets the rounding mode for division operations.
getRow() - Method in exception org.apache.commons.math4.legacy.linear.NonPositiveDefiniteMatrixException
 
getRow() - Method in exception org.apache.commons.math4.legacy.linear.NonSymmetricMatrixException
 
getRow(int) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Get the entries in row number row as an array.
getRow(int) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Get the entries at the given row index.
getRow(int) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Get the entries at the given row index.
getRow(int) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Get the entries in row number row as an array.
getRow(int) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Get the entries at the given row index.
getRow(int) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Get the entries in row number row as an array.
getRow(int) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Get the entries at the given row index.
getRowDimension() - Method in class org.apache.commons.math4.legacy.field.linalg.FieldDenseMatrix
Gets the number of rows.
getRowDimension() - Method in interface org.apache.commons.math4.legacy.linear.AnyMatrix
Gets the number of rows.
getRowDimension() - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Gets the number of rows.
getRowDimension() - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Returns the dimension of the codomain of this operator.
getRowDimension() - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Gets the number of rows.
getRowDimension() - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Returns the dimension of the codomain of this operator.
getRowDimension() - Method in class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Returns the dimension of the codomain of this operator.
getRowDimension() - Method in class org.apache.commons.math4.legacy.linear.JacobiPreconditioner
Returns the dimension of the codomain of this operator.
getRowDimension() - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealMatrix
Returns the dimension of the codomain of this operator.
getRowDimension() - Method in class org.apache.commons.math4.legacy.linear.RealLinearOperator
Returns the dimension of the codomain of this operator.
getRowDimension() - Method in class org.apache.commons.math4.legacy.linear.SparseFieldMatrix
Gets the number of rows.
getRowMatrix(int) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Get the entries in row number row as a row matrix.
getRowMatrix(int) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Get the entries at the given row index as a row matrix.
getRowMatrix(int) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Get the entries in row number row as a row matrix.
getRowMatrix(int) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Get the entries at the given row index as a row matrix.
getRowMatrix(int) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Get the entries in row number row as a row matrix.
getRowMatrix(int) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Get the entries at the given row index as a row matrix.
getRowPrefix() - Method in class org.apache.commons.math4.legacy.linear.RealMatrixFormat
Get the format prefix.
getRowSeparator() - Method in class org.apache.commons.math4.legacy.linear.RealMatrixFormat
Get the format separator between rows of the matrix.
getRowSuffix() - Method in class org.apache.commons.math4.legacy.linear.RealMatrixFormat
Get the format suffix.
getRowVector(int) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Get the entries in row number row as a vector.
getRowVector(int) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Returns the entries in row number row as a vector.
getRowVector(int) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Get the entries in row number row as a vector.
getRowVector(int) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Returns the entries in row number row as a vector.
getRowVector(int) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Get the entries in row number row as a vector.
getRowVector(int) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Returns the entries in row number row as a vector.
getRSquare() - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Returns the coefficient of determination, usually denoted r-square.
getRSquared() - Method in class org.apache.commons.math4.legacy.stat.regression.RegressionResults
Returns the coefficient of multiple determination, usually denoted r-square.
getRule(int) - Method in class org.apache.commons.math4.legacy.analysis.integration.gauss.BaseRuleFactory
Gets a copy of the quadrature rule with the given number of integration points.
getRuleInternal(int) - Method in class org.apache.commons.math4.legacy.analysis.integration.gauss.BaseRuleFactory
Gets a rule.
getRuntimeClass() - Method in class org.apache.commons.math4.legacy.linear.BigRealField
getS() - Method in class org.apache.commons.math4.legacy.linear.SingularValueDecomposition
Returns the diagonal matrix Σ of the decomposition.
getSafety() - Method in class org.apache.commons.math4.legacy.ode.MultistepFieldIntegrator
Get the safety factor for stepsize control.
getSafety() - Method in class org.apache.commons.math4.legacy.ode.MultistepIntegrator
Get the safety factor for stepsize control.
getSafety() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaFieldIntegrator
Get the safety factor for stepsize control.
getSafety() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaIntegrator
Get the safety factor for stepsize control.
getSampleStats() - Method in class org.apache.commons.math4.legacy.distribution.EmpiricalDistribution
Returns a StatisticalSummary describing this distribution.
getScale() - Method in class org.apache.commons.math4.legacy.linear.BigReal
Sets the scale for division operations.
getSecond() - Method in class org.apache.commons.math4.legacy.genetics.ChromosomePair
Access the second chromosome.
getSecondaryDerivative(int) - Method in class org.apache.commons.math4.legacy.ode.FieldODEStateAndDerivative
Get derivative of the secondary state at time.
getSecondaryMappers() - Method in class org.apache.commons.math4.legacy.ode.ExpandableStatefulODE
Get the equations mappers for the secondary equations sets.
getSecondaryState(int) - Method in class org.apache.commons.math4.legacy.ode.ExpandableStatefulODE
Get secondary part of the current state.
getSecondaryState(int) - Method in class org.apache.commons.math4.legacy.ode.FieldODEState
Get secondary state at time.
getSecondaryStateDimension(int) - Method in class org.apache.commons.math4.legacy.ode.FieldODEState
Get secondary state dimension.
getSecondaryStateDot(int) - Method in class org.apache.commons.math4.legacy.ode.ExpandableStatefulODE
Get secondary part of the current state derivative.
getSecondMoment() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AggregateSummaryStatistics
Returns a statistic related to the Second Central Moment.
getSecondMoment() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns a statistic related to the Second Central Moment.
getSelectionPolicy() - Method in class org.apache.commons.math4.legacy.genetics.GeneticAlgorithm
Returns the selection policy.
getSeparator() - Method in class org.apache.commons.math4.legacy.linear.RealVectorFormat
Get the format separator between components.
getSigma() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.Sigma
 
getSigma(double) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.AbstractEvaluation
Get an estimate of the standard deviation of the parameters.
getSigma(double) - Method in interface org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresProblem.Evaluation
Get an estimate of the standard deviation of the parameters.
getSignificance() - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Returns the significance level of the slope (equiv) correlation.
getSingularValues() - Method in class org.apache.commons.math4.legacy.linear.SingularValueDecomposition
Returns the diagonal elements of the matrix Σ of the decomposition.
getSize() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Get the array size required for holding partial derivatives data.
getSize() - Method in class org.apache.commons.math4.legacy.analysis.interpolation.InterpolatingMicrosphere
Get the size of the sphere.
getSize() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.Simplex
Returns the number of vertices.
getSkewness() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the skewness of the available values.
getSkewnessImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the currently configured skewness implementation.
getSlope() - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Returns the slope of the estimated regression line.
getSlopeConfidenceInterval() - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Returns the half-width of a 95% confidence interval for the slope estimate.
getSlopeConfidenceInterval(double) - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Returns the half-width of a (100-100*alpha)% confidence interval for the slope estimate.
getSlopeStdErr() - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Returns the standard error of the slope estimate, usually denoted s(b1).
getSolution() - Method in class org.apache.commons.math4.legacy.linear.DefaultIterativeLinearSolverEvent
Returns the current estimate of the solution to the linear system to be solved.
getSolution() - Method in class org.apache.commons.math4.legacy.linear.IterativeLinearSolverEvent
Returns the current estimate of the solution to the linear system to be solved.
getSolution() - Method in class org.apache.commons.math4.legacy.optim.linear.SolutionCallback
Retrieve the best solution found so far.
getSolver() - Method in class org.apache.commons.math4.legacy.field.linalg.FieldLUDecomposition
Creates a solver for finding the solution X of the linear system of equations A X = B.
getSolver() - Method in class org.apache.commons.math4.legacy.linear.CholeskyDecomposition
Get a solver for finding the A × X = B solution in least square sense.
getSolver() - Method in class org.apache.commons.math4.legacy.linear.EigenDecomposition
Gets a solver for finding the A × X = B solution in exact linear sense.
getSolver() - Method in class org.apache.commons.math4.legacy.linear.FieldLUDecomposition
Get a solver for finding the A × X = B solution in exact linear sense.
getSolver() - Method in class org.apache.commons.math4.legacy.linear.LUDecomposition
Get a solver for finding the A × X = B solution in exact linear sense.
getSolver() - Method in class org.apache.commons.math4.legacy.linear.QRDecomposition
Get a solver for finding the A × X = B solution in least square sense.
getSolver() - Method in class org.apache.commons.math4.legacy.linear.RRQRDecomposition
Get a solver for finding the A × X = B solution in least square sense.
getSolver() - Method in class org.apache.commons.math4.legacy.linear.SingularValueDecomposition
Get a solver for finding the A × X = B solution in least square sense.
getSolverAbsoluteAccuracy() - Method in class org.apache.commons.math4.legacy.distribution.AbstractRealDistribution
Returns the solver absolute accuracy for inverse cumulative computation.
getSortedValues() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the current set of values in an array of double primitives, sorted in ascending order.
getSparsity() - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
 
getSquareRoot() - Method in class org.apache.commons.math4.legacy.linear.EigenDecomposition
Computes the square-root of the matrix.
getStandardDeviation() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AggregateSummaryStatistics
Returns the standard deviation of the available values.
getStandardDeviation() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the standard deviation of the available values.
getStandardDeviation() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Returns an array whose ith entry is the standard deviation of the.
getStandardDeviation() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StatisticalMultivariateSummary
Returns an array whose ith entry is the.
getStandardDeviation() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StatisticalSummary
Returns the standard deviation of the available values.
getStandardDeviation() - Method in class org.apache.commons.math4.legacy.stat.descriptive.StatisticalSummaryValues
 
getStandardDeviation() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns the standard deviation of the values that have been added.
getStandardDeviation() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedDescriptiveStatistics
Returns the standard deviation of the available values.
getStandardDeviation() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Returns an array whose ith entry is the standard deviation of the.
getStandardDeviation() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns the standard deviation of the values that have been added.
getStandardDeviations() - Method in class org.apache.commons.math4.legacy.distribution.MultivariateNormalDistribution
Gets the square root of each element on the diagonal of the covariance matrix.
getStart() - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresAdapter
Gets the initial guess.
getStart() - Method in interface org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresProblem
Gets the initial guess.
getStarterIntegrator() - Method in class org.apache.commons.math4.legacy.ode.MultistepFieldIntegrator
Get the starter integrator.
getStarterIntegrator() - Method in class org.apache.commons.math4.legacy.ode.MultistepIntegrator
Get the starter integrator.
getStartPoint() - Method in class org.apache.commons.math4.legacy.optim.BaseMultivariateOptimizer
Gets the initial guess.
getStartProbability() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.SimulatedAnnealing
 
getStartValue() - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
 
getStartValue() - Method in class org.apache.commons.math4.legacy.optim.univariate.SearchInterval
Gets the start value.
getStartValue() - Method in class org.apache.commons.math4.legacy.optim.univariate.UnivariateOptimizer
 
getState() - Method in class org.apache.commons.math4.legacy.ode.FieldODEState
Get main state at time.
getStateDimension() - Method in class org.apache.commons.math4.legacy.filter.KalmanFilter
Returns the dimension of the state estimation vector.
getStateDimension() - Method in class org.apache.commons.math4.legacy.ode.FieldODEState
Get main state dimension.
getStateEstimation() - Method in class org.apache.commons.math4.legacy.filter.KalmanFilter
Returns the current state estimation vector.
getStateEstimationVector() - Method in class org.apache.commons.math4.legacy.filter.KalmanFilter
Returns a copy of the current state estimation vector.
getStateTransitionMatrix() - Method in class org.apache.commons.math4.legacy.filter.DefaultProcessModel
Returns the state transition matrix.
getStateTransitionMatrix() - Method in interface org.apache.commons.math4.legacy.filter.ProcessModel
Returns the state transition matrix.
getStatisticsDHistory() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.CMAESOptimizer
 
getStatisticsFitnessHistory() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.CMAESOptimizer
 
getStatisticsMeanHistory() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.CMAESOptimizer
 
getStatisticsSigmaHistory() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.CMAESOptimizer
 
getStdErrorOfEstimate(int) - Method in class org.apache.commons.math4.legacy.stat.regression.RegressionResults
Returns the standard error of the parameter estimate at index, usually denoted s(bindex).
getStdErrorOfEstimates() - Method in class org.apache.commons.math4.legacy.stat.regression.RegressionResults
Returns the standard error of the parameter estimates, usually denoted s(bi).
getStepHandlers() - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Get all the step handlers that have been added to the integrator.
getStepHandlers() - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Get all the step handlers that have been added to the integrator.
getStepHandlers() - Method in interface org.apache.commons.math4.legacy.ode.FirstOrderFieldIntegrator
Get all the step handlers that have been added to the integrator.
getStepHandlers() - Method in interface org.apache.commons.math4.legacy.ode.ODEIntegrator
Get all the step handlers that have been added to the integrator.
getStepSize() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.FiniteDifferencesDifferentiator
Get the step size.
getStepSize() - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Get the current step size.
getStepStart() - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Getcurrent step start.
getSubMatrix(int[], int[]) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Get a submatrix.
getSubMatrix(int[], int[]) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Gets a submatrix.
getSubMatrix(int[], int[]) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Get a submatrix.
getSubMatrix(int[], int[]) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Gets a submatrix.
getSubMatrix(int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Get a submatrix.
getSubMatrix(int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Gets a submatrix.
getSubMatrix(int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Gets a submatrix.
getSubMatrix(int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Get a submatrix.
getSubMatrix(int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Gets a submatrix.
getSubMatrix(int, int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Get a submatrix.
getSubMatrix(int, int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Gets a submatrix.
getSubVector(int, int) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Get a subvector from consecutive elements.
getSubVector(int, int) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Get a subvector from consecutive elements.
getSubVector(int, int) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Get a subvector from consecutive elements.
getSubVector(int, int) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Get a subvector from consecutive elements.
getSubVector(int, int) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Get a subvector from consecutive elements.
getSubVector(int, int) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Get a subvector from consecutive elements.
getSuffix() - Method in class org.apache.commons.math4.legacy.linear.RealMatrixFormat
Get the format suffix.
getSuffix() - Method in class org.apache.commons.math4.legacy.linear.RealVectorFormat
Get the format suffix.
getSum() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AggregateSummaryStatistics
Returns the sum of the values that have been added to Univariate.
getSum() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the sum of the values that have been added to Univariate.
getSum() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Returns an array whose ith entry is the sum of the.
getSum() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StatisticalMultivariateSummary
Returns an array whose ith entry is the.
getSum() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StatisticalSummary
Returns the sum of the values that have been added to Univariate.
getSum() - Method in class org.apache.commons.math4.legacy.stat.descriptive.StatisticalSummaryValues
 
getSum() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns the sum of the values that have been added.
getSum() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Returns an array whose ith entry is the sum of the.
getSum() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns the sum of the values that have been added.
getSumFreq() - Method in class org.apache.commons.math4.legacy.stat.Frequency
Returns the sum of all frequencies.
getSumImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the currently configured sum implementation.
getSumImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Returns the currently configured Sum implementation.
getSumImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns the currently configured Sum implementation.
getSumImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Returns the currently configured Sum implementation.
getSumImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns the currently configured Sum implementation.
getSumLog() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Returns an array whose ith entry is the sum of logs of the.
getSumLog() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StatisticalMultivariateSummary
Returns an array whose ith entry is the.
getSumLog() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Returns an array whose ith entry is the sum of logs of the.
getSumLogImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.GeometricMean
Returns the currently configured sum of logs implementation.
getSumLogImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Returns the currently configured sum of logs implementation.
getSumLogImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns the currently configured sum of logs implementation.
getSumLogImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Returns the currently configured sum of logs implementation.
getSumLogImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns the currently configured sum of logs implementation.
getSummary() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AggregateSummaryStatistics
Return a StatisticalSummaryValues instance reporting current aggregate statistics.
getSummary() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Return a StatisticalSummaryValues instance reporting current statistics.
getSummary() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Return a StatisticalSummaryValues instance reporting current statistics.
getSumOfCrossProducts() - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Returns the sum of crossproducts, xi*yi.
getSumOfLogs() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AggregateSummaryStatistics
Returns the sum of the logs of all the aggregated data.
getSumOfLogs() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns the sum of the logs of the values that have been added.
getSumsq() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AggregateSummaryStatistics
Returns the sum of the squares of all the aggregated data.
getSumsq() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the sum of the squares of the available values.
getSumsq() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns the sum of the squares of the values that have been added.
getSumsq() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns the sum of the squares of the values that have been added.
getSumSq() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Returns an array whose ith entry is the sum of squares of the.
getSumSq() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StatisticalMultivariateSummary
Returns an array whose ith entry is the.
getSumSq() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Returns an array whose ith entry is the sum of squares of the.
getSumsqImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the currently configured sum of squares implementation.
getSumsqImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Returns the currently configured sum of squares implementation.
getSumsqImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns the currently configured sum of squares implementation.
getSumsqImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Returns the currently configured sum of squares implementation.
getSumsqImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns the currently configured sum of squares implementation.
getSumSquaredErrors() - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Returns the sum of squared errors (SSE) associated with the regression model.
getSupportLowerBound() - Method in class org.apache.commons.math4.legacy.distribution.EmpiricalDistribution
getSupportLowerBound() - Method in class org.apache.commons.math4.legacy.distribution.EnumeratedIntegerDistribution
Returns the lowest value with non-zero probability.
getSupportLowerBound() - Method in class org.apache.commons.math4.legacy.distribution.EnumeratedRealDistribution
Returns the lowest value with non-zero probability.
getSupportUpperBound() - Method in class org.apache.commons.math4.legacy.distribution.EmpiricalDistribution
getSupportUpperBound() - Method in class org.apache.commons.math4.legacy.distribution.EnumeratedIntegerDistribution
Returns the highest value with non-zero probability.
getSupportUpperBound() - Method in class org.apache.commons.math4.legacy.distribution.EnumeratedRealDistribution
Returns the highest value with non-zero probability.
getThreshold() - Method in exception org.apache.commons.math4.legacy.linear.NonPositiveDefiniteMatrixException
 
getThreshold() - Method in exception org.apache.commons.math4.legacy.linear.NonSymmetricMatrixException
 
getTiesStrategy() - Method in class org.apache.commons.math4.legacy.stat.ranking.NaturalRanking
Return the TiesStrategy.
getTime() - Method in class org.apache.commons.math4.legacy.ode.ExpandableStatefulODE
Get current time.
getTime() - Method in class org.apache.commons.math4.legacy.ode.FieldODEState
Get time.
getTotalDimension() - Method in class org.apache.commons.math4.legacy.ode.ExpandableStatefulODE
Return the dimension of the complete set of equations.
getTotalDimension() - Method in class org.apache.commons.math4.legacy.ode.FieldEquationsMapper
Return the dimension of the complete set of equations.
getTotalSumSquares() - Method in class org.apache.commons.math4.legacy.stat.regression.RegressionResults
Returns the sum of squared deviations of the y values about their mean.
getTotalSumSquares() - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Returns the sum of squared deviations of the y values about their mean.
getTrace() - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Returns the trace of the matrix (the sum of the elements on the main diagonal).
getTrace() - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Returns the trace of the matrix (the sum of the elements on the main diagonal).
getTrace() - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Returns the trace of the matrix (the sum of the elements on the main diagonal).
getTrace() - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Returns the trace of the matrix (the sum of the elements on the main diagonal).
getTriggeredIncreasing() - Method in enum org.apache.commons.math4.legacy.ode.events.FilterType
Get the increasing status of triggered events.
getU() - Method in class org.apache.commons.math4.legacy.field.linalg.FieldLUDecomposition
Builds the "U" matrix of the decomposition.
getU() - Method in class org.apache.commons.math4.legacy.linear.FieldLUDecomposition
Returns the matrix U of the decomposition.
getU() - Method in class org.apache.commons.math4.legacy.linear.LUDecomposition
Returns the matrix U of the decomposition.
getU() - Method in class org.apache.commons.math4.legacy.linear.SingularValueDecomposition
Returns the matrix U of the decomposition.
getUniqueCount() - Method in class org.apache.commons.math4.legacy.stat.Frequency
Returns the number of values in the frequency table.
getUpper() - Method in class org.apache.commons.math4.legacy.optim.SimpleBounds
Gets the upper bounds.
getUpperBound() - Method in class org.apache.commons.math4.legacy.optim.BaseMultivariateOptimizer
 
getUpperBound() - Method in class org.apache.commons.math4.legacy.stat.interval.ConfidenceInterval
 
getUpperBounds() - Method in class org.apache.commons.math4.legacy.distribution.EmpiricalDistribution
Returns the upper bounds of the bins.
getUT() - Method in class org.apache.commons.math4.legacy.linear.SingularValueDecomposition
Returns the transpose of the matrix U of the decomposition.
getV() - Method in class org.apache.commons.math4.legacy.linear.EigenDecomposition
Gets the matrix V of the decomposition.
getV() - Method in class org.apache.commons.math4.legacy.linear.SingularValueDecomposition
Returns the matrix V of the decomposition.
getVals() - Method in class org.apache.commons.math4.legacy.special.BesselJ.BesselJResult
 
getValue() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Get the value part of the derivative structure.
getValue() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Get the value of the function.
getValue() - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector.OpenMapEntry
Get the value of the entry.
getValue() - Method in class org.apache.commons.math4.legacy.linear.RealVector.Entry
Get the value of the entry.
getValue() - Method in class org.apache.commons.math4.legacy.optim.linear.LinearConstraint
Gets the value of the constraint (right hand side).
getValue() - Method in class org.apache.commons.math4.legacy.optim.PointVectorValuePair
Gets the value of the objective function.
getValue() - Method in class org.apache.commons.math4.legacy.optim.univariate.UnivariatePointValuePair
Get the value of the objective function.
getValueRef() - Method in class org.apache.commons.math4.legacy.optim.PointVectorValuePair
Gets a reference to the value of the objective function.
getValues() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the current set of values in an array of double primitives.
getValues() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedDescriptiveStatistics
Returns the current set of values in an array of double primitives.
getVariance() - Method in class org.apache.commons.math4.legacy.distribution.EmpiricalDistribution
getVariance() - Method in class org.apache.commons.math4.legacy.distribution.EnumeratedIntegerDistribution
getVariance() - Method in class org.apache.commons.math4.legacy.distribution.EnumeratedRealDistribution
getVariance() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AggregateSummaryStatistics
Returns the variance of the available values.
getVariance() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the (sample) variance of the available values.
getVariance() - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StatisticalSummary
Returns the variance of the available values.
getVariance() - Method in class org.apache.commons.math4.legacy.stat.descriptive.StatisticalSummaryValues
 
getVariance() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns the (sample) variance of the available values.
getVariance() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns the (sample) variance of the available values.
getVarianceDirection() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance
Returns the varianceDirection property.
getVarianceImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the currently configured variance implementation.
getVarianceImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns the currently configured variance implementation.
getVarianceImpl() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns the currently configured variance implementation.
getVT() - Method in class org.apache.commons.math4.legacy.linear.EigenDecomposition
Gets the transpose of the matrix V of the decomposition.
getVT() - Method in class org.apache.commons.math4.legacy.linear.SingularValueDecomposition
Returns the transpose of the matrix V of the decomposition.
getWeight() - Method in class org.apache.commons.math4.legacy.fitting.WeightedObservedPoint
Gets the weight of the measurement in the fitting process.
getWeight(int) - Method in class org.apache.commons.math4.legacy.analysis.integration.gauss.GaussIntegrator
Gets the weight of the integration point at the given index.
getWilsonScoreInterval(int, int, double) - Static method in class org.apache.commons.math4.legacy.stat.interval.IntervalUtils
Create a Wilson score binomial confidence interval for the true probability of success of an unknown binomial distribution with the given observed number of trials, successes and confidence level.
getWindowSize() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Returns the maximum number of values that can be stored in the dataset, or INFINITE_WINDOW (-1) if there is no limit.
getWindowSize() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedDescriptiveStatistics
Returns the maximum number of values that can be stored in the dataset, or INFINITE_WINDOW (-1) if there is no limit.
getWorkArray(double[], double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Get the work arrays of weights to operate.
getWrongColumnDimension() - Method in exception org.apache.commons.math4.legacy.linear.MatrixDimensionMismatchException
 
getWrongRowDimension() - Method in exception org.apache.commons.math4.legacy.linear.MatrixDimensionMismatchException
 
getX() - Method in class org.apache.commons.math4.legacy.fitting.WeightedObservedPoint
Gets the abscissa of the point.
getX() - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
 
getXSumSquares() - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Returns the sum of squared deviations of the x values about their mean.
getY() - Method in class org.apache.commons.math4.legacy.fitting.WeightedObservedPoint
Gets the observed value of the function at x.
getY() - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
 
getZero() - Method in class org.apache.commons.math4.legacy.linear.BigRealField
GillFieldIntegrator<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements the Gill fourth order Runge-Kutta integrator for Ordinary Differential Equations .
GillFieldIntegrator(Field<T>, T) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.GillFieldIntegrator
Simple constructor.
GillIntegrator - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements the Gill fourth order Runge-Kutta integrator for Ordinary Differential Equations .
GillIntegrator(double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.GillIntegrator
Simple constructor.
GLSMultipleLinearRegression - Class in org.apache.commons.math4.legacy.stat.regression
The GLS implementation of multiple linear regression.
GLSMultipleLinearRegression() - Constructor for class org.apache.commons.math4.legacy.stat.regression.GLSMultipleLinearRegression
 
GoalType - Enum in org.apache.commons.math4.legacy.optim.nonlinear.scalar
Goal type for an optimization problem (minimization or maximization of a scalar function.
gradient(double, double...) - Method in class org.apache.commons.math4.legacy.analysis.function.Gaussian.Parametric
Computes the value of the gradient at x.
gradient(double, double...) - Method in class org.apache.commons.math4.legacy.analysis.function.HarmonicOscillator.Parametric
Computes the value of the gradient at x.
gradient(double, double...) - Method in class org.apache.commons.math4.legacy.analysis.function.Logistic.Parametric
Computes the value of the gradient at x.
gradient(double, double...) - Method in class org.apache.commons.math4.legacy.analysis.function.Logit.Parametric
Computes the value of the gradient at x.
gradient(double, double...) - Method in class org.apache.commons.math4.legacy.analysis.function.Sigmoid.Parametric
Computes the value of the gradient at x.
gradient(double, double...) - Method in interface org.apache.commons.math4.legacy.analysis.ParametricUnivariateFunction
Compute the gradient of the function with respect to its parameters.
gradient(double, double...) - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction.Parametric
Compute the gradient of the function with respect to its parameters.
GradientFunction - Class in org.apache.commons.math4.legacy.analysis.differentiation
Class representing the gradient of a multivariate function.
GradientFunction(MultivariateDifferentiableFunction) - Constructor for class org.apache.commons.math4.legacy.analysis.differentiation.GradientFunction
Simple constructor.
GradientMultivariateOptimizer - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar
Base class for implementing optimizers for multivariate scalar differentiable functions.
GradientMultivariateOptimizer(ConvergenceChecker<PointValuePair>) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.GradientMultivariateOptimizer
 
GraggBulirschStoerIntegrator - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements a Gragg-Bulirsch-Stoer integrator for Ordinary Differential Equations.
GraggBulirschStoerIntegrator(double, double, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.GraggBulirschStoerIntegrator
Simple constructor.
GraggBulirschStoerIntegrator(double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.GraggBulirschStoerIntegrator
Simple constructor.
GREATER_THAN - org.apache.commons.math4.legacy.stat.inference.AlternativeHypothesis
Represents a right-sided test.
gTest(double[], long[]) - Method in class org.apache.commons.math4.legacy.stat.inference.GTest
Returns the observed significance level, or p-value, associated with a G-Test for goodness of fit comparing the observed frequency counts to those in the expected array.
gTest(double[], long[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
gTest(double[], long[], double) - Method in class org.apache.commons.math4.legacy.stat.inference.GTest
Performs a G-Test (Log-Likelihood Ratio Test) for goodness of fit evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance level alpha.
gTest(double[], long[], double) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
GTest - Class in org.apache.commons.math4.legacy.stat.inference
Implements G Test statistics.
GTest() - Constructor for class org.apache.commons.math4.legacy.stat.inference.GTest
 
gTestDataSetsComparison(long[], long[]) - Method in class org.apache.commons.math4.legacy.stat.inference.GTest
Returns the observed significance level, or p-value, associated with a G-Value (Log-Likelihood Ratio) for two sample test comparing bin frequency counts in observed1 and observed2.
gTestDataSetsComparison(long[], long[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
gTestDataSetsComparison(long[], long[], double) - Method in class org.apache.commons.math4.legacy.stat.inference.GTest
Performs a G-Test (Log-Likelihood Ratio Test) comparing two binned data sets.
gTestDataSetsComparison(long[], long[], double) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
gTestIntrinsic(double[], long[]) - Method in class org.apache.commons.math4.legacy.stat.inference.GTest
Returns the intrinsic (Hardy-Weinberg proportions) p-Value, as described in p64-69 of McDonald, J.H.
gTestIntrinsic(double[], long[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
guess(Collection<WeightedObservedPoint>) - Method in class org.apache.commons.math4.legacy.fitting.GaussianCurveFitter.ParameterGuesser
Computes an estimation of the parameters.
guess(Collection<WeightedObservedPoint>) - Method in class org.apache.commons.math4.legacy.fitting.HarmonicCurveFitter.ParameterGuesser
Computes an estimation of the parameters.
guess(Collection<WeightedObservedPoint>) - Method in class org.apache.commons.math4.legacy.fitting.SimpleCurveFitter.ParameterGuesser
Computes an estimation of the parameters.

H

h - Variable in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
current time step.
HaltonSequenceGenerator - Class in org.apache.commons.math4.legacy.random
Implementation of a Halton sequence.
HaltonSequenceGenerator(int) - Constructor for class org.apache.commons.math4.legacy.random.HaltonSequenceGenerator
Construct a new Halton sequence generator for the given space dimension.
HaltonSequenceGenerator(int, int[], int[]) - Constructor for class org.apache.commons.math4.legacy.random.HaltonSequenceGenerator
Construct a new Halton sequence generator with the given base numbers and weights for each dimension.
handleStep(double, double[], double[], boolean) - Method in interface org.apache.commons.math4.legacy.ode.sampling.FixedStepHandler
Handle the last accepted step.
handleStep(FieldODEStateAndDerivative<T>, boolean) - Method in interface org.apache.commons.math4.legacy.ode.sampling.FieldFixedStepHandler
Handle the last accepted step.
handleStep(FieldStepInterpolator<T>, boolean) - Method in class org.apache.commons.math4.legacy.ode.ContinuousOutputFieldModel
Handle the last accepted step.
handleStep(FieldStepInterpolator<T>, boolean) - Method in interface org.apache.commons.math4.legacy.ode.sampling.FieldStepHandler
Handle the last accepted step.
handleStep(FieldStepInterpolator<T>, boolean) - Method in class org.apache.commons.math4.legacy.ode.sampling.FieldStepNormalizer
Handle the last accepted step.
handleStep(StepInterpolator, boolean) - Method in class org.apache.commons.math4.legacy.ode.ContinuousOutputModel
Handle the last accepted step.
handleStep(StepInterpolator, boolean) - Method in class org.apache.commons.math4.legacy.ode.sampling.DummyStepHandler
Handle the last accepted step.
handleStep(StepInterpolator, boolean) - Method in interface org.apache.commons.math4.legacy.ode.sampling.StepHandler
Handle the last accepted step.
handleStep(StepInterpolator, boolean) - Method in class org.apache.commons.math4.legacy.ode.sampling.StepNormalizer
Handle the last accepted step.
HarmonicCurveFitter - Class in org.apache.commons.math4.legacy.fitting
Fits points to a harmonic oscillator function.
HarmonicCurveFitter.ParameterGuesser - Class in org.apache.commons.math4.legacy.fitting
This class guesses harmonic coefficients from a sample.
HarmonicOscillator - Class in org.apache.commons.math4.legacy.analysis.function
HarmonicOscillator(double, double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.function.HarmonicOscillator
Harmonic oscillator function.
HarmonicOscillator.Parametric - Class in org.apache.commons.math4.legacy.analysis.function
Parametric function where the input array contains the parameters of the harmonic oscillator function.
hasComplexEigenvalues() - Method in class org.apache.commons.math4.legacy.linear.EigenDecomposition
Returns whether the calculated eigen values are complex or real.
hashCode() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Get a hashCode for the derivative structure.
hashCode() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Get a hashCode for the derivative structure.
hashCode() - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction
hashCode() - Method in class org.apache.commons.math4.legacy.field.linalg.FieldDenseMatrix
hashCode() - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Computes a hash code for the matrix.
hashCode() - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Computes a hash code for the matrix.
hashCode() - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Get a hashCode for the real vector.
hashCode() - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
.
hashCode() - Method in class org.apache.commons.math4.legacy.linear.BigReal
hashCode() - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
.
hashCode() - Method in class org.apache.commons.math4.legacy.linear.RealVector
.
hashCode() - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
hashCode() - Method in class org.apache.commons.math4.legacy.ml.clustering.DoublePoint
hashCode() - Method in class org.apache.commons.math4.legacy.optim.linear.LinearConstraint
hashCode() - Method in class org.apache.commons.math4.legacy.optim.linear.LinearObjectiveFunction
hashCode() - Method in class org.apache.commons.math4.legacy.optim.PointValuePair
 
hashCode() - Method in class org.apache.commons.math4.legacy.stat.descriptive.AbstractStorelessUnivariateStatistic
Returns hash code based on getResult() and getN().
hashCode() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.VectorialCovariance
hashCode() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.VectorialMean
hashCode() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Returns hash code based on values of statistics.
hashCode() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.PSquarePercentile
Returns hash code based on getResult() and getN().
hashCode() - Method in class org.apache.commons.math4.legacy.stat.descriptive.StatisticalSummaryValues
Returns hash code based on values of statistics.
hashCode() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Returns hash code based on values of statistics.
hashCode() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Returns hash code based on values of statistics.
hashCode() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Returns hash code based on values of statistics.
hashCode() - Method in class org.apache.commons.math4.legacy.stat.Frequency
hasIntercept() - Method in class org.apache.commons.math4.legacy.stat.regression.MillerUpdatingRegression
A getter method which determines whether a constant is included.
hasIntercept() - Method in class org.apache.commons.math4.legacy.stat.regression.RegressionResults
Returns true if the regression model has been computed including an intercept.
hasIntercept() - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Returns true if the model includes an intercept term.
hasIntercept() - Method in interface org.apache.commons.math4.legacy.stat.regression.UpdatingMultipleLinearRegression
Returns true if a constant has been included false otherwise.
hasNext() - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector.OpenMapSparseIterator
hasNext() - Method in class org.apache.commons.math4.legacy.linear.RealVector.SparseEntryIterator
HedarFukushimaTransform - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv
DSSA algorithm.
HedarFukushimaTransform() - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.HedarFukushimaTransform
Disable shrinking of the simplex (as mandated by DSSA).
HedarFukushimaTransform(double) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.HedarFukushimaTransform
 
HedarFukushimaTransform(double, UniformRandomProvider) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.HedarFukushimaTransform
 
hermite(int) - Method in class org.apache.commons.math4.legacy.analysis.integration.gauss.GaussIntegratorFactory
Creates a Gauss-Hermite integrator of the given order.
HermiteInterpolator - Class in org.apache.commons.math4.legacy.analysis.interpolation
Polynomial interpolator using both sample values and sample derivatives.
HermiteInterpolator() - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.HermiteInterpolator
Create an empty interpolator.
HermiteRuleFactory - Class in org.apache.commons.math4.legacy.analysis.integration.gauss
Factory that creates a Gauss-type quadrature rule using Hermite polynomials of the first kind.
HermiteRuleFactory() - Constructor for class org.apache.commons.math4.legacy.analysis.integration.gauss.HermiteRuleFactory
 
HighamHall54FieldIntegrator<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements the 5(4) Higham and Hall integrator for Ordinary Differential Equations.
HighamHall54FieldIntegrator(Field<T>, double, double, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.HighamHall54FieldIntegrator
Simple constructor.
HighamHall54FieldIntegrator(Field<T>, double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.HighamHall54FieldIntegrator
Simple constructor.
HighamHall54Integrator - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements the 5(4) Higham and Hall integrator for Ordinary Differential Equations.
HighamHall54Integrator(double, double, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.HighamHall54Integrator
Simple constructor.
HighamHall54Integrator(double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.HighamHall54Integrator
Simple constructor.
homoscedasticT(double[], double[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
homoscedasticT(double[], double[]) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Computes a 2-sample t statistic, under the hypothesis of equal subpopulation variances.
homoscedasticT(double, double, double, double, double, double) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Computes t test statistic for 2-sample t-test under the hypothesis of equal subpopulation variances.
homoscedasticT(StatisticalSummary, StatisticalSummary) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
homoscedasticT(StatisticalSummary, StatisticalSummary) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Computes a 2-sample t statistic, comparing the means of the datasets described by two StatisticalSummary instances, under the assumption of equal subpopulation variances.
homoscedasticTTest(double[], double[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
homoscedasticTTest(double[], double[]) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays, under the assumption that the two samples are drawn from subpopulations with equal variances.
homoscedasticTTest(double[], double[], double) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
homoscedasticTTest(double[], double[], double) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Performs a two-sided t-test evaluating the null hypothesis that sample1 and sample2 are drawn from populations with the same mean, with significance level alpha, assuming that the subpopulation variances are equal.
homoscedasticTTest(double, double, double, double, double, double) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Computes p-value for 2-sided, 2-sample t-test, under the assumption of equal subpopulation variances.
homoscedasticTTest(StatisticalSummary, StatisticalSummary) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
homoscedasticTTest(StatisticalSummary, StatisticalSummary) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances, under the hypothesis of equal subpopulation variances.
hypot(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
hypot(DerivativeStructure, DerivativeStructure) - Static method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Returns the hypotenuse of a triangle with sides x and y - sqrt(x2 +y2) avoiding intermediate overflow or underflow.
hypot(SparseGradient) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
hypot(SparseGradient, SparseGradient) - Static method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Returns the hypotenuse of a triangle with sides x and y - sqrt(x2 +y2) avoiding intermediate overflow or underflow.

I

identity(Field<T>, int) - Static method in class org.apache.commons.math4.legacy.field.linalg.FieldDenseMatrix
Factory method.
Identity - Class in org.apache.commons.math4.legacy.analysis.function
Identity function.
Identity() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Identity
 
identityPermutation(int) - Static method in class org.apache.commons.math4.legacy.genetics.RandomKey
Generates a representation corresponding to an identity permutation of length l which can be passed to the RandomKey constructor.
IdentityPreconditioner() - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.gradient.NonLinearConjugateGradientOptimizer.IdentityPreconditioner
 
IllConditionedOperatorException - Exception in org.apache.commons.math4.legacy.linear
An exception to be thrown when the condition number of a RealLinearOperator is too high.
IllConditionedOperatorException(double) - Constructor for exception org.apache.commons.math4.legacy.linear.IllConditionedOperatorException
Creates a new instance of this class.
ILLINOIS - org.apache.commons.math4.legacy.analysis.solvers.BaseSecantSolver.Method
The Illinois method.
IllinoisSolver - Class in org.apache.commons.math4.legacy.analysis.solvers
Implements the Illinois method for root-finding (approximating a zero of a univariate real function).
IllinoisSolver() - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.IllinoisSolver
Construct a solver with default accuracy (1e-6).
IllinoisSolver(double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.IllinoisSolver
Construct a solver.
IllinoisSolver(double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.IllinoisSolver
Construct a solver.
IllinoisSolver(double, double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.IllinoisSolver
Construct a solver.
incMoment - Variable in class org.apache.commons.math4.legacy.stat.descriptive.moment.Kurtosis
Determines whether or not this statistic can be incremented or cleared.
incMoment - Variable in class org.apache.commons.math4.legacy.stat.descriptive.moment.Mean
Determines whether or not this statistic can be incremented or cleared.
incMoment - Variable in class org.apache.commons.math4.legacy.stat.descriptive.moment.Skewness
Determines whether or not this statistic can be incremented or cleared.
incMoment - Variable in class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
Whether or not Variance.increment(double) should increment the internal second moment.
increment(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.AbstractStorelessUnivariateStatistic
Updates the internal state of the statistic to reflect the addition of the new value.
increment(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.GeometricMean
Updates the internal state of the statistic to reflect the addition of the new value.
increment(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Kurtosis
Updates the internal state of the statistic to reflect the addition of the new value.
increment(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Mean
Updates the internal state of the statistic to reflect the addition of the new value.
increment(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.SecondMoment
Updates the internal state of the statistic to reflect the addition of the new value.
increment(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Skewness
Updates the internal state of the statistic to reflect the addition of the new value.
increment(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.StandardDeviation
Updates the internal state of the statistic to reflect the addition of the new value.
increment(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
Updates the internal state of the statistic to reflect the addition of the new value.
increment(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Max
Updates the internal state of the statistic to reflect the addition of the new value.
increment(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Min
Updates the internal state of the statistic to reflect the addition of the new value.
increment(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.PSquarePercentile
Updates the internal state of the statistic to reflect the addition of the new value.
increment(double) - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StorelessUnivariateStatistic
Updates the internal state of the statistic to reflect the addition of the new value.
increment(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.Product
Updates the internal state of the statistic to reflect the addition of the new value.
increment(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.Sum
Updates the internal state of the statistic to reflect the addition of the new value.
increment(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.SumOfLogs
Updates the internal state of the statistic to reflect the addition of the new value.
increment(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.summary.SumOfSquares
Updates the internal state of the statistic to reflect the addition of the new value.
increment(double[]) - Method in class org.apache.commons.math4.legacy.stat.correlation.StorelessCovariance
Increment the covariance matrix with one row of data.
increment(double[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.VectorialCovariance
Add a new vector to the sample.
increment(double[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.VectorialMean
Add a new vector to the sample.
INCREMENT - org.apache.commons.math4.legacy.ode.sampling.StepNormalizerMode
Steps are fixed increments of the start value.
incrementAll(double[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.AbstractStorelessUnivariateStatistic
This default implementation just calls AbstractStorelessUnivariateStatistic.increment(double) in a loop over the input array.
incrementAll(double[]) - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StorelessUnivariateStatistic
Updates the internal state of the statistic to reflect addition of all values in the values array.
incrementAll(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.AbstractStorelessUnivariateStatistic
This default implementation just calls AbstractStorelessUnivariateStatistic.increment(double) in a loop over the specified portion of the input array.
incrementAll(double[], int, int) - Method in interface org.apache.commons.math4.legacy.stat.descriptive.StorelessUnivariateStatistic
Updates the internal state of the statistic to reflect addition of the values in the designated portion of the values array.
incrementEvaluationCount() - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
Increment the evaluation count by one.
incrementEvaluationCount() - Method in class org.apache.commons.math4.legacy.optim.BaseOptimizer
Increment the evaluation count.
incrementIterationCount() - Method in class org.apache.commons.math4.legacy.linear.IterationManager
Increments the iteration count by one, and throws an exception if the maximum number of iterations is reached.
incrementIterationCount() - Method in class org.apache.commons.math4.legacy.optim.BaseOptimizer
Increment the iteration count.
incrementValue(T, long) - Method in class org.apache.commons.math4.legacy.stat.Frequency
Increments the frequency count for v.
index(double, int) - Method in enum org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile.EstimationType
Finds the index of array that can be used as starting index to estimate percentile.
inducedPermutation(List<S>, List<S>) - Static method in class org.apache.commons.math4.legacy.genetics.RandomKey
Generates a representation of a permutation corresponding to a permutation which yields permutedData when applied to originalData.
InferenceTestUtils - Class in org.apache.commons.math4.legacy.stat.inference
A collection of static methods to create inference test instances or to perform inference tests.
INFINITE_WINDOW - Static variable in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Represents an infinite window size.
init(double, double[], double) - Method in class org.apache.commons.math4.legacy.ode.ContinuousOutputModel
Initialize step handler at the start of an ODE integration.
init(double, double[], double) - Method in class org.apache.commons.math4.legacy.ode.events.EventFilter
Initialize event handler at the start of an ODE integration.
init(double, double[], double) - Method in interface org.apache.commons.math4.legacy.ode.events.EventHandler
Initialize event handler at the start of an ODE integration.
init(double, double[], double) - Method in class org.apache.commons.math4.legacy.ode.sampling.DummyStepHandler
Initialize step handler at the start of an ODE integration.
init(double, double[], double) - Method in interface org.apache.commons.math4.legacy.ode.sampling.FixedStepHandler
Initialize step handler at the start of an ODE integration.
init(double, double[], double) - Method in interface org.apache.commons.math4.legacy.ode.sampling.StepHandler
Initialize step handler at the start of an ODE integration.
init(double, double[], double) - Method in class org.apache.commons.math4.legacy.ode.sampling.StepNormalizer
Initialize step handler at the start of an ODE integration.
init(FieldODEStateAndDerivative<T>, T) - Method in class org.apache.commons.math4.legacy.ode.ContinuousOutputFieldModel
Initialize step handler at the start of an ODE integration.
init(FieldODEStateAndDerivative<T>, T) - Method in interface org.apache.commons.math4.legacy.ode.events.FieldEventHandler
Initialize event handler at the start of an ODE integration.
init(FieldODEStateAndDerivative<T>, T) - Method in interface org.apache.commons.math4.legacy.ode.sampling.FieldFixedStepHandler
Initialize step handler at the start of an ODE integration.
init(FieldODEStateAndDerivative<T>, T) - Method in interface org.apache.commons.math4.legacy.ode.sampling.FieldStepHandler
Initialize step handler at the start of an ODE integration.
init(FieldODEStateAndDerivative<T>, T) - Method in class org.apache.commons.math4.legacy.ode.sampling.FieldStepNormalizer
Initialize step handler at the start of an ODE integration.
init(T, T[], T) - Method in class org.apache.commons.math4.legacy.ode.FieldExpandableODE
Initialize equations at the start of an ODE integration.
init(T, T[], T) - Method in interface org.apache.commons.math4.legacy.ode.FirstOrderFieldDifferentialEquations
Initialize equations at the start of an ODE integration.
init(T, T[], T[], T) - Method in interface org.apache.commons.math4.legacy.ode.FieldSecondaryEquations
Initialize equations at the start of an ODE integration.
InitialGuess - Class in org.apache.commons.math4.legacy.optim
Starting point (first guess) of the optimization procedure.
InitialGuess(double[]) - Constructor for class org.apache.commons.math4.legacy.optim.InitialGuess
 
initializationPerformed(IterationEvent) - Method in interface org.apache.commons.math4.legacy.linear.IterationListener
Invoked after completion of the initial phase of the iterative algorithm (prior to the main iteration loop).
initializeHighOrderDerivatives(double, double[], double[][], double[][]) - Method in class org.apache.commons.math4.legacy.ode.MultistepIntegrator
Initialize the high order scaled derivatives at step start.
initializeHighOrderDerivatives(double, double[], double[][], double[][]) - Method in interface org.apache.commons.math4.legacy.ode.MultistepIntegrator.NordsieckTransformer
Deprecated.
Initialize the high order scaled derivatives at step start.
initializeHighOrderDerivatives(double, double[], double[][], double[][]) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsIntegrator
Initialize the high order scaled derivatives at step start.
initializeHighOrderDerivatives(double, double[], double[][], double[][]) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsNordsieckTransformer
Initialize the high order scaled derivatives at step start.
initializeHighOrderDerivatives(T, T[], T[][], T[][]) - Method in class org.apache.commons.math4.legacy.ode.MultistepFieldIntegrator
Initialize the high order scaled derivatives at step start.
initializeHighOrderDerivatives(T, T[], T[][], T[][]) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsFieldIntegrator
Initialize the high order scaled derivatives at step start.
initializeHighOrderDerivatives(T, T[], T[][], T[][]) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsNordsieckFieldTransformer
Initialize the high order scaled derivatives at step start.
initializeStep(boolean, int, double[], double, double[], double[], double[], double[]) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
Initialize the integration step.
initializeStep(boolean, int, T[], FieldODEStateAndDerivative<T>, FieldEquationsMapper<T>) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeFieldIntegrator
Initialize the integration step.
initIntegration(double, double[], double) - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Prepare the start of an integration.
initIntegration(FieldExpandableODE<T>, T, T[], T) - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Prepare the start of an integration.
innerDistribution - Variable in class org.apache.commons.math4.legacy.distribution.EnumeratedIntegerDistribution
EnumeratedDistribution instance (using the Integer wrapper) used to generate the pmf.
innerDistribution - Variable in class org.apache.commons.math4.legacy.distribution.EnumeratedRealDistribution
EnumeratedDistribution (using the Double wrapper) used to generate the pmf.
insertEquationData(double[], double[]) - Method in class org.apache.commons.math4.legacy.ode.EquationsMapper
Insert equation data into a complete state or derivative array.
insertEquationData(int, T[], T[]) - Method in class org.apache.commons.math4.legacy.ode.FieldEquationsMapper
Insert equation data into a complete state or derivative array.
integrate(int, UnivariateFunction, double, double) - Method in class org.apache.commons.math4.legacy.analysis.integration.BaseAbstractUnivariateIntegrator
Integrate the function in the given interval.
integrate(int, UnivariateFunction, double, double) - Method in interface org.apache.commons.math4.legacy.analysis.integration.UnivariateIntegrator
Integrate the function in the given interval.
integrate(UnivariateFunction) - Method in class org.apache.commons.math4.legacy.analysis.integration.gauss.GaussIntegrator
Returns an estimate of the integral of f(x) * w(x), where w is a weight function that depends on the actual flavor of the Gauss integration scheme.
integrate(UnivariateFunction) - Method in class org.apache.commons.math4.legacy.analysis.integration.gauss.SymmetricGaussIntegrator
Returns an estimate of the integral of f(x) * w(x), where w is a weight function that depends on the actual flavor of the Gauss integration scheme.
integrate(ExpandableStatefulODE, double) - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Integrate a set of differential equations up to the given time.
integrate(ExpandableStatefulODE, double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsBashforthIntegrator
Integrate a set of differential equations up to the given time.
integrate(ExpandableStatefulODE, double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsIntegrator
Integrate a set of differential equations up to the given time.
integrate(ExpandableStatefulODE, double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsMoultonIntegrator
Integrate a set of differential equations up to the given time.
integrate(ExpandableStatefulODE, double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
Integrate a set of differential equations up to the given time.
integrate(ExpandableStatefulODE, double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaIntegrator
Integrate a set of differential equations up to the given time.
integrate(ExpandableStatefulODE, double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.GraggBulirschStoerIntegrator
Integrate a set of differential equations up to the given time.
integrate(ExpandableStatefulODE, double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.RungeKuttaIntegrator
Integrate a set of differential equations up to the given time.
integrate(FieldExpandableODE<T>, FieldODEState<T>, T) - Method in interface org.apache.commons.math4.legacy.ode.FirstOrderFieldIntegrator
Integrate the differential equations up to the given time.
integrate(FieldExpandableODE<T>, FieldODEState<T>, T) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsBashforthFieldIntegrator
Integrate the differential equations up to the given time.
integrate(FieldExpandableODE<T>, FieldODEState<T>, T) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsFieldIntegrator
Integrate the differential equations up to the given time.
integrate(FieldExpandableODE<T>, FieldODEState<T>, T) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsMoultonFieldIntegrator
Integrate the differential equations up to the given time.
integrate(FieldExpandableODE<T>, FieldODEState<T>, T) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaFieldIntegrator
Integrate the differential equations up to the given time.
integrate(FieldExpandableODE<T>, FieldODEState<T>, T) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.RungeKuttaFieldIntegrator
Integrate the differential equations up to the given time.
integrate(FirstOrderDifferentialEquations, double, double[], double, double[]) - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Integrate the differential equations up to the given time.
integrate(FirstOrderDifferentialEquations, double, double[], double, double[]) - Method in interface org.apache.commons.math4.legacy.ode.FirstOrderIntegrator
Integrate the differential equations up to the given time.
integrate(SecondOrderDifferentialEquations, double, double[], double[], double, double[], double[]) - Method in interface org.apache.commons.math4.legacy.ode.SecondOrderIntegrator
Integrate the differential equations up to the given time.
interpolate(double[][], double[]) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.MicrosphereProjectionInterpolator
Computes an interpolating function for the data set.
interpolate(double[][], double[]) - Method in interface org.apache.commons.math4.legacy.analysis.interpolation.MultivariateInterpolator
Computes an interpolating function for the data set.
interpolate(double[], double[]) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.AkimaSplineInterpolator
Computes an interpolating function for the data set.
interpolate(double[], double[]) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.DividedDifferenceInterpolator
Compute an interpolating function for the dataset.
interpolate(double[], double[]) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.LinearInterpolator
Computes a linear interpolating function for the data set.
interpolate(double[], double[]) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.LoessInterpolator
Compute an interpolating function by performing a loess fit on the data at the original abscissae and then building a cubic spline with a SplineInterpolator on the resulting fit.
interpolate(double[], double[]) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.NevilleInterpolator
Computes an interpolating function for the data set.
interpolate(double[], double[]) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.SplineInterpolator
Computes an interpolating function for the data set.
interpolate(double[], double[]) - Method in interface org.apache.commons.math4.legacy.analysis.interpolation.UnivariateInterpolator
Computes an interpolating function for the dataset.
interpolate(double[], double[]) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.UnivariatePeriodicInterpolator
Computes an interpolating function for the dataset.
interpolate(double[], double[], double[][]) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.BicubicInterpolator
Compute an interpolating function for the dataset.
interpolate(double[], double[], double[][]) - Method in interface org.apache.commons.math4.legacy.analysis.interpolation.BivariateGridInterpolator
Compute an interpolating function for the dataset.
interpolate(double[], double[], double[][]) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.PiecewiseBicubicSplineInterpolator
Compute an interpolating function for the dataset.
interpolate(double[], double[], double[], double[][][]) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.TricubicInterpolator
Compute an interpolating function for the dataset.
interpolate(double[], double[], double[], double[][][]) - Method in interface org.apache.commons.math4.legacy.analysis.interpolation.TrivariateGridInterpolator
Compute an interpolating function for the dataset.
interpolate(double[], double[], double, double) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.ClampedSplineInterpolator
Computes an interpolating function for the data set.
interpolatedDerivatives - Variable in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
interpolated derivatives.
interpolatedPrimaryDerivatives - Variable in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
interpolated primary derivatives.
interpolatedPrimaryState - Variable in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
interpolated primary state.
interpolatedSecondaryDerivatives - Variable in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
interpolated secondary derivatives.
interpolatedSecondaryState - Variable in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
interpolated secondary state.
interpolatedState - Variable in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
interpolated state.
interpolatedTime - Variable in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
interpolated time.
interpolateXAtY(WeightedObservedPoint[], int, int, double) - Method in class org.apache.commons.math4.legacy.fitting.SimpleCurveFitter.ParameterGuesser
Interpolates using the specified points to determine X at the specified Y.
InterpolatingMicrosphere - Class in org.apache.commons.math4.legacy.analysis.interpolation
Utility class for the MicrosphereProjectionInterpolator algorithm.
InterpolatingMicrosphere(int, int, double, double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.InterpolatingMicrosphere
Create an uninitialized sphere.
InterpolatingMicrosphere(int, int, double, double, double, UnitSphereSampler) - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.InterpolatingMicrosphere
Create a sphere from randomly sampled vectors.
InterpolatingMicrosphere(InterpolatingMicrosphere) - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.InterpolatingMicrosphere
Copy constructor.
InterpolatingMicrosphere2D - Class in org.apache.commons.math4.legacy.analysis.interpolation
Utility class for the MicrosphereProjectionInterpolator algorithm.
InterpolatingMicrosphere2D(int, double, double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.InterpolatingMicrosphere2D
Create a sphere from vectors regularly sampled around a circle.
InterpolatingMicrosphere2D(InterpolatingMicrosphere2D) - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.InterpolatingMicrosphere2D
Copy constructor.
IntervalUtils - Class in org.apache.commons.math4.legacy.stat.interval
Factory methods to generate confidence intervals for a binomial proportion.
InvalidRepresentationException - Exception in org.apache.commons.math4.legacy.genetics
Exception indicating that the representation of a chromosome is not valid.
InvalidRepresentationException(Localizable, Object...) - Constructor for exception org.apache.commons.math4.legacy.genetics.InvalidRepresentationException
Construct an InvalidRepresentationException with a specialized message.
inverse() - Method in class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Computes the inverse of this diagonal matrix.
inverse(double) - Method in class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Computes the inverse of this diagonal matrix.
inverse(RealMatrix) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Computes the inverse of the given matrix.
inverse(RealMatrix, double) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Computes the inverse of the given matrix.
Inverse - Class in org.apache.commons.math4.legacy.analysis.function
Inverse function.
Inverse() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Inverse
 
inverseCumulativeProbability(double) - Method in class org.apache.commons.math4.legacy.distribution.AbstractIntegerDistribution
The default implementation returns DiscreteDistribution.getSupportLowerBound() for p = 0, DiscreteDistribution.getSupportUpperBound() for p = 1, and AbstractIntegerDistribution.solveInverseCumulativeProbability(double, int, int) for 0 < p < 1.
inverseCumulativeProbability(double) - Method in class org.apache.commons.math4.legacy.distribution.AbstractRealDistribution
The default implementation returns ContinuousDistribution.getSupportLowerBound() for p = 0, ContinuousDistribution.getSupportUpperBound() for p = 1.
inverseCumulativeProbability(double) - Method in class org.apache.commons.math4.legacy.distribution.EmpiricalDistribution
The default implementation returns ContinuousDistribution.getSupportLowerBound() for p = 0, ContinuousDistribution.getSupportUpperBound() for p = 1.
inverseCumulativeProbability(double) - Method in class org.apache.commons.math4.legacy.distribution.EnumeratedRealDistribution
isBetterScore(double, double) - Method in interface org.apache.commons.math4.legacy.ml.clustering.ClusterEvaluator
Provides a means to interpret the score value.
isBetterScore(double, double) - Method in class org.apache.commons.math4.legacy.ml.clustering.evaluation.CalinskiHarabasz
Provides a means to interpret the score value.
isBetterScore(double, double) - Method in class org.apache.commons.math4.legacy.ml.clustering.evaluation.SumOfClusterVariances
Provides a means to interpret the score value.
isBiasCorrected() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance
Returns true iff biasCorrected property is set to true.
isBiasCorrected() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.StandardDeviation
 
isBiasCorrected() - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
 
isBracketing(double, double) - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
Check whether the function takes opposite signs at the endpoints.
isBracketing(UnivariateFunction, double, double) - Static method in class org.apache.commons.math4.legacy.analysis.solvers.UnivariateSolverUtils
Check whether the interval bounds bracket a root.
isDefaultValue(double) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Determine if this value is within epsilon of zero.
isForward() - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractFieldStepInterpolator
Check if the natural integration direction is forward.
isForward() - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Check if the natural integration direction is forward.
isForward() - Method in interface org.apache.commons.math4.legacy.ode.sampling.FieldStepInterpolator
Check if the natural integration direction is forward.
isForward() - Method in interface org.apache.commons.math4.legacy.ode.sampling.StepInterpolator
Check if the natural integration direction is forward.
isInfinite() - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Check whether any coordinate of this vector is infinite and none are NaN.
isInfinite() - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Check whether any coordinate of this vector is infinite and none are NaN.
isInfinite() - Method in class org.apache.commons.math4.legacy.linear.RealVector
Check whether any coordinate of this vector is infinite and none are NaN.
isLastStep - Variable in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Indicator for last step.
isLastStep() - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Check if this step is the last one.
isNaN() - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Check if any coordinate of this vector is NaN.
isNaN() - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Check whether any coordinate of this vector is NaN.
isNaN() - Method in class org.apache.commons.math4.legacy.linear.RealVector
Check whether any coordinate of this vector is NaN.
isNoIntercept() - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
 
isNonSingular() - Method in interface org.apache.commons.math4.legacy.linear.DecompositionSolver
Check if the decomposed matrix is non-singular.
isNonSingular() - Method in interface org.apache.commons.math4.legacy.linear.FieldDecompositionSolver
Check if the decomposed matrix is non-singular.
isRandomStart() - Method in class org.apache.commons.math4.legacy.genetics.CycleCrossover
Returns whether the starting index is chosen randomly or set to zero.
isRestrictedToNonNegative() - Method in class org.apache.commons.math4.legacy.optim.linear.LinearOptimizer
 
isRestrictedToNonNegative() - Method in class org.apache.commons.math4.legacy.optim.linear.NonNegativeConstraint
Indicates whether all the variables must be restricted to non-negative values.
isSame(Chromosome) - Method in class org.apache.commons.math4.legacy.genetics.BinaryChromosome
Returns true iff another has the same representation and therefore the same fitness.
isSame(Chromosome) - Method in class org.apache.commons.math4.legacy.genetics.Chromosome
Returns true iff another has the same representation and therefore the same fitness.
isSame(Chromosome) - Method in class org.apache.commons.math4.legacy.genetics.RandomKey
Returns true iff another is a RandomKey and encodes the same permutation.
isSatisfied(Population) - Method in class org.apache.commons.math4.legacy.genetics.FixedElapsedTime
Determine whether or not the maximum allowed time has passed.
isSatisfied(Population) - Method in class org.apache.commons.math4.legacy.genetics.FixedGenerationCount
Determine whether or not the given number of generations have passed.
isSatisfied(Population) - Method in interface org.apache.commons.math4.legacy.genetics.StoppingCondition
Determine whether or not the given population satisfies the stopping condition.
isSequence(double, double, double) - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
Check whether the arguments form a (strictly) increasing sequence.
isSequence(double, double, double) - Static method in class org.apache.commons.math4.legacy.analysis.solvers.UnivariateSolverUtils
Check whether the arguments form a (strictly) increasing sequence.
isSingular() - Method in class org.apache.commons.math4.legacy.field.linalg.FieldLUDecomposition
 
isSingular(double) - Method in class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Returns whether this diagonal matrix is singular, i.e.
isSolutionOptimal() - Method in class org.apache.commons.math4.legacy.optim.linear.SolutionCallback
Returns if the found solution is optimal.
isSquare() - Method in interface org.apache.commons.math4.legacy.linear.AnyMatrix
Indicates whether this is a square matrix.
isSupported(String) - Method in class org.apache.commons.math4.legacy.ode.AbstractParameterizable
Check if a parameter is supported.
isSupported(String) - Method in interface org.apache.commons.math4.legacy.ode.Parameterizable
Check if a parameter is supported.
isSymmetric(RealMatrix, double) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Checks whether a matrix is symmetric.
isTransposable() - Method in class org.apache.commons.math4.legacy.linear.RealLinearOperator
Returns true if this operator supports RealLinearOperator.operateTranspose(RealVector).
isValidPoint(double) - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialSplineFunction
Indicates whether a point is within the interpolation range.
isValidPoint(double, double) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.BicubicInterpolatingFunction
Indicates whether a point is within the interpolation range.
isValidPoint(double, double) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.PiecewiseBicubicSplineInterpolatingFunction
Indicates whether a point is within the interpolation range.
isValidPoint(double, double, double) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.TricubicInterpolatingFunction
Indicates whether a point is within the interpolation range.
IterationEvent - Class in org.apache.commons.math4.legacy.linear
The root class from which all events occurring while running an IterationManager should be derived.
IterationEvent(Object, int) - Constructor for class org.apache.commons.math4.legacy.linear.IterationEvent
Creates a new instance of this class.
IterationListener - Interface in org.apache.commons.math4.legacy.linear
The listener interface for receiving events occurring in an iterative algorithm.
IterationManager - Class in org.apache.commons.math4.legacy.linear
This abstract class provides a general framework for managing iterative algorithms.
IterationManager(int) - Constructor for class org.apache.commons.math4.legacy.linear.IterationManager
Creates a new instance of this class.
IterationManager(int, IntegerSequence.Incrementor.MaxCountExceededCallback) - Constructor for class org.apache.commons.math4.legacy.linear.IterationManager
Creates a new instance of this class.
iterationPerformed(IterationEvent) - Method in interface org.apache.commons.math4.legacy.linear.IterationListener
Invoked each time an iteration is completed (in the main iteration loop).
iterations - Variable in class org.apache.commons.math4.legacy.analysis.integration.BaseAbstractUnivariateIntegrator
The iteration count.
iterationStarted(IterationEvent) - Method in interface org.apache.commons.math4.legacy.linear.IterationListener
Invoked each time a new iteration is completed (in the main iteration loop).
IterativeLegendreGaussIntegrator - Class in org.apache.commons.math4.legacy.analysis.integration
This algorithm divides the integration interval into equally-sized sub-interval and on each of them performs a Legendre-Gauss quadrature.
IterativeLegendreGaussIntegrator(int, double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.integration.IterativeLegendreGaussIntegrator
Builds an integrator with given accuracies.
IterativeLegendreGaussIntegrator(int, double, double, int, int) - Constructor for class org.apache.commons.math4.legacy.analysis.integration.IterativeLegendreGaussIntegrator
Builds an integrator with given accuracies and iterations counts.
IterativeLegendreGaussIntegrator(int, int, int) - Constructor for class org.apache.commons.math4.legacy.analysis.integration.IterativeLegendreGaussIntegrator
Builds an integrator with given iteration counts.
IterativeLinearSolver - Class in org.apache.commons.math4.legacy.linear
This abstract class defines an iterative solver for the linear system A · x = b.
IterativeLinearSolver(int) - Constructor for class org.apache.commons.math4.legacy.linear.IterativeLinearSolver
Creates a new instance of this class, with default iteration manager.
IterativeLinearSolver(IterationManager) - Constructor for class org.apache.commons.math4.legacy.linear.IterativeLinearSolver
Creates a new instance of this class, with custom iteration manager.
IterativeLinearSolverEvent - Class in org.apache.commons.math4.legacy.linear
This is the base class for all events occurring during the iterations of a IterativeLinearSolver.
IterativeLinearSolverEvent(Object, int) - Constructor for class org.apache.commons.math4.legacy.linear.IterativeLinearSolverEvent
Creates a new instance of this class.
iterator() - Method in class org.apache.commons.math4.legacy.genetics.ListPopulation
Returns an iterator over the unmodifiable list of chromosomes.
iterator() - Method in class org.apache.commons.math4.legacy.linear.RealVector
Generic dense iterator.

J

JacobianFunction - Class in org.apache.commons.math4.legacy.analysis.differentiation
Class representing the Jacobian of a multivariate vector function.
JacobianFunction(MultivariateDifferentiableVectorFunction) - Constructor for class org.apache.commons.math4.legacy.analysis.differentiation.JacobianFunction
Simple constructor.
JacobianMatrices - Class in org.apache.commons.math4.legacy.ode
This class defines a set of secondary equations to compute the Jacobian matrices with respect to the initial state vector and, if any, to some parameters of the primary ODE set.
JacobianMatrices(FirstOrderDifferentialEquations, double[], String...) - Constructor for class org.apache.commons.math4.legacy.ode.JacobianMatrices
Simple constructor for a secondary equations set computing Jacobian matrices.
JacobianMatrices(MainStateJacobianProvider, String...) - Constructor for class org.apache.commons.math4.legacy.ode.JacobianMatrices
Simple constructor for a secondary equations set computing Jacobian matrices.
JacobianMatrices.MismatchedEquations - Exception in org.apache.commons.math4.legacy.ode
Special exception for equations mismatch.
JacobiPreconditioner - Class in org.apache.commons.math4.legacy.linear
This class implements the standard Jacobi (diagonal) preconditioner.
JacobiPreconditioner(double[], boolean) - Constructor for class org.apache.commons.math4.legacy.linear.JacobiPreconditioner
Creates a new instance of this class.

K

KalmanFilter - Class in org.apache.commons.math4.legacy.filter
Implementation of a Kalman filter to estimate the state xk of a discrete-time controlled process that is governed by the linear stochastic difference equation:
KalmanFilter(ProcessModel, MeasurementModel) - Constructor for class org.apache.commons.math4.legacy.filter.KalmanFilter
Creates a new Kalman filter with the given process and measurement models.
KendallsCorrelation - Class in org.apache.commons.math4.legacy.stat.correlation
Implementation of Kendall's Tau-b rank correlation.
KendallsCorrelation() - Constructor for class org.apache.commons.math4.legacy.stat.correlation.KendallsCorrelation
Create a KendallsCorrelation instance without data.
KendallsCorrelation(double[][]) - Constructor for class org.apache.commons.math4.legacy.stat.correlation.KendallsCorrelation
Create a KendallsCorrelation from a rectangular array whose columns represent values of variables to be correlated.
KendallsCorrelation(RealMatrix) - Constructor for class org.apache.commons.math4.legacy.stat.correlation.KendallsCorrelation
Create a KendallsCorrelation from a RealMatrix whose columns represent variables to be correlated.
KMeansPlusPlusClusterer<T extends Clusterable> - Class in org.apache.commons.math4.legacy.ml.clustering
Clustering algorithm based on David Arthur and Sergei Vassilvitski k-means++ algorithm.
KMeansPlusPlusClusterer(int) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.KMeansPlusPlusClusterer
Build a clusterer.
KMeansPlusPlusClusterer(int, int) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.KMeansPlusPlusClusterer
Build a clusterer.
KMeansPlusPlusClusterer(int, int, DistanceMeasure) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.KMeansPlusPlusClusterer
Build a clusterer.
KMeansPlusPlusClusterer(int, int, DistanceMeasure, UniformRandomProvider) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.KMeansPlusPlusClusterer
Build a clusterer.
KMeansPlusPlusClusterer(int, int, DistanceMeasure, UniformRandomProvider, KMeansPlusPlusClusterer.EmptyClusterStrategy) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.KMeansPlusPlusClusterer
Build a clusterer.
KMeansPlusPlusClusterer.EmptyClusterStrategy - Enum in org.apache.commons.math4.legacy.ml.clustering
Strategies to use for replacing an empty cluster.
kolmogorovSmirnovStatistic(double[], double[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
kolmogorovSmirnovStatistic(double[], double[]) - Method in class org.apache.commons.math4.legacy.stat.inference.KolmogorovSmirnovTest
Computes the two-sample Kolmogorov-Smirnov test statistic, \(D_{n,m}=\sup_x |F_n(x)-F_m(x)|\) where \(n\) is the length of x, \(m\) is the length of y, \(F_n\) is the empirical distribution that puts mass \(1/n\) at each of the values in x and \(F_m\) is the empirical distribution of the y values.
kolmogorovSmirnovStatistic(ContinuousDistribution, double[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
kolmogorovSmirnovStatistic(ContinuousDistribution, double[]) - Method in class org.apache.commons.math4.legacy.stat.inference.KolmogorovSmirnovTest
Computes the one-sample Kolmogorov-Smirnov test statistic, \(D_n=\sup_x |F_n(x)-F(x)|\) where \(F\) is the distribution (cdf) function associated with distribution, \(n\) is the length of data and \(F_n\) is the empirical distribution that puts mass \(1/n\) at each of the values in data.
kolmogorovSmirnovTest(double[], double[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
kolmogorovSmirnovTest(double[], double[]) - Method in class org.apache.commons.math4.legacy.stat.inference.KolmogorovSmirnovTest
Computes the p-value, or observed significance level, of a two-sample Kolmogorov-Smirnov test evaluating the null hypothesis that x and y are samples drawn from the same probability distribution.
kolmogorovSmirnovTest(double[], double[], boolean) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
kolmogorovSmirnovTest(double[], double[], boolean) - Method in class org.apache.commons.math4.legacy.stat.inference.KolmogorovSmirnovTest
Computes the p-value, or observed significance level, of a two-sample Kolmogorov-Smirnov test evaluating the null hypothesis that x and y are samples drawn from the same probability distribution.
kolmogorovSmirnovTest(ContinuousDistribution, double[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
kolmogorovSmirnovTest(ContinuousDistribution, double[]) - Method in class org.apache.commons.math4.legacy.stat.inference.KolmogorovSmirnovTest
Computes the p-value, or observed significance level, of a one-sample Kolmogorov-Smirnov test evaluating the null hypothesis that data conforms to distribution.
kolmogorovSmirnovTest(ContinuousDistribution, double[], boolean) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
kolmogorovSmirnovTest(ContinuousDistribution, double[], boolean) - Method in class org.apache.commons.math4.legacy.stat.inference.KolmogorovSmirnovTest
Computes the p-value, or observed significance level, of a one-sample Kolmogorov-Smirnov test evaluating the null hypothesis that data conforms to distribution.
kolmogorovSmirnovTest(ContinuousDistribution, double[], double) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
kolmogorovSmirnovTest(ContinuousDistribution, double[], double) - Method in class org.apache.commons.math4.legacy.stat.inference.KolmogorovSmirnovTest
Performs a Kolmogorov-Smirnov test evaluating the null hypothesis that data conforms to distribution.
KolmogorovSmirnovTest - Class in org.apache.commons.math4.legacy.stat.inference
Implementation of the Kolmogorov-Smirnov (K-S) test for equality of continuous distributions.
KolmogorovSmirnovTest() - Constructor for class org.apache.commons.math4.legacy.stat.inference.KolmogorovSmirnovTest
 
ksSum(double, double, int) - Method in class org.apache.commons.math4.legacy.stat.inference.KolmogorovSmirnovTest
Computes \( 1 + 2 \sum_{i=1}^\infty (-1)^i e^{-2 i^2 t^2} \) stopping when successive partial sums are within tolerance of one another, or when maxIterations partial sums have been computed.
KthSelector - Class in org.apache.commons.math4.legacy.stat.descriptive.rank
A Simple Kth selector implementation to pick up the Kth ordered element from a work array containing the input numbers.
KthSelector() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.rank.KthSelector
Constructor with default median of 3 pivoting strategy.
KthSelector(PivotingStrategy) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.rank.KthSelector
Constructor with specified pivoting strategy.
Kurtosis - Class in org.apache.commons.math4.legacy.stat.descriptive.moment
Computes the Kurtosis of the available values.
Kurtosis() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.Kurtosis
Construct a Kurtosis.
Kurtosis(FourthMoment) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.Kurtosis
Construct a Kurtosis from an external moment.
Kurtosis(Kurtosis) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.Kurtosis
Copy constructor, creates a new Kurtosis identical to the original.

L

laguerre(int) - Method in class org.apache.commons.math4.legacy.analysis.integration.gauss.GaussIntegratorFactory
Creates a Gauss-Laguerre integrator of the given order.
LaguerreRuleFactory - Class in org.apache.commons.math4.legacy.analysis.integration.gauss
Factory that creates Gauss-type quadrature rule using Laguerre polynomials.
LaguerreRuleFactory() - Constructor for class org.apache.commons.math4.legacy.analysis.integration.gauss.LaguerreRuleFactory
 
LaguerreSolver - Class in org.apache.commons.math4.legacy.analysis.solvers
Implements the Laguerre's Method for root finding of real coefficient polynomials.
LaguerreSolver() - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.LaguerreSolver
Construct a solver with default accuracy (1e-6).
LaguerreSolver(double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.LaguerreSolver
Construct a solver.
LaguerreSolver(double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.LaguerreSolver
Construct a solver.
LaguerreSolver(double, double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.LaguerreSolver
Construct a solver.
LARGEST_POINTS_NUMBER - org.apache.commons.math4.legacy.ml.clustering.KMeansPlusPlusClusterer.EmptyClusterStrategy
Split the cluster with largest number of points.
LARGEST_VARIANCE - org.apache.commons.math4.legacy.ml.clustering.KMeansPlusPlusClusterer.EmptyClusterStrategy
Split the cluster with largest distance variance.
LAST - org.apache.commons.math4.legacy.ode.sampling.StepNormalizerBounds
Include the last point, but not the first point.
lastIncluded() - Method in enum org.apache.commons.math4.legacy.ode.sampling.StepNormalizerBounds
Returns a value indicating whether the last point should be passed to the underlying fixed step size step handler.
lazyEvaluation(boolean) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresBuilder
Configure whether evaluation will be lazy or not.
LeastSquaresAdapter - Class in org.apache.commons.math4.legacy.fitting.leastsquares
An adapter that delegates to another implementation of LeastSquaresProblem.
LeastSquaresAdapter(LeastSquaresProblem) - Constructor for class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresAdapter
Delegate the LeastSquaresProblem interface to the given implementation.
LeastSquaresBuilder - Class in org.apache.commons.math4.legacy.fitting.leastsquares
A mutable builder for LeastSquaresProblems.
LeastSquaresBuilder() - Constructor for class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresBuilder
 
LeastSquaresConverter - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar
This class converts vectorial objective functions to scalar objective functions when the goal is to minimize them.
LeastSquaresConverter(MultivariateVectorFunction, double[]) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.LeastSquaresConverter
Builds a simple converter for uncorrelated residuals with identical weights.
LeastSquaresConverter(MultivariateVectorFunction, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.LeastSquaresConverter
Builds a simple converter for uncorrelated residuals with the specified weights.
LeastSquaresConverter(MultivariateVectorFunction, double[], RealMatrix) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.LeastSquaresConverter
Builds a simple converter for correlated residuals with the specified weights.
LeastSquaresFactory - Class in org.apache.commons.math4.legacy.fitting.leastsquares
A Factory for creating LeastSquaresProblems.
LeastSquaresOptimizer - Interface in org.apache.commons.math4.legacy.fitting.leastsquares
An algorithm that can be applied to a non-linear least squares problem.
LeastSquaresOptimizer.Optimum - Interface in org.apache.commons.math4.legacy.fitting.leastsquares
The optimum found by the optimizer.
LeastSquaresProblem - Interface in org.apache.commons.math4.legacy.fitting.leastsquares
The data necessary to define a non-linear least squares problem.
LeastSquaresProblem.Evaluation - Interface in org.apache.commons.math4.legacy.fitting.leastsquares
An evaluation of a LeastSquaresProblem at a particular point.
LEFT_SIDE - org.apache.commons.math4.legacy.analysis.solvers.AllowedSolution
Only solutions that are less than or equal to the actual root are acceptable as solutions for root-finding.
LEGACY - org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile.EstimationType
This is the default type used in the Percentile.This method.
legendre(int) - Method in class org.apache.commons.math4.legacy.analysis.integration.gauss.GaussIntegratorFactory
Creates a Gauss-Legendre integrator of the given order.
legendre(int, double, double) - Method in class org.apache.commons.math4.legacy.analysis.integration.gauss.GaussIntegratorFactory
Creates a Gauss-Legendre integrator of the given order.
legendreHighPrecision(int) - Method in class org.apache.commons.math4.legacy.analysis.integration.gauss.GaussIntegratorFactory
Creates a Gauss-Legendre integrator of the given order.
legendreHighPrecision(int, double, double) - Method in class org.apache.commons.math4.legacy.analysis.integration.gauss.GaussIntegratorFactory
Creates an integrator of the given order, and whose call to the integrate method will perform an integration on the given interval.
LegendreHighPrecisionRuleFactory - Class in org.apache.commons.math4.legacy.analysis.integration.gauss
Factory that creates Gauss-type quadrature rule using Legendre polynomials.
LegendreHighPrecisionRuleFactory() - Constructor for class org.apache.commons.math4.legacy.analysis.integration.gauss.LegendreHighPrecisionRuleFactory
Default precision is DECIMAL128.
LegendreHighPrecisionRuleFactory(MathContext) - Constructor for class org.apache.commons.math4.legacy.analysis.integration.gauss.LegendreHighPrecisionRuleFactory
 
LegendreRuleFactory - Class in org.apache.commons.math4.legacy.analysis.integration.gauss
Factory that creates Gauss-type quadrature rule using Legendre polynomials.
LegendreRuleFactory() - Constructor for class org.apache.commons.math4.legacy.analysis.integration.gauss.LegendreRuleFactory
 
LEQ - org.apache.commons.math4.legacy.optim.linear.Relationship
Lesser than or equal relationship.
LESS_THAN - org.apache.commons.math4.legacy.stat.inference.AlternativeHypothesis
Represents a left-sided test.
LevenbergMarquardtOptimizer - Class in org.apache.commons.math4.legacy.fitting.leastsquares
This class solves a least-squares problem using the Levenberg-Marquardt algorithm.
LevenbergMarquardtOptimizer() - Constructor for class org.apache.commons.math4.legacy.fitting.leastsquares.LevenbergMarquardtOptimizer
Default constructor.
LevenbergMarquardtOptimizer(double, double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.fitting.leastsquares.LevenbergMarquardtOptimizer
Construct an instance with all parameters specified.
linearCombination(double[], DerivativeStructure[]) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
linearCombination(double[], SparseGradient[]) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
linearCombination(double, double[], int, double, double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute linear combination.
linearCombination(double, double[], int, double, double[], int, double, double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute linear combination.
linearCombination(double, double[], int, double, double[], int, double, double[], int, double, double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute linear combination.
linearCombination(double, DerivativeStructure, double, DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
linearCombination(double, DerivativeStructure, double, DerivativeStructure, double, DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
linearCombination(double, DerivativeStructure, double, DerivativeStructure, double, DerivativeStructure, double, DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
linearCombination(double, SparseGradient, double, SparseGradient) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
linearCombination(double, SparseGradient, double, SparseGradient, double, SparseGradient) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
linearCombination(double, SparseGradient, double, SparseGradient, double, SparseGradient, double, SparseGradient) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
linearCombination(DerivativeStructure[], DerivativeStructure[]) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
linearCombination(DerivativeStructure, DerivativeStructure, DerivativeStructure, DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
linearCombination(DerivativeStructure, DerivativeStructure, DerivativeStructure, DerivativeStructure, DerivativeStructure, DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
linearCombination(DerivativeStructure, DerivativeStructure, DerivativeStructure, DerivativeStructure, DerivativeStructure, DerivativeStructure, DerivativeStructure, DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
linearCombination(SparseGradient[], SparseGradient[]) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
linearCombination(SparseGradient, SparseGradient, SparseGradient, SparseGradient) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
linearCombination(SparseGradient, SparseGradient, SparseGradient, SparseGradient, SparseGradient, SparseGradient) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
linearCombination(SparseGradient, SparseGradient, SparseGradient, SparseGradient, SparseGradient, SparseGradient, SparseGradient, SparseGradient) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
LinearConstraint - Class in org.apache.commons.math4.legacy.optim.linear
A linear constraint for a linear optimization problem.
LinearConstraint(double[], double, Relationship, double[], double) - Constructor for class org.apache.commons.math4.legacy.optim.linear.LinearConstraint
Build a constraint involving two linear equations.
LinearConstraint(double[], Relationship, double) - Constructor for class org.apache.commons.math4.legacy.optim.linear.LinearConstraint
Build a constraint involving a single linear equation.
LinearConstraint(RealVector, double, Relationship, RealVector, double) - Constructor for class org.apache.commons.math4.legacy.optim.linear.LinearConstraint
Build a constraint involving two linear equations.
LinearConstraint(RealVector, Relationship, double) - Constructor for class org.apache.commons.math4.legacy.optim.linear.LinearConstraint
Build a constraint involving a single linear equation.
LinearConstraintSet - Class in org.apache.commons.math4.legacy.optim.linear
Class that represents a set of linear constraints.
LinearConstraintSet(Collection<LinearConstraint>) - Constructor for class org.apache.commons.math4.legacy.optim.linear.LinearConstraintSet
Creates a set containing the given constraints.
LinearConstraintSet(LinearConstraint...) - Constructor for class org.apache.commons.math4.legacy.optim.linear.LinearConstraintSet
Creates a set containing the given constraints.
LinearInterpolator - Class in org.apache.commons.math4.legacy.analysis.interpolation
Implements a linear function for interpolation of real univariate functions.
LinearInterpolator() - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.LinearInterpolator
 
LinearObjectiveFunction - Class in org.apache.commons.math4.legacy.optim.linear
An objective function for a linear optimization problem.
LinearObjectiveFunction(double[], double) - Constructor for class org.apache.commons.math4.legacy.optim.linear.LinearObjectiveFunction
 
LinearObjectiveFunction(RealVector, double) - Constructor for class org.apache.commons.math4.legacy.optim.linear.LinearObjectiveFunction
 
LinearOptimizer - Class in org.apache.commons.math4.legacy.optim.linear
Base class for implementing linear optimizers.
LinearOptimizer() - Constructor for class org.apache.commons.math4.legacy.optim.linear.LinearOptimizer
Simple constructor with default settings.
lineSearch(double[], double[]) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer
Finds the number alpha that optimizes f(startPoint + alpha * direction).
LineSearch - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar
Deprecated.
as of 4.0-beta2. Class is now encapsulated in MultivariateOptimizer. Subclasses should call MultivariateOptimizer.createLineSearch() and MultivariateOptimizer.lineSearch(double[],double[]) instead.
LineSearch(MultivariateOptimizer, double, double, double) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.LineSearch
Deprecated.
The BrentOptimizer default stopping criterion uses the tolerances to check the domain (point) values, not the function values.
LineSearchTolerance - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar
Tolerances for line search.
LineSearchTolerance(double, double, double) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.LineSearchTolerance
 
ListPopulation - Class in org.apache.commons.math4.legacy.genetics
Population of chromosomes represented by a List.
ListPopulation(int) - Constructor for class org.apache.commons.math4.legacy.genetics.ListPopulation
Creates a new ListPopulation instance and initializes its inner chromosome list.
ListPopulation(List<Chromosome>, int) - Constructor for class org.apache.commons.math4.legacy.genetics.ListPopulation
Creates a new ListPopulation instance.
LoessInterpolator - Class in org.apache.commons.math4.legacy.analysis.interpolation
Implements the Local Regression Algorithm (also Loess, Lowess) for interpolation of real univariate functions.
LoessInterpolator() - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.LoessInterpolator
Constructs a new LoessInterpolator with a bandwidth of LoessInterpolator.DEFAULT_BANDWIDTH, LoessInterpolator.DEFAULT_ROBUSTNESS_ITERS robustness iterations and an accuracy of {#link #DEFAULT_ACCURACY}.
LoessInterpolator(double, int) - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.LoessInterpolator
Construct a new LoessInterpolator with given bandwidth and number of robustness iterations.
LoessInterpolator(double, int, double) - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.LoessInterpolator
Construct a new LoessInterpolator with given bandwidth, number of robustness iterations and accuracy.
log() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
log() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
log(double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute natural logarithm of a derivative structure.
Log - Class in org.apache.commons.math4.legacy.analysis.function
Natural logarithm function.
Log() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Log
 
log10() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Base 10 logarithm.
log10() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Base 10 logarithm.
log10(double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Computes base 10 logarithm of a derivative structure.
Log10 - Class in org.apache.commons.math4.legacy.analysis.function
Base 10 logarithm function.
Log10() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Log10
 
log1p() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
log1p() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
log1p(double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Computes shifted logarithm of a derivative structure.
Log1p - Class in org.apache.commons.math4.legacy.analysis.function
log(1 + p) function.
Log1p() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Log1p
 
logDensity(double) - Method in class org.apache.commons.math4.legacy.distribution.AbstractRealDistribution
Logistic - Class in org.apache.commons.math4.legacy.analysis.function
Logistic(double, double, double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.function.Logistic
 
Logistic.Parametric - Class in org.apache.commons.math4.legacy.analysis.function
Parametric function where the input array contains the parameters of the logistic function.
Logit - Class in org.apache.commons.math4.legacy.analysis.function
Logit function.
Logit() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Logit
Usual logit function, where the lower bound is 0 and the higher bound is 1.
Logit(double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.function.Logit
Logit function.
Logit.Parametric - Class in org.apache.commons.math4.legacy.analysis.function
Parametric function where the input array contains the parameters of the logit function.
logProbability(int) - Method in class org.apache.commons.math4.legacy.distribution.AbstractIntegerDistribution
LU - org.apache.commons.math4.legacy.fitting.leastsquares.GaussNewtonOptimizer.Decomposition
Solve by forming the normal equations (JTJx=JTr) and using the LUDecomposition.
LUDecomposition - Class in org.apache.commons.math4.legacy.linear
Calculates the LUP-decomposition of a square matrix.
LUDecomposition(RealMatrix) - Constructor for class org.apache.commons.math4.legacy.linear.LUDecomposition
Calculates the LU-decomposition of the given matrix.
LUDecomposition(RealMatrix, double) - Constructor for class org.apache.commons.math4.legacy.linear.LUDecomposition
Calculates the LU-decomposition of the given matrix.
LutherFieldIntegrator<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements the Luther sixth order Runge-Kutta integrator for Ordinary Differential Equations.
LutherFieldIntegrator(Field<T>, T) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.LutherFieldIntegrator
Simple constructor.
LutherIntegrator - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements the Luther sixth order Runge-Kutta integrator for Ordinary Differential Equations.
LutherIntegrator(double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.LutherIntegrator
Simple constructor.

M

m2 - Variable in class org.apache.commons.math4.legacy.stat.descriptive.moment.SecondMoment
second moment of values that have been added.
mainSetDimension - Variable in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeFieldIntegrator
Main set dimension.
mainSetDimension - Variable in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
Main set dimension.
MainStateJacobianProvider - Interface in org.apache.commons.math4.legacy.ode
Interface expanding first order differential equations in order to compute exactly the main state jacobian matrix for partial derivatives equations.
ManhattanDistance - Class in org.apache.commons.math4.legacy.ml.distance
Calculates the L1 (sum of abs) distance between two points.
ManhattanDistance() - Constructor for class org.apache.commons.math4.legacy.ml.distance.ManhattanDistance
 
mannWhitneyU(double[], double[]) - Method in class org.apache.commons.math4.legacy.stat.inference.MannWhitneyUTest
Computes the Mann-Whitney U statistic comparing mean for two independent samples possibly of different length.
mannWhitneyUTest(double[], double[]) - Method in class org.apache.commons.math4.legacy.stat.inference.MannWhitneyUTest
Returns the asymptotic observed significance level, or p-value, associated with a Mann-Whitney U statistic comparing mean for two independent samples.
MannWhitneyUTest - Class in org.apache.commons.math4.legacy.stat.inference
An implementation of the Mann-Whitney U test (also called Wilcoxon rank-sum test).
MannWhitneyUTest() - Constructor for class org.apache.commons.math4.legacy.stat.inference.MannWhitneyUTest
Create a test instance using where NaN's are left in place and ties get the average of applicable ranks.
MannWhitneyUTest(NaNStrategy, TiesStrategy) - Constructor for class org.apache.commons.math4.legacy.stat.inference.MannWhitneyUTest
Create a test instance using the given strategies for NaN's and ties.
map(UnivariateFunction) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Acts as if implemented as:
map(UnivariateFunction) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Acts as if implemented as:
mapAdd(double) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Add a value to each entry.
mapAdd(double) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Add a value to each entry.
mapAdd(T) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Map an addition operation to each entry.
mapAdd(T) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Map an addition operation to each entry.
mapAdd(T) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Map an addition operation to each entry.
mapAddToSelf(double) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Add a value to each entry.
mapAddToSelf(double) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Add a value to each entry.
mapAddToSelf(double) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Add a value to each entry.
mapAddToSelf(T) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Map an addition operation to each entry.
mapAddToSelf(T) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Map an addition operation to each entry.
mapAddToSelf(T) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Map an addition operation to each entry.
mapDerivative(FieldODEStateAndDerivative<T>) - Method in class org.apache.commons.math4.legacy.ode.FieldEquationsMapper
Map a state derivative to a complete flat array.
mapDivide(double) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Divide each entry by the argument.
mapDivide(T) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Map a division operation to each entry.
mapDivide(T) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Map a division operation to each entry.
mapDivide(T) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Map a division operation to each entry.
mapDivideToSelf(double) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Divide each entry by the argument.
mapDivideToSelf(double) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Divide each entry by the argument.
mapDivideToSelf(T) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Map a division operation to each entry.
mapDivideToSelf(T) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Map a division operation to each entry.
mapDivideToSelf(T) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Map a division operation to each entry.
mapInv() - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Map the 1/x function to each entry.
mapInv() - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Map the 1/x function to each entry.
mapInv() - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Map the 1/x function to each entry.
mapInvToSelf() - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Map the 1/x function to each entry.
mapInvToSelf() - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Map the 1/x function to each entry.
mapInvToSelf() - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Map the 1/x function to each entry.
mapMultiply(double) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Multiply each entry by the argument.
mapMultiply(T) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Map a multiplication operation to each entry.
mapMultiply(T) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Map a multiplication operation to each entry.
mapMultiply(T) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Map a multiplication operation to each entry.
mapMultiplyToSelf(double) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Multiply each entry.
mapMultiplyToSelf(double) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Multiply each entry.
mapMultiplyToSelf(T) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Map a multiplication operation to each entry.
mapMultiplyToSelf(T) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Map a multiplication operation to each entry.
mapMultiplyToSelf(T) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Map a multiplication operation to each entry.
mapState(FieldODEState<T>) - Method in class org.apache.commons.math4.legacy.ode.FieldEquationsMapper
Map a state to a complete flat array.
mapStateAndDerivative(T, T[], T[]) - Method in class org.apache.commons.math4.legacy.ode.FieldEquationsMapper
Map flat arrays to a state and derivative.
mapSubtract(double) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Subtract a value from each entry.
mapSubtract(T) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Map a subtraction operation to each entry.
mapSubtract(T) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Map a subtraction operation to each entry.
mapSubtract(T) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Map a subtraction operation to each entry.
mapSubtractToSelf(double) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Subtract a value from each entry.
mapSubtractToSelf(double) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Subtract a value from each entry.
mapSubtractToSelf(T) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Map a subtraction operation to each entry.
mapSubtractToSelf(T) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Map a subtraction operation to each entry.
mapSubtractToSelf(T) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Map a subtraction operation to each entry.
mapToSelf(UnivariateFunction) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Acts as if it is implemented as: Entry e = null; for(Iterator<Entry> it = iterator(); it.hasNext(); e = it.next()) { e.setValue(function.value(e.getValue())); } Entries of this vector are modified in-place by this method.
mapToSelf(UnivariateFunction) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Acts as if it is implemented as: Entry e = null; for(Iterator<Entry> it = iterator(); it.hasNext(); e = it.next()) { e.setValue(function.value(e.getValue())); } Entries of this vector are modified in-place by this method.
mate(AbstractListChromosome<T>, AbstractListChromosome<T>) - Method in class org.apache.commons.math4.legacy.genetics.CycleCrossover
mate(AbstractListChromosome<T>, AbstractListChromosome<T>) - Method in class org.apache.commons.math4.legacy.genetics.OrderedCrossover
MatrixDimensionMismatchException - Exception in org.apache.commons.math4.legacy.linear
Exception to be thrown when either the number of rows or the number of columns of a matrix do not match the expected values.
MatrixDimensionMismatchException(int, int, int, int) - Constructor for exception org.apache.commons.math4.legacy.linear.MatrixDimensionMismatchException
Construct an exception from the mismatched dimensions.
MatrixUtils - Class in org.apache.commons.math4.legacy.linear
A collection of static methods that operate on or return matrices.
max(double[]) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the maximum of the entries in the input array, or Double.NaN if the array is empty.
max(double[], int, int) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the maximum of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
Max - Class in org.apache.commons.math4.legacy.analysis.function
Maximum function.
Max - Class in org.apache.commons.math4.legacy.stat.descriptive.rank
Returns the maximum of the available values.
Max() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Max
 
Max() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.rank.Max
Create a Max instance.
Max(Max) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.rank.Max
Copy constructor, creates a new Max identical to the original.
MaxEval - Class in org.apache.commons.math4.legacy.optim
Maximum number of evaluations of the function to be optimized.
MaxEval(int) - Constructor for class org.apache.commons.math4.legacy.optim.MaxEval
 
maxEvaluations(int) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresBuilder
Configure the max evaluations.
MAXIMAL - org.apache.commons.math4.legacy.stat.ranking.NaNStrategy
NaNs are considered maximal in the ordering.
MAXIMIZE - org.apache.commons.math4.legacy.optim.nonlinear.scalar.GoalType
Maximization.
MAXIMUM - org.apache.commons.math4.legacy.stat.ranking.TiesStrategy
Ties get the maximum applicable rank.
MaxIter - Class in org.apache.commons.math4.legacy.optim
Maximum number of iterations performed by an (iterative) algorithm.
MaxIter(int) - Constructor for class org.apache.commons.math4.legacy.optim.MaxIter
 
maxIterations(int) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresBuilder
Configure the max iterations.
mean(double[]) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the arithmetic mean of the entries in the input array, or Double.NaN if the array is empty.
mean(double[], int, int) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the arithmetic mean of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
Mean - Class in org.apache.commons.math4.legacy.stat.descriptive.moment
Computes the arithmetic mean of a set of values.
Mean() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.Mean
Constructs a Mean.
Mean(FirstMoment) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.Mean
Constructs a Mean with an External Moment.
Mean(Mean) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.Mean
Copy constructor, creates a new Mean identical to the original.
meanDifference(double[], double[]) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the mean of the (signed) differences between corresponding elements of the input arrays -- i.e., sum(sample1[i] - sample2[i]) / sample1.length.
MeasurementModel - Interface in org.apache.commons.math4.legacy.filter
Defines the measurement model for the use with a KalmanFilter.
Median - Class in org.apache.commons.math4.legacy.stat.descriptive.rank
Returns the median of the available values.
Median() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.rank.Median
Default constructor.
Median(Median) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.rank.Median
Copy constructor, creates a new Median identical.
MedianOf3PivotingStrategy - Class in org.apache.commons.math4.legacy.stat.descriptive.rank
Classic median of 3 strategy given begin and end indices.
MedianOf3PivotingStrategy() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.rank.MedianOf3PivotingStrategy
 
merge(Collection<Frequency<T>>) - Method in class org.apache.commons.math4.legacy.stat.Frequency
Merge a Collection of Frequency objects into this instance.
merge(Frequency<T>) - Method in class org.apache.commons.math4.legacy.stat.Frequency
Merge another Frequency object's counts into this instance.
metropolis(double) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.SimulatedAnnealing
Factory for the Metropolis check for accepting a worse state.
MicrosphereProjectionInterpolator - Class in org.apache.commons.math4.legacy.analysis.interpolation
Interpolator that implements the algorithm described in William Dudziak's MS thesis.
MicrosphereProjectionInterpolator(int, int, double, double, double, double, boolean, double) - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.MicrosphereProjectionInterpolator
Create a microsphere interpolator.
MicrosphereProjectionInterpolator(InterpolatingMicrosphere, double, boolean, double) - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.MicrosphereProjectionInterpolator
Create a microsphere interpolator.
midpoint(double, double) - Static method in class org.apache.commons.math4.legacy.analysis.solvers.UnivariateSolverUtils
Compute the midpoint of two values.
MidpointFieldIntegrator<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements a second order Runge-Kutta integrator for Ordinary Differential Equations.
MidpointFieldIntegrator(Field<T>, T) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.MidpointFieldIntegrator
Simple constructor.
MidpointIntegrator - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements a second order Runge-Kutta integrator for Ordinary Differential Equations.
MidpointIntegrator(double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.MidpointIntegrator
Simple constructor.
MidPointIntegrator - Class in org.apache.commons.math4.legacy.analysis.integration
Implements the Midpoint Rule for integration of real univariate functions.
MidPointIntegrator() - Constructor for class org.apache.commons.math4.legacy.analysis.integration.MidPointIntegrator
Construct a midpoint integrator with default settings.
MidPointIntegrator(double, double, int, int) - Constructor for class org.apache.commons.math4.legacy.analysis.integration.MidPointIntegrator
Build a midpoint integrator with given accuracies and iterations counts.
MidPointIntegrator(int, int) - Constructor for class org.apache.commons.math4.legacy.analysis.integration.MidPointIntegrator
Build a midpoint integrator with given iteration counts.
MillerUpdatingRegression - Class in org.apache.commons.math4.legacy.stat.regression
This class is a concrete implementation of the UpdatingMultipleLinearRegression interface.
MillerUpdatingRegression(int, boolean) - Constructor for class org.apache.commons.math4.legacy.stat.regression.MillerUpdatingRegression
Primary constructor for the MillerUpdatingRegression.
MillerUpdatingRegression(int, boolean, double) - Constructor for class org.apache.commons.math4.legacy.stat.regression.MillerUpdatingRegression
This is the augmented constructor for the MillerUpdatingRegression class.
min(double[]) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the minimum of the entries in the input array, or Double.NaN if the array is empty.
min(double[], int, int) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the minimum of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
Min - Class in org.apache.commons.math4.legacy.analysis.function
Minimum function.
Min - Class in org.apache.commons.math4.legacy.stat.descriptive.rank
Returns the minimum of the available values.
Min() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Min
 
Min() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.rank.Min
Create a Min instance.
Min(Min) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.rank.Min
Copy constructor, creates a new Min identical to the original.
MiniBatchKMeansClusterer<T extends Clusterable> - Class in org.apache.commons.math4.legacy.ml.clustering
Clustering algorithm based on KMeans.
MiniBatchKMeansClusterer(int, int, int, int, int, int, DistanceMeasure, UniformRandomProvider, KMeansPlusPlusClusterer.EmptyClusterStrategy) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.MiniBatchKMeansClusterer
Build a clusterer.
MINIMAL - org.apache.commons.math4.legacy.stat.ranking.NaNStrategy
NaNs are considered minimal in the ordering.
MINIMIZE - org.apache.commons.math4.legacy.optim.nonlinear.scalar.GoalType
Minimization.
MINIMUM - org.apache.commons.math4.legacy.stat.ranking.TiesStrategy
Ties get the minimum applicable rank.
MINIMUM_PROBLEM_DIMENSION - Static variable in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.BOBYQAOptimizer
Minimum dimension of the problem: 2.
Minus - Class in org.apache.commons.math4.legacy.analysis.function
Minus function.
Minus() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Minus
 
MismatchedEquations() - Constructor for exception org.apache.commons.math4.legacy.ode.JacobianMatrices.MismatchedEquations
Simple constructor.
MixtureMultivariateNormalDistribution - Class in org.apache.commons.math4.legacy.distribution
Multivariate normal mixture distribution.
MixtureMultivariateNormalDistribution(double[], double[][], double[][][]) - Constructor for class org.apache.commons.math4.legacy.distribution.MixtureMultivariateNormalDistribution
Creates a multivariate normal mixture distribution.
MixtureMultivariateNormalDistribution(List<Pair<Double, MultivariateNormalDistribution>>) - Constructor for class org.apache.commons.math4.legacy.distribution.MixtureMultivariateNormalDistribution
Creates a mixture model from a list of distributions and their associated weights.
MixtureMultivariateRealDistribution<T extends MultivariateRealDistribution> - Class in org.apache.commons.math4.legacy.distribution
Class for representing mixture model distributions.
MixtureMultivariateRealDistribution(List<Pair<Double, T>>) - Constructor for class org.apache.commons.math4.legacy.distribution.MixtureMultivariateRealDistribution
Creates a mixture model from a list of distributions and their associated weights.
mode(double[]) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the sample mode(s).
mode(double[], int, int) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the sample mode(s).
model(MultivariateVectorFunction, MultivariateMatrixFunction) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresBuilder
Configure the model function.
model(MultivariateVectorFunction, MultivariateMatrixFunction) - Static method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresFactory
model(MultivariateJacobianFunction) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresBuilder
Configure the model function.
ModelSpecificationException - Exception in org.apache.commons.math4.legacy.stat.regression
Exception thrown when a regression model is not correctly specified.
ModelSpecificationException(Localizable, Object...) - Constructor for exception org.apache.commons.math4.legacy.stat.regression.ModelSpecificationException
 
moment - Variable in class org.apache.commons.math4.legacy.stat.descriptive.moment.Kurtosis
Fourth Moment on which this statistic is based.
moment - Variable in class org.apache.commons.math4.legacy.stat.descriptive.moment.Mean
First moment on which this statistic is based.
moment - Variable in class org.apache.commons.math4.legacy.stat.descriptive.moment.Skewness
Third moment on which this statistic is based.
moment - Variable in class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
SecondMoment is used in incremental calculation of Variance.
monteCarloP(double, int, int, boolean, int, UniformRandomProvider) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
monteCarloP(double, int, int, boolean, int, UniformRandomProvider) - Method in class org.apache.commons.math4.legacy.stat.inference.KolmogorovSmirnovTest
Uses Monte Carlo simulation to approximate \(P(D_{n,m} > d)\) where \(D_{n,m}\) is the 2-sample Kolmogorov-Smirnov statistic.
MullerSolver - Class in org.apache.commons.math4.legacy.analysis.solvers
This class implements the Muller's Method for root finding of real univariate functions.
MullerSolver() - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.MullerSolver
Construct a solver with default accuracy (1e-6).
MullerSolver(double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.MullerSolver
Construct a solver.
MullerSolver(double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.MullerSolver
Construct a solver.
MullerSolver2 - Class in org.apache.commons.math4.legacy.analysis.solvers
This class implements the Muller's Method for root finding of real univariate functions.
MullerSolver2() - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.MullerSolver2
Construct a solver with default accuracy (1e-6).
MullerSolver2(double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.MullerSolver2
Construct a solver.
MullerSolver2(double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.MullerSolver2
Construct a solver.
MultiDirectionalTransform - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv
Multi-directional search method.
MultiDirectionalTransform() - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.MultiDirectionalTransform
Transform with default values.
MultiDirectionalTransform(double, double) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.MultiDirectionalTransform
 
MultiKMeansPlusPlusClusterer<T extends Clusterable> - Class in org.apache.commons.math4.legacy.ml.clustering
A wrapper around a k-means++ clustering algorithm which performs multiple trials and returns the best solution.
MultiKMeansPlusPlusClusterer(KMeansPlusPlusClusterer<T>, int) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.MultiKMeansPlusPlusClusterer
Build a clusterer.
MultiKMeansPlusPlusClusterer(KMeansPlusPlusClusterer<T>, int, ClusterRanking) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.MultiKMeansPlusPlusClusterer
Build a clusterer.
MultipleLinearRegression - Interface in org.apache.commons.math4.legacy.stat.regression
The multiple linear regression can be represented in matrix-notation.
MULTIPLES - org.apache.commons.math4.legacy.ode.sampling.StepNormalizerMode
Steps are multiples of a fixed value.
multiply(double) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
multiply(double) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
multiply(double[], int, double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Perform multiplication of two derivative structures.
multiply(int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
multiply(int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
multiply(int) - Method in class org.apache.commons.math4.legacy.linear.BigReal
multiply(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
multiply(SparseGradient) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
multiply(UnivariateDifferentiableFunction...) - Static method in class org.apache.commons.math4.legacy.analysis.FunctionUtils
Multiplies functions.
multiply(PolynomialFunction) - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction
Multiply the instance by a polynomial.
multiply(UnivariateFunction...) - Static method in class org.apache.commons.math4.legacy.analysis.FunctionUtils
Multiplies functions.
multiply(FieldDenseMatrix<T>) - Method in class org.apache.commons.math4.legacy.field.linalg.FieldDenseMatrix
Multiplication.
multiply(Array2DRowFieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Postmultiplying this matrix by m.
multiply(Array2DRowRealMatrix) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Returns the result of postmultiplying this by m.
multiply(BigReal) - Method in class org.apache.commons.math4.legacy.linear.BigReal
multiply(BlockFieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Returns the result of postmultiplying this by m.
multiply(BlockRealMatrix) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Returns the result of postmultiplying this by m.
multiply(DiagonalMatrix) - Method in class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Returns the result of postmultiplying this by m.
multiply(FieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Postmultiply this matrix by m.
multiply(FieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Postmultiply this matrix by m.
multiply(FieldMatrix<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Postmultiply this matrix by m.
multiply(OpenMapRealMatrix) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealMatrix
Postmultiply this matrix by m.
multiply(RealMatrix) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Returns the result of postmultiplying this by m.
multiply(RealMatrix) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Returns the result of postmultiplying this by m.
multiply(RealMatrix) - Method in class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Returns the result of postmultiplying this by m.
multiply(RealMatrix) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealMatrix
Returns the result of postmultiplying this by m.
multiply(RealMatrix) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Returns the result of postmultiplying this by m.
Multiply - Class in org.apache.commons.math4.legacy.analysis.function
Multiply the two operands.
Multiply() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Multiply
 
multiplyEntry(int, int, double) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Multiplies (in place) the specified entry of this matrix by the specified value.
multiplyEntry(int, int, double) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Multiplies (in place) the specified entry of this matrix by the specified value.
multiplyEntry(int, int, double) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Multiplies (in place) the specified entry of this matrix by the specified value.
multiplyEntry(int, int, double) - Method in class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Multiplies (in place) the specified entry of this matrix by the specified value.
multiplyEntry(int, int, double) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealMatrix
Multiplies (in place) the specified entry of this matrix by the specified value.
multiplyEntry(int, int, double) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Multiplies (in place) the specified entry of this matrix by the specified value.
multiplyEntry(int, int, T) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Change an entry in the specified row and column.
multiplyEntry(int, int, T) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Change an entry in the specified row and column.
multiplyEntry(int, int, T) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Change an entry in the specified row and column.
multiplyEntry(int, int, T) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Change an entry in the specified row and column.
multiplyEntry(int, int, T) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldMatrix
Change an entry in the specified row and column.
multiplyInPlace(SparseGradient) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Multiply in place.
MultiStartMultivariateOptimizer - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar
Multi-start optimizer.
MultiStartMultivariateOptimizer(MultivariateOptimizer, int, Supplier<double[]>) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultiStartMultivariateOptimizer
Create a multi-start optimizer from a single-start optimizer.
MultiStartUnivariateOptimizer - Class in org.apache.commons.math4.legacy.optim.univariate
Special implementation of the UnivariateOptimizer interface adding multi-start features to an existing optimizer.
MultiStartUnivariateOptimizer(UnivariateOptimizer, int, UniformRandomProvider) - Constructor for class org.apache.commons.math4.legacy.optim.univariate.MultiStartUnivariateOptimizer
Create a multi-start optimizer from a single-start optimizer.
MultistepFieldIntegrator<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode
This class is the base class for multistep integrators for Ordinary Differential Equations.
MultistepFieldIntegrator(Field<T>, String, int, int, double, double, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.ode.MultistepFieldIntegrator
Build a multistep integrator with the given stepsize bounds.
MultistepFieldIntegrator(Field<T>, String, int, int, double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.ode.MultistepFieldIntegrator
Build a multistep integrator with the given stepsize bounds.
MultistepIntegrator - Class in org.apache.commons.math4.legacy.ode
This class is the base class for multistep integrators for Ordinary Differential Equations.
MultistepIntegrator(String, int, int, double, double, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.ode.MultistepIntegrator
Build a multistep integrator with the given stepsize bounds.
MultistepIntegrator(String, int, int, double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.ode.MultistepIntegrator
Build a multistep integrator with the given stepsize bounds.
MultistepIntegrator.NordsieckTransformer - Interface in org.apache.commons.math4.legacy.ode
Deprecated.
as of 3.6 this unused interface is deprecated
MultivariateDifferentiableFunction - Interface in org.apache.commons.math4.legacy.analysis.differentiation
Extension of MultivariateFunction representing a multivariate differentiable real function.
MultivariateDifferentiableVectorFunction - Interface in org.apache.commons.math4.legacy.analysis.differentiation
Extension of MultivariateVectorFunction representing a multivariate differentiable vectorial function.
MultivariateFunction - Interface in org.apache.commons.math4.legacy.analysis
An interface representing a multivariate real function.
MultivariateFunctionMappingAdapter - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar
Adapter for mapping bounded MultivariateFunction to unbounded ones.
MultivariateFunctionMappingAdapter(MultivariateFunction, double[], double[]) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateFunctionMappingAdapter
Simple constructor.
MultivariateFunctionPenaltyAdapter - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar
Adapter extending bounded MultivariateFunction to an unbouded domain using a penalty function.
MultivariateFunctionPenaltyAdapter(MultivariateFunction, double[], double[], double, double[]) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateFunctionPenaltyAdapter
Simple constructor.
MultivariateInterpolator - Interface in org.apache.commons.math4.legacy.analysis.interpolation
Interface representing a univariate real interpolating function.
MultivariateJacobianFunction - Interface in org.apache.commons.math4.legacy.fitting.leastsquares
A interface for functions that compute a vector of values and can compute their derivatives (Jacobian).
MultivariateMatrixFunction - Interface in org.apache.commons.math4.legacy.analysis
An interface representing a multivariate matrix function.
MultivariateNormalDistribution - Class in org.apache.commons.math4.legacy.distribution
Implementation of the multivariate normal (Gaussian) distribution.
MultivariateNormalDistribution(double[], double[][]) - Constructor for class org.apache.commons.math4.legacy.distribution.MultivariateNormalDistribution
Creates a multivariate normal distribution with the given mean vector and covariance matrix.
MultivariateNormalMixtureExpectationMaximization - Class in org.apache.commons.math4.legacy.distribution.fitting
Expectation-Maximization algorithm for fitting the parameters of multivariate normal mixture model distributions.
MultivariateNormalMixtureExpectationMaximization(double[][]) - Constructor for class org.apache.commons.math4.legacy.distribution.fitting.MultivariateNormalMixtureExpectationMaximization
Creates an object to fit a multivariate normal mixture model to data.
MultivariateOptimizer - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar
Base class for a multivariate scalar function optimizer.
MultivariateOptimizer(ConvergenceChecker<PointValuePair>) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer
 
MultivariateRealDistribution - Interface in org.apache.commons.math4.legacy.distribution
Base interface for multivariate distributions on the reals.
MultivariateRealDistribution.Sampler - Interface in org.apache.commons.math4.legacy.distribution
Sampling functionality.
MultivariateSummaryStatistics - Class in org.apache.commons.math4.legacy.stat.descriptive
Computes summary statistics for a stream of n-tuples added using the addValue method.
MultivariateSummaryStatistics(int, boolean) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Construct a MultivariateSummaryStatistics instance.
MultivariateVectorFunction - Interface in org.apache.commons.math4.legacy.analysis
An interface representing a multivariate vectorial function.
mutate(Chromosome) - Method in class org.apache.commons.math4.legacy.genetics.BinaryMutation
Mutate the given chromosome.
mutate(Chromosome) - Method in interface org.apache.commons.math4.legacy.genetics.MutationPolicy
Mutate the given chromosome.
mutate(Chromosome) - Method in class org.apache.commons.math4.legacy.genetics.RandomKeyMutation
Mutate the given chromosome.
MutationPolicy - Interface in org.apache.commons.math4.legacy.genetics
Algorithm used to mutate a chromosome.

N

NaNStrategy - Enum in org.apache.commons.math4.legacy.stat.ranking
Strategies for handling NaN values in rank transformations.
NaturalRanking - Class in org.apache.commons.math4.legacy.stat.ranking
Ranking based on the natural ordering on doubles.
NaturalRanking() - Constructor for class org.apache.commons.math4.legacy.stat.ranking.NaturalRanking
Create a NaturalRanking with default strategies for handling ties and NaNs.
NaturalRanking(NaNStrategy) - Constructor for class org.apache.commons.math4.legacy.stat.ranking.NaturalRanking
Create a NaturalRanking with the given NaNStrategy.
NaturalRanking(NaNStrategy, TiesStrategy) - Constructor for class org.apache.commons.math4.legacy.stat.ranking.NaturalRanking
Create a NaturalRanking with the given NaNStrategy and TiesStrategy.
NaturalRanking(NaNStrategy, UniformRandomProvider) - Constructor for class org.apache.commons.math4.legacy.stat.ranking.NaturalRanking
Create a NaturalRanking with the given NaNStrategy, TiesStrategy.RANDOM and the given source of random data.
NaturalRanking(TiesStrategy) - Constructor for class org.apache.commons.math4.legacy.stat.ranking.NaturalRanking
Create a NaturalRanking with the given TiesStrategy.
NaturalRanking(UniformRandomProvider) - Constructor for class org.apache.commons.math4.legacy.stat.ranking.NaturalRanking
Create a NaturalRanking with TiesStrategy.RANDOM and the given random generator as the source of random data.
negate() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
negate() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
negate() - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction
Negate the instance.
negate() - Method in class org.apache.commons.math4.legacy.field.linalg.FieldDenseMatrix
Negate.
negate() - Method in class org.apache.commons.math4.legacy.linear.BigReal
NEITHER - org.apache.commons.math4.legacy.ode.sampling.StepNormalizerBounds
Do not include the first and last points.
NelderMeadTransform - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv
NelderMeadTransform() - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.NelderMeadTransform
Transform with default values.
NelderMeadTransform(double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.NelderMeadTransform
 
NevilleInterpolator - Class in org.apache.commons.math4.legacy.analysis.interpolation
Implements the Neville's Algorithm for interpolation of real univariate functions.
NevilleInterpolator() - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.NevilleInterpolator
 
newCovarianceData(double[][]) - Method in class org.apache.commons.math4.legacy.stat.regression.GLSMultipleLinearRegression
Add the covariance data.
newFixedLengthChromosome(List<T>) - Method in class org.apache.commons.math4.legacy.genetics.AbstractListChromosome
Creates a new instance of the same class as this is, with a given arrayRepresentation.
newMarkers(List<Double>, double) - Static method in class org.apache.commons.math4.legacy.stat.descriptive.rank.PSquarePercentile
A creation method to build Markers.
newSampleData(double[], double[][]) - Method in class org.apache.commons.math4.legacy.stat.regression.OLSMultipleLinearRegression
Loads model x and y sample data, overriding any previous sample.
newSampleData(double[], double[][], double[][]) - Method in class org.apache.commons.math4.legacy.stat.regression.GLSMultipleLinearRegression
Replace sample data, overriding any previous sample.
newSampleData(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
Loads model x and y sample data from a flat input array, overriding any previous sample.
newSampleData(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.regression.OLSMultipleLinearRegression
Loads model x and y sample data from a flat input array, overriding any previous sample.
NewtonRaphsonSolver - Class in org.apache.commons.math4.legacy.analysis.solvers
Implements Newton's Method for finding zeros of real univariate differentiable functions.
NewtonRaphsonSolver() - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.NewtonRaphsonSolver
Construct a solver.
NewtonRaphsonSolver(double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.NewtonRaphsonSolver
Construct a solver.
newXSampleData(double[][]) - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
Loads new x sample data, overriding any previous data.
newXSampleData(double[][]) - Method in class org.apache.commons.math4.legacy.stat.regression.OLSMultipleLinearRegression
Loads new x sample data, overriding any previous data.
newYSampleData(double[]) - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
Loads new y sample data, overriding any previous data.
next() - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector.OpenMapSparseIterator
next() - Method in class org.apache.commons.math4.legacy.linear.RealVector.SparseEntryIterator
nextGeneration() - Method in class org.apache.commons.math4.legacy.genetics.ElitisticListPopulation
Start the population for the next generation.
nextGeneration() - Method in interface org.apache.commons.math4.legacy.genetics.Population
Start the population for the next generation.
nextGeneration(Population) - Method in class org.apache.commons.math4.legacy.genetics.GeneticAlgorithm
Evolve the given population into the next generation.
NoFeasibleSolutionException - Exception in org.apache.commons.math4.legacy.optim.linear
This class represents exceptions thrown by optimizers when no solution fulfills the constraints.
NoFeasibleSolutionException() - Constructor for exception org.apache.commons.math4.legacy.optim.linear.NoFeasibleSolutionException
Simple constructor using a default message.
NonLinearConjugateGradientOptimizer - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar.gradient
Non-linear conjugate gradient optimizer.
NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula, ConvergenceChecker<PointValuePair>) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.gradient.NonLinearConjugateGradientOptimizer
Constructor with default preconditioner.
NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula, ConvergenceChecker<PointValuePair>, Preconditioner) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.gradient.NonLinearConjugateGradientOptimizer
 
NonLinearConjugateGradientOptimizer.Formula - Enum in org.apache.commons.math4.legacy.optim.nonlinear.scalar.gradient
Available choices of update formulas for the updating the parameter that is used to compute the successive conjugate search directions.
NonLinearConjugateGradientOptimizer.IdentityPreconditioner - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar.gradient
Default identity preconditioner.
NonNegativeConstraint - Class in org.apache.commons.math4.legacy.optim.linear
A constraint for a linear optimization problem indicating whether all variables must be restricted to non-negative values.
NonNegativeConstraint(boolean) - Constructor for class org.apache.commons.math4.legacy.optim.linear.NonNegativeConstraint
 
NonPositiveDefiniteMatrixException - Exception in org.apache.commons.math4.legacy.linear
Exception to be thrown when a positive definite matrix is expected.
NonPositiveDefiniteMatrixException(double, int, double) - Constructor for exception org.apache.commons.math4.legacy.linear.NonPositiveDefiniteMatrixException
Construct an exception.
NonPositiveDefiniteOperatorException - Exception in org.apache.commons.math4.legacy.linear
Exception to be thrown when a symmetric, definite positive RealLinearOperator is expected.
NonPositiveDefiniteOperatorException() - Constructor for exception org.apache.commons.math4.legacy.linear.NonPositiveDefiniteOperatorException
Creates a new instance of this class.
NonSelfAdjointOperatorException - Exception in org.apache.commons.math4.legacy.linear
Exception to be thrown when a self-adjoint RealLinearOperator is expected.
NonSelfAdjointOperatorException() - Constructor for exception org.apache.commons.math4.legacy.linear.NonSelfAdjointOperatorException
Creates a new instance of this class.
NonSquareMatrixException - Exception in org.apache.commons.math4.legacy.linear
Exception to be thrown when a square matrix is expected.
NonSquareMatrixException(int, int) - Constructor for exception org.apache.commons.math4.legacy.linear.NonSquareMatrixException
Construct an exception from the mismatched dimensions.
NonSquareOperatorException - Exception in org.apache.commons.math4.legacy.linear
Exception to be thrown when a square linear operator is expected.
NonSquareOperatorException(int, int) - Constructor for exception org.apache.commons.math4.legacy.linear.NonSquareOperatorException
Construct an exception from the mismatched dimensions.
NonSymmetricMatrixException - Exception in org.apache.commons.math4.legacy.linear
Exception to be thrown when a symmetric matrix is expected.
NonSymmetricMatrixException(int, int, double) - Constructor for exception org.apache.commons.math4.legacy.linear.NonSymmetricMatrixException
Construct an exception.
nordsieck - Variable in class org.apache.commons.math4.legacy.ode.MultistepFieldIntegrator
Nordsieck matrix of the higher scaled derivatives.
nordsieck - Variable in class org.apache.commons.math4.legacy.ode.MultistepIntegrator
Nordsieck matrix of the higher scaled derivatives.
NordsieckStepInterpolator - Class in org.apache.commons.math4.legacy.ode.sampling
This class implements an interpolator for integrators using Nordsieck representation.
NordsieckStepInterpolator() - Constructor for class org.apache.commons.math4.legacy.ode.sampling.NordsieckStepInterpolator
Simple constructor.
NordsieckStepInterpolator(NordsieckStepInterpolator) - Constructor for class org.apache.commons.math4.legacy.ode.sampling.NordsieckStepInterpolator
Copy constructor.
NormalApproximationInterval - Class in org.apache.commons.math4.legacy.stat.interval
Implements the normal approximation method for creating a binomial proportion confidence interval.
NormalApproximationInterval() - Constructor for class org.apache.commons.math4.legacy.stat.interval.NormalApproximationInterval
 
normalize(double[]) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Normalize (standardize) the sample, so it is has a mean of 0 and a standard deviation of 1.
NPointCrossover<T> - Class in org.apache.commons.math4.legacy.genetics
N-point crossover policy.
NPointCrossover(int) - Constructor for class org.apache.commons.math4.legacy.genetics.NPointCrossover
Creates a new NPointCrossover policy using the given number of points.
numVars() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Find the number of variables.

O

ObjectiveFunction - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar
Scalar function to be optimized.
ObjectiveFunction(MultivariateFunction) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.ObjectiveFunction
 
ObjectiveFunctionGradient - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar
Gradient of the scalar function to be optimized.
ObjectiveFunctionGradient(MultivariateVectorFunction) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.ObjectiveFunctionGradient
 
OCTAVE_FORMAT - Static variable in class org.apache.commons.math4.legacy.linear.MatrixUtils
A format for RealMatrix objects compatible with octave.
ODEIntegrator - Interface in org.apache.commons.math4.legacy.ode
This interface defines the common parts shared by integrators for first and second order differential equations.
of(double[][]) - Static method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.Simplex
Builds from a given set of coordinates.
of(FieldDenseMatrix<T>) - Static method in class org.apache.commons.math4.legacy.field.linalg.FieldLUDecomposition
Factory method.
OLSMultipleLinearRegression - Class in org.apache.commons.math4.legacy.stat.regression
Implements ordinary least squares (OLS) to estimate the parameters of a multiple linear regression model.
OLSMultipleLinearRegression() - Constructor for class org.apache.commons.math4.legacy.stat.regression.OLSMultipleLinearRegression
Create an empty OLSMultipleLinearRegression instance.
OLSMultipleLinearRegression(double) - Constructor for class org.apache.commons.math4.legacy.stat.regression.OLSMultipleLinearRegression
Create an empty OLSMultipleLinearRegression instance, using the given singularity threshold for the QR decomposition.
ONE - Static variable in class org.apache.commons.math4.legacy.linear.BigReal
A big real representing 1.
OnePointCrossover<T> - Class in org.apache.commons.math4.legacy.genetics
One point crossover policy.
OnePointCrossover() - Constructor for class org.apache.commons.math4.legacy.genetics.OnePointCrossover
 
OneWayAnova - Class in org.apache.commons.math4.legacy.stat.inference
Implements one-way ANOVA (analysis of variance) statistics.
OneWayAnova() - Constructor for class org.apache.commons.math4.legacy.stat.inference.OneWayAnova
Default constructor.
oneWayAnovaFValue(Collection<double[]>) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
oneWayAnovaPValue(Collection<double[]>) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
oneWayAnovaTest(Collection<double[]>, double) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
OpenMapEntry(OpenIntToDoubleHashMap.Iterator) - Constructor for class org.apache.commons.math4.legacy.linear.OpenMapRealVector.OpenMapEntry
Build an entry from an iterator point to an element.
OpenMapRealMatrix - Class in org.apache.commons.math4.legacy.linear
Sparse matrix implementation based on an open addressed map.
OpenMapRealMatrix(int, int) - Constructor for class org.apache.commons.math4.legacy.linear.OpenMapRealMatrix
Build a sparse matrix with the supplied row and column dimensions.
OpenMapRealMatrix(OpenMapRealMatrix) - Constructor for class org.apache.commons.math4.legacy.linear.OpenMapRealMatrix
Build a matrix by copying another one.
OpenMapRealVector - Class in org.apache.commons.math4.legacy.linear
This class implements the RealVector interface with a OpenIntToDoubleHashMap backing store.
OpenMapRealVector() - Constructor for class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Build a 0-length vector.
OpenMapRealVector(double[]) - Constructor for class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Create from an array.
OpenMapRealVector(double[], double) - Constructor for class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Create from an array, specifying zero tolerance.
OpenMapRealVector(int) - Constructor for class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Construct a vector of zeroes.
OpenMapRealVector(int, double) - Constructor for class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Construct a vector of zeroes, specifying zero tolerance.
OpenMapRealVector(int, int) - Constructor for class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Build a vector with known the sparseness (for advanced use only).
OpenMapRealVector(int, int, double) - Constructor for class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Build a vector with known the sparseness and zero tolerance setting (for advanced use only).
OpenMapRealVector(Double[]) - Constructor for class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Create from an array.
OpenMapRealVector(Double[], double) - Constructor for class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Create from an array.
OpenMapRealVector(OpenMapRealVector) - Constructor for class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Copy constructor.
OpenMapRealVector(OpenMapRealVector, int) - Constructor for class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Build a resized vector, for use with append.
OpenMapRealVector(RealVector) - Constructor for class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Generic copy constructor.
OpenMapRealVector.OpenMapEntry - Class in org.apache.commons.math4.legacy.linear
Implementation of Entry optimized for OpenMap.
OpenMapRealVector.OpenMapSparseIterator - Class in org.apache.commons.math4.legacy.linear
Iterator class to do iteration over just the non-zero elements.
OpenMapSparseIterator() - Constructor for class org.apache.commons.math4.legacy.linear.OpenMapRealVector.OpenMapSparseIterator
Simple constructor.
operate(double[]) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Returns the result of multiplying this by the vector v.
operate(double[]) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Returns the result of multiplying this by the vector v.
operate(double[]) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Returns the result of multiplying this by the vector v.
operate(double[]) - Method in class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Returns the result of multiplying this by the vector v.
operate(double[]) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Returns the result of multiplying this by the vector v.
operate(FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Returns the result of multiplying this by the vector v.
operate(FieldVector<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Returns the result of multiplying this by the vector v.
operate(RealVector) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Returns the result of multiplying this by the vector x.
operate(RealVector) - Method in class org.apache.commons.math4.legacy.linear.JacobiPreconditioner
Returns the result of multiplying this by the vector x.
operate(RealVector) - Method in class org.apache.commons.math4.legacy.linear.RealLinearOperator
Returns the result of multiplying this by the vector x.
operate(RealVector) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Returns the result of multiplying this by the vector v.
operate(T[]) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Returns the result of multiplying this by the vector v.
operate(T[]) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Returns the result of multiplying this by the vector v.
operate(T[]) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Returns the result of multiplying this by the vector v.
operate(T[]) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Returns the result of multiplying this by the vector v.
operateTranspose(RealVector) - Method in class org.apache.commons.math4.legacy.linear.RealLinearOperator
Returns the result of multiplying the transpose of this operator by the vector x (optional operation).
OPERATOR - Static variable in class org.apache.commons.math4.legacy.linear.ConjugateGradient
Key for the exception context.
oppositeRelationship() - Method in enum org.apache.commons.math4.legacy.optim.linear.Relationship
Gets the relationship obtained when multiplying all coefficients by -1.
OptimizationData - Interface in org.apache.commons.math4.legacy.optim
Marker interface.
OptimizationProblem<PAIR> - Interface in org.apache.commons.math4.legacy.optim
Common settings for all optimization problems.
optimize() - Method in class org.apache.commons.math4.legacy.optim.BaseOptimizer
Performs the optimization.
optimize(LeastSquaresProblem) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.GaussNewtonOptimizer
Solve the non-linear least squares problem.
optimize(LeastSquaresProblem) - Method in interface org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresOptimizer
Solve the non-linear least squares problem.
optimize(LeastSquaresProblem) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LevenbergMarquardtOptimizer
Solve the non-linear least squares problem.
optimize(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.BaseMultiStartMultivariateOptimizer
Stores data and performs the optimization.
optimize(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.BaseMultivariateOptimizer
Stores data and performs the optimization.
optimize(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.BaseOptimizer
Stores data and performs the optimization.
optimize(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.linear.LinearOptimizer
Stores data and performs the optimization.
optimize(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.linear.SimplexSolver
Stores data and performs the optimization.
optimize(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.gradient.NonLinearConjugateGradientOptimizer
Stores data and performs the optimization.
optimize(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.GradientMultivariateOptimizer
Stores data and performs the optimization.
optimize(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer
Stores data and performs the optimization.
optimize(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.CMAESOptimizer
Stores data and performs the optimization.
optimize(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.univariate.MultiStartUnivariateOptimizer
Stores data and performs the optimization.
optimize(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.univariate.UnivariateOptimizer
Stores data and performs the optimization.
OrderedCrossover<T> - Class in org.apache.commons.math4.legacy.genetics
Order 1 Crossover [OX1] builds offspring from ordered chromosomes by copying a consecutive slice from one parent, and filling up the remaining genes from the other parent as they appear.
OrderedCrossover() - Constructor for class org.apache.commons.math4.legacy.genetics.OrderedCrossover
 
org.apache.commons.math4.legacy.analysis - package org.apache.commons.math4.legacy.analysis
Parent package for common numerical analysis procedures, including root finding, function interpolation and integration.
org.apache.commons.math4.legacy.analysis.differentiation - package org.apache.commons.math4.legacy.analysis.differentiation
This package holds the main interfaces and basic building block classes dealing with differentiation.
org.apache.commons.math4.legacy.analysis.function - package org.apache.commons.math4.legacy.analysis.function
The function package contains function objects that wrap the methods contained in Math, as well as common mathematical functions such as the gaussian and sinc functions.
org.apache.commons.math4.legacy.analysis.integration - package org.apache.commons.math4.legacy.analysis.integration
Numerical integration (quadrature) algorithms for univariate real functions.
org.apache.commons.math4.legacy.analysis.integration.gauss - package org.apache.commons.math4.legacy.analysis.integration.gauss
Gauss family of quadrature schemes.
org.apache.commons.math4.legacy.analysis.interpolation - package org.apache.commons.math4.legacy.analysis.interpolation
Univariate real functions interpolation algorithms.
org.apache.commons.math4.legacy.analysis.polynomials - package org.apache.commons.math4.legacy.analysis.polynomials
Univariate real polynomials implementations, seen as differentiable univariate real functions.
org.apache.commons.math4.legacy.analysis.solvers - package org.apache.commons.math4.legacy.analysis.solvers
Root finding algorithms, for univariate real functions.
org.apache.commons.math4.legacy.distribution - package org.apache.commons.math4.legacy.distribution
Implementations of probability distributions.
org.apache.commons.math4.legacy.distribution.fitting - package org.apache.commons.math4.legacy.distribution.fitting
Fitting of parameters against distributions.
org.apache.commons.math4.legacy.field - package org.apache.commons.math4.legacy.field
Utilities based on the Field functionality defined in Commons Numbers.
org.apache.commons.math4.legacy.field.linalg - package org.apache.commons.math4.legacy.field.linalg
Linear algebra defined in term of matrices whose entries are elements of a field.
org.apache.commons.math4.legacy.filter - package org.apache.commons.math4.legacy.filter
Implementations of common discrete-time linear filters.
org.apache.commons.math4.legacy.fitting - package org.apache.commons.math4.legacy.fitting
Classes to perform curve fitting.
org.apache.commons.math4.legacy.fitting.leastsquares - package org.apache.commons.math4.legacy.fitting.leastsquares
This package provides algorithms that minimize the residuals between observations and model values.
org.apache.commons.math4.legacy.genetics - package org.apache.commons.math4.legacy.genetics
This package provides Genetic Algorithms components and implementations.
org.apache.commons.math4.legacy.linear - package org.apache.commons.math4.legacy.linear
Linear algebra support.
org.apache.commons.math4.legacy.ml - package org.apache.commons.math4.legacy.ml
Base package for machine learning algorithms.
org.apache.commons.math4.legacy.ml.clustering - package org.apache.commons.math4.legacy.ml.clustering
Clustering algorithms.
org.apache.commons.math4.legacy.ml.clustering.evaluation - package org.apache.commons.math4.legacy.ml.clustering.evaluation
Cluster evaluation methods.
org.apache.commons.math4.legacy.ml.distance - package org.apache.commons.math4.legacy.ml.distance
Common distance measures.
org.apache.commons.math4.legacy.ode - package org.apache.commons.math4.legacy.ode
This package provides classes to solve Ordinary Differential Equations problems.
org.apache.commons.math4.legacy.ode.events - package org.apache.commons.math4.legacy.ode.events
This package provides classes to handle discrete events occurring during Ordinary Differential Equations integration.
org.apache.commons.math4.legacy.ode.nonstiff - package org.apache.commons.math4.legacy.ode.nonstiff
This package provides classes to solve non-stiff Ordinary Differential Equations problems.
org.apache.commons.math4.legacy.ode.sampling - package org.apache.commons.math4.legacy.ode.sampling
This package provides classes to handle sampling steps during Ordinary Differential Equations integration.
org.apache.commons.math4.legacy.optim - package org.apache.commons.math4.legacy.optim
Generally, optimizers are algorithms that will either minimize or maximize a scalar function, called the objective function.
org.apache.commons.math4.legacy.optim.linear - package org.apache.commons.math4.legacy.optim.linear
Optimization algorithms for linear constrained problems.
org.apache.commons.math4.legacy.optim.nonlinear.scalar - package org.apache.commons.math4.legacy.optim.nonlinear.scalar
Algorithms for optimizing a scalar function.
org.apache.commons.math4.legacy.optim.nonlinear.scalar.gradient - package org.apache.commons.math4.legacy.optim.nonlinear.scalar.gradient
This package provides optimization algorithms that require derivatives.
org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv - package org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv
This package provides optimization algorithms that do not require derivatives.
org.apache.commons.math4.legacy.optim.univariate - package org.apache.commons.math4.legacy.optim.univariate
One-dimensional optimization algorithms.
org.apache.commons.math4.legacy.random - package org.apache.commons.math4.legacy.random
This package contains functionality related to random numbers.
org.apache.commons.math4.legacy.special - package org.apache.commons.math4.legacy.special
Implementations of special functions.
org.apache.commons.math4.legacy.stat - package org.apache.commons.math4.legacy.stat
Data storage, manipulation and summary routines.
org.apache.commons.math4.legacy.stat.correlation - package org.apache.commons.math4.legacy.stat.correlation
Correlations/Covariance computations.
org.apache.commons.math4.legacy.stat.descriptive - package org.apache.commons.math4.legacy.stat.descriptive
Generic univariate summary statistic objects.
org.apache.commons.math4.legacy.stat.descriptive.moment - package org.apache.commons.math4.legacy.stat.descriptive.moment
Summary statistics based on moments.
org.apache.commons.math4.legacy.stat.descriptive.rank - package org.apache.commons.math4.legacy.stat.descriptive.rank
Summary statistics based on ranks.
org.apache.commons.math4.legacy.stat.descriptive.summary - package org.apache.commons.math4.legacy.stat.descriptive.summary
Other summary statistics.
org.apache.commons.math4.legacy.stat.inference - package org.apache.commons.math4.legacy.stat.inference
Classes providing hypothesis testing.
org.apache.commons.math4.legacy.stat.interval - package org.apache.commons.math4.legacy.stat.interval
Classes providing binomial proportion confidence interval construction.
org.apache.commons.math4.legacy.stat.ranking - package org.apache.commons.math4.legacy.stat.ranking
Classes providing rank transformations.
org.apache.commons.math4.legacy.stat.regression - package org.apache.commons.math4.legacy.stat.regression
Statistical routines involving multivariate data.
org.apache.commons.math4.legacy.util - package org.apache.commons.math4.legacy.util
Convenience routines and common data structures used throughout the commons-math library.
outerProduct(ArrayFieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Compute the outer product.
outerProduct(FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Compute the outer product.
outerProduct(FieldVector<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Compute the outer product.
outerProduct(FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Compute the outer product.
outerProduct(RealVector) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Compute the outer product.
outerProduct(RealVector) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Compute the outer product.
outerProduct(SparseFieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Optimized method to compute outer product when both vectors are sparse.

P

pairedT(double[], double[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
pairedT(double[], double[]) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Computes a paired, 2-sample t-statistic based on the data in the input arrays.
pairedTTest(double[], double[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
pairedTTest(double[], double[]) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Returns the observed significance level, or p-value, associated with a paired, two-sample, two-tailed t-test based on the data in the input arrays.
pairedTTest(double[], double[], double) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
pairedTTest(double[], double[], double) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Performs a paired t-test evaluating the null hypothesis that the mean of the paired differences between sample1 and sample2 is 0 in favor of the two-sided alternative that the mean paired difference is not equal to 0, with significance level alpha.
ParameterGuesser() - Constructor for class org.apache.commons.math4.legacy.fitting.GaussianCurveFitter.ParameterGuesser
 
ParameterGuesser() - Constructor for class org.apache.commons.math4.legacy.fitting.HarmonicCurveFitter.ParameterGuesser
 
ParameterGuesser() - Constructor for class org.apache.commons.math4.legacy.fitting.SimpleCurveFitter.ParameterGuesser
 
Parameterizable - Interface in org.apache.commons.math4.legacy.ode
This interface enables to process any parameterizable object.
ParameterizedODE - Interface in org.apache.commons.math4.legacy.ode
Interface to compute by finite difference Jacobian matrix for some parameter when computing partial derivatives equations.
ParameterJacobianProvider - Interface in org.apache.commons.math4.legacy.ode
Interface to compute exactly Jacobian matrix for some parameter when computing partial derivatives equations.
parameterValidator(ParameterValidator) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresBuilder
Configure the validator of the model parameters.
ParameterValidator - Interface in org.apache.commons.math4.legacy.fitting.leastsquares
Interface for validating a set of model parameters.
Parametric() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Gaussian.Parametric
 
Parametric() - Constructor for class org.apache.commons.math4.legacy.analysis.function.HarmonicOscillator.Parametric
 
Parametric() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Logistic.Parametric
 
Parametric() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Logit.Parametric
 
Parametric() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Sigmoid.Parametric
 
Parametric() - Constructor for class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction.Parametric
 
ParametricUnivariateFunction - Interface in org.apache.commons.math4.legacy.analysis
An interface representing a real function that depends on one independent variable plus some extra parameters.
parse(String) - Method in class org.apache.commons.math4.legacy.linear.RealMatrixFormat
Parse a string to produce a RealMatrix object.
parse(String) - Method in class org.apache.commons.math4.legacy.linear.RealVectorFormat
Parse a string to produce a RealVector object.
parse(String) - Method in class org.apache.commons.math4.legacy.util.ComplexFormat
Parses a string to produce a Complex object.
parse(String, ParsePosition) - Method in class org.apache.commons.math4.legacy.linear.RealMatrixFormat
Parse a string to produce a RealMatrix object.
parse(String, ParsePosition) - Method in class org.apache.commons.math4.legacy.linear.RealVectorFormat
Parse a string to produce a RealVector object.
parse(String, ParsePosition) - Method in class org.apache.commons.math4.legacy.util.ComplexFormat
Parses a string to produce a Complex object.
parseAndIgnoreWhitespace(String, ParsePosition) - Static method in class org.apache.commons.math4.legacy.util.CompositeFormat
Parses source until a non-whitespace character is found.
parseFixedstring(String, String, ParsePosition) - Static method in class org.apache.commons.math4.legacy.util.CompositeFormat
Parse source for an expected fixed string.
parseNextCharacter(String, ParsePosition) - Static method in class org.apache.commons.math4.legacy.util.CompositeFormat
Parses source until a non-whitespace character is found.
parseNumber(String, NumberFormat, ParsePosition) - Static method in class org.apache.commons.math4.legacy.util.CompositeFormat
Parses source for a number.
parseOptimizationData(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.BaseMultivariateOptimizer
Scans the list of (required and optional) optimization data that characterize the problem.
parseOptimizationData(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.BaseOptimizer
Scans the list of (required and optional) optimization data that characterize the problem.
parseOptimizationData(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.linear.LinearOptimizer
Scans the list of (required and optional) optimization data that characterize the problem.
parseOptimizationData(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.linear.SimplexSolver
Scans the list of (required and optional) optimization data that characterize the problem.
parseOptimizationData(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.gradient.NonLinearConjugateGradientOptimizer
Scans the list of (required and optional) optimization data that characterize the problem.
parseOptimizationData(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.GradientMultivariateOptimizer
Scans the list of (required and optional) optimization data that characterize the problem.
parseOptimizationData(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer
Scans the list of (required and optional) optimization data that characterize the problem.
parseOptimizationData(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.CMAESOptimizer
Scans the list of (required and optional) optimization data that characterize the problem.
parseOptimizationData(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.SimplexOptimizer
Scans the list of (required and optional) optimization data that characterize the problem.
parseOptimizationData(OptimizationData...) - Method in class org.apache.commons.math4.legacy.optim.univariate.UnivariateOptimizer
Scans the list of (required and optional) optimization data that characterize the problem.
partialDerivativeX() - Method in class org.apache.commons.math4.legacy.analysis.interpolation.BicubicInterpolatingFunction
 
partialDerivativeXX() - Method in class org.apache.commons.math4.legacy.analysis.interpolation.BicubicInterpolatingFunction
 
partialDerivativeXY() - Method in class org.apache.commons.math4.legacy.analysis.interpolation.BicubicInterpolatingFunction
 
partialDerivativeY() - Method in class org.apache.commons.math4.legacy.analysis.interpolation.BicubicInterpolatingFunction
 
partialDerivativeYY() - Method in class org.apache.commons.math4.legacy.analysis.interpolation.BicubicInterpolatingFunction
 
PearsonsCorrelation - Class in org.apache.commons.math4.legacy.stat.correlation
Computes Pearson's product-moment correlation coefficients for pairs of arrays or columns of a matrix.
PearsonsCorrelation() - Constructor for class org.apache.commons.math4.legacy.stat.correlation.PearsonsCorrelation
Create a PearsonsCorrelation instance without data.
PearsonsCorrelation(double[][]) - Constructor for class org.apache.commons.math4.legacy.stat.correlation.PearsonsCorrelation
Create a PearsonsCorrelation from a rectangular array whose columns represent values of variables to be correlated.
PearsonsCorrelation(RealMatrix) - Constructor for class org.apache.commons.math4.legacy.stat.correlation.PearsonsCorrelation
Create a PearsonsCorrelation from a RealMatrix whose columns represent variables to be correlated.
PearsonsCorrelation(RealMatrix, int) - Constructor for class org.apache.commons.math4.legacy.stat.correlation.PearsonsCorrelation
Create a PearsonsCorrelation from a covariance matrix.
PearsonsCorrelation(Covariance) - Constructor for class org.apache.commons.math4.legacy.stat.correlation.PearsonsCorrelation
Create a PearsonsCorrelation from a Covariance.
PEGASUS - org.apache.commons.math4.legacy.analysis.solvers.BaseSecantSolver.Method
The Pegasus method.
PegasusSolver - Class in org.apache.commons.math4.legacy.analysis.solvers
Implements the Pegasus method for root-finding (approximating a zero of a univariate real function).
PegasusSolver() - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.PegasusSolver
Construct a solver with default accuracy (1e-6).
PegasusSolver(double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.PegasusSolver
Construct a solver.
PegasusSolver(double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.PegasusSolver
Construct a solver.
PegasusSolver(double, double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.PegasusSolver
Construct a solver.
pelzGood(double, int) - Method in class org.apache.commons.math4.legacy.stat.inference.KolmogorovSmirnovTest
Computes the Pelz-Good approximation for \(P(D_n < d)\) as described in [2] in the class javadoc.
percentile(double[], double) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns an estimate of the pth percentile of the values in the values array.
percentile(double[], int, int, double) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns an estimate of the pth percentile of the values in the values array, starting with the element in (0-based) position begin in the array and including length values.
Percentile - Class in org.apache.commons.math4.legacy.stat.descriptive.rank
Provides percentile computation.
Percentile() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Constructs a Percentile with the following defaults.
Percentile(double) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Constructs a Percentile with the specific quantile value and the following.
Percentile(double, Percentile.EstimationType, NaNStrategy, KthSelector) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Constructs a Percentile with the specific quantile value, Percentile.EstimationType, NaNStrategy and KthSelector.
Percentile(Percentile) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Copy constructor, creates a new Percentile identical.
Percentile.EstimationType - Enum in org.apache.commons.math4.legacy.stat.descriptive.rank
An enum for various estimation strategies of a percentile referred in wikipedia on quantile with the names of enum matching those of types mentioned in wikipedia.
performHouseholderReflection(int, double[][]) - Method in class org.apache.commons.math4.legacy.linear.QRDecomposition
Perform Householder reflection for a minor A(minor, minor) of A.
performHouseholderReflection(int, double[][]) - Method in class org.apache.commons.math4.legacy.linear.RRQRDecomposition
Perform Householder reflection for a minor A(minor, minor) of A.
PermutationChromosome<T> - Interface in org.apache.commons.math4.legacy.genetics
Interface indicating that the chromosome represents a permutation of objects.
PiecewiseBicubicSplineInterpolatingFunction - Class in org.apache.commons.math4.legacy.analysis.interpolation
Function that implements the bicubic spline interpolation.
PiecewiseBicubicSplineInterpolatingFunction(double[], double[], double[][]) - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.PiecewiseBicubicSplineInterpolatingFunction
 
PiecewiseBicubicSplineInterpolator - Class in org.apache.commons.math4.legacy.analysis.interpolation
Generates a piecewise-bicubic interpolating function.
PiecewiseBicubicSplineInterpolator() - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.PiecewiseBicubicSplineInterpolator
 
pivotIndex(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.CentralPivotingStrategy
Find pivot index of the array so that partition and Kth element selection can be made.
pivotIndex(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.MedianOf3PivotingStrategy
Find pivot index of the array so that partition and Kth element selection can be made.
pivotIndex(double[], int, int) - Method in interface org.apache.commons.math4.legacy.stat.descriptive.rank.PivotingStrategy
Find pivot index of the array so that partition and Kth element selection can be made.
pivotIndex(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.RandomPivotingStrategy
Find pivot index of the array so that partition and Kth element selection can be made.
PivotingStrategy - Interface in org.apache.commons.math4.legacy.stat.descriptive.rank
A strategy to pick a pivoting index of an array for doing partitioning.
PivotSelectionRule - Enum in org.apache.commons.math4.legacy.optim.linear
Pivot selection rule to the use for a Simplex solver.
PointValuePair - Class in org.apache.commons.math4.legacy.optim
This class holds a point and the value of an objective function at that point.
PointValuePair(double[], double) - Constructor for class org.apache.commons.math4.legacy.optim.PointValuePair
Builds a point/objective function value pair.
PointValuePair(double[], double, boolean) - Constructor for class org.apache.commons.math4.legacy.optim.PointValuePair
Builds a point/objective function value pair.
PointVectorValuePair - Class in org.apache.commons.math4.legacy.optim
This class holds a point and the vectorial value of an objective function at that point.
PointVectorValuePair(double[], double[]) - Constructor for class org.apache.commons.math4.legacy.optim.PointVectorValuePair
Builds a point/objective function value pair.
PointVectorValuePair(double[], double[], boolean) - Constructor for class org.apache.commons.math4.legacy.optim.PointVectorValuePair
Build a point/objective function value pair.
POLAK_RIBIERE - org.apache.commons.math4.legacy.optim.nonlinear.scalar.gradient.NonLinearConjugateGradientOptimizer.Formula
Polak-Ribière formula.
PolynomialCurveFitter - Class in org.apache.commons.math4.legacy.fitting
Fits points to a polynomial function.
polynomialDerivative() - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction
Returns the derivative as a PolynomialFunction.
PolynomialFunction - Class in org.apache.commons.math4.legacy.analysis.polynomials
Immutable representation of a real polynomial function with real coefficients.
PolynomialFunction(double[]) - Constructor for class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction
Construct a polynomial with the given coefficients.
PolynomialFunction.Parametric - Class in org.apache.commons.math4.legacy.analysis.polynomials
Dedicated parametric polynomial class.
PolynomialFunctionLagrangeForm - Class in org.apache.commons.math4.legacy.analysis.polynomials
Implements the representation of a real polynomial function in Lagrange Form.
PolynomialFunctionLagrangeForm(double[], double[]) - Constructor for class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionLagrangeForm
Construct a Lagrange polynomial with the given abscissas and function values.
PolynomialFunctionNewtonForm - Class in org.apache.commons.math4.legacy.analysis.polynomials
Implements the representation of a real polynomial function in Newton Form.
PolynomialFunctionNewtonForm(double[], double[]) - Constructor for class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionNewtonForm
Construct a Newton polynomial with the given a[] and c[].
PolynomialSolver - Interface in org.apache.commons.math4.legacy.analysis.solvers
Interface for (polynomial) root-finding algorithms.
polynomialSplineDerivative() - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialSplineFunction
Get the derivative of the polynomial spline function.
PolynomialSplineFunction - Class in org.apache.commons.math4.legacy.analysis.polynomials
Represents a polynomial spline function.
PolynomialSplineFunction(double[], PolynomialFunction[]) - Constructor for class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialSplineFunction
Construct a polynomial spline function with the given segment delimiters and interpolating polynomials.
PolynomialsUtils - Class in org.apache.commons.math4.legacy.analysis.polynomials
A collection of static methods that operate on or return polynomials.
Population - Interface in org.apache.commons.math4.legacy.genetics
A collection of chromosomes that facilitates generational evolution.
PopulationSize - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar
Population size.
PopulationSize(int) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.PopulationSize
 
populationVariance(double[]) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the population variance of the entries in the input array, or Double.NaN if the array is empty.
populationVariance(double[], double) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the population variance of the entries in the input array, using the precomputed mean value.
populationVariance(double[], double, int, int) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the population variance of the entries in the specified portion of the input array, using the precomputed mean value.
populationVariance(double[], int, int) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the population variance of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
pow(double) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
pow(double) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
pow(double[], int, double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute power of a derivative structure.
pow(double[], int, double, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute power of a derivative structure.
pow(double[], int, int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute integer power of a derivative structure.
pow(double, double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute power of a double to a derivative structure.
pow(double, DerivativeStructure) - Static method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Compute ax where a is a double and x a DerivativeStructure.
pow(double, SparseGradient) - Static method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Compute ax where a is a double and x a SparseGradient.
pow(int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
pow(int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
pow(int) - Method in class org.apache.commons.math4.legacy.field.linalg.FieldDenseMatrix
Multiplies the matrix with itself p times.
pow(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
pow(SparseGradient) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Pow - Class in org.apache.commons.math4.legacy.analysis.function
Power function.
Pow() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Pow
 
PowellOptimizer - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv
Powell's algorithm.
PowellOptimizer(double, double) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.PowellOptimizer
The parameters control the default convergence checking procedure.
PowellOptimizer(double, double, double, double) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.PowellOptimizer
Builds an instance with the default convergence checking procedure.
PowellOptimizer(double, double, double, double, ConvergenceChecker<PointValuePair>) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.PowellOptimizer
This constructor allows to specify a user-defined convergence checker, in addition to the parameters that control the default convergence checking procedure and the line search tolerances.
PowellOptimizer(double, double, ConvergenceChecker<PointValuePair>) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.PowellOptimizer
This constructor allows to specify a user-defined convergence checker, in addition to the parameters that control the default convergence checking procedure.
power(int) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Returns the result multiplying this with itself p times.
power(int) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Returns the result of multiplying this with itself p times.
power(int) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Returns the result multiplying this with itself p times.
power(int) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Returns the result of multiplying this with itself p times.
Power - Class in org.apache.commons.math4.legacy.analysis.function
Power function.
Power(double) - Constructor for class org.apache.commons.math4.legacy.analysis.function.Power
 
precondition(double[], double[]) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.gradient.NonLinearConjugateGradientOptimizer.IdentityPreconditioner
Precondition a search direction.
precondition(double[], double[]) - Method in interface org.apache.commons.math4.legacy.optim.nonlinear.scalar.gradient.Preconditioner
Precondition a search direction.
PreconditionedIterativeLinearSolver - Class in org.apache.commons.math4.legacy.linear
This abstract class defines preconditioned iterative solvers.
PreconditionedIterativeLinearSolver(int) - Constructor for class org.apache.commons.math4.legacy.linear.PreconditionedIterativeLinearSolver
Creates a new instance of this class, with default iteration manager.
PreconditionedIterativeLinearSolver(IterationManager) - Constructor for class org.apache.commons.math4.legacy.linear.PreconditionedIterativeLinearSolver
Creates a new instance of this class, with custom iteration manager.
Preconditioner - Interface in org.apache.commons.math4.legacy.optim.nonlinear.scalar.gradient
This interface represents a preconditioner for differentiable scalar objective function optimizers.
predict() - Method in class org.apache.commons.math4.legacy.filter.KalmanFilter
Predict the internal state estimation one time step ahead.
predict(double) - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Returns the "predicted" y value associated with the supplied x value, based on the data that has been added to the model when this method is activated.
predict(double[]) - Method in class org.apache.commons.math4.legacy.filter.KalmanFilter
Predict the internal state estimation one time step ahead.
predict(RealVector) - Method in class org.apache.commons.math4.legacy.filter.KalmanFilter
Predict the internal state estimation one time step ahead.
preMultiply(double[]) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Returns the (row) vector result of premultiplying this by the vector v.
preMultiply(double[]) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Returns the (row) vector result of premultiplying this by the vector v.
preMultiply(double[]) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Returns the (row) vector result of premultiplying this by the vector v.
preMultiply(double[]) - Method in class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Returns the (row) vector result of premultiplying this by the vector v.
preMultiply(double[]) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Returns the (row) vector result of premultiplying this by the vector v.
preMultiply(FieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Premultiply this matrix by m.
preMultiply(FieldMatrix<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Premultiply this matrix by m.
preMultiply(FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Returns the (row) vector result of premultiplying this by the vector v.
preMultiply(FieldVector<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Returns the (row) vector result of premultiplying this by the vector v.
preMultiply(RealMatrix) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Returns the result of premultiplying this by m.
preMultiply(RealMatrix) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Returns the result of premultiplying this by m.
preMultiply(RealVector) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Returns the (row) vector result of premultiplying this by the vector v.
preMultiply(RealVector) - Method in class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Returns the (row) vector result of premultiplying this by the vector v.
preMultiply(RealVector) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Returns the (row) vector result of premultiplying this by the vector v.
preMultiply(T[]) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Returns the (row) vector result of premultiplying this by the vector v.
preMultiply(T[]) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Returns the (row) vector result of premultiplying this by the vector v.
preMultiply(T[]) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Returns the (row) vector result of premultiplying this by the vector v.
preMultiply(T[]) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Returns the (row) vector result of premultiplying this by the vector v.
probability(double, double) - Method in class org.apache.commons.math4.legacy.distribution.AbstractRealDistribution
For a random variable X whose values are distributed according to this distribution, this method returns P(x0 < X <= x1).
probability(int) - Method in class org.apache.commons.math4.legacy.distribution.EnumeratedIntegerDistribution
probability(int, int) - Method in class org.apache.commons.math4.legacy.distribution.AbstractIntegerDistribution
The default implementation uses the identity
ProcessModel - Interface in org.apache.commons.math4.legacy.filter
Defines the process dynamics model for the use with a KalmanFilter.
product(double[]) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the product of the entries in the input array, or Double.NaN if the array is empty.
product(double[], int, int) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the product of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
Product - Class in org.apache.commons.math4.legacy.stat.descriptive.summary
Returns the product of the available values.
Product() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.summary.Product
Create a Product instance.
Product(Product) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.summary.Product
Copy constructor, creates a new Product identical to the original.
projection(ArrayFieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Find the orthogonal projection of this vector onto another vector.
projection(FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Find the orthogonal projection of this vector onto another vector.
projection(FieldVector<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Find the orthogonal projection of this vector onto another vector.
projection(FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Find the orthogonal projection of this vector onto another vector.
projection(RealVector) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Find the orthogonal projection of this vector onto another vector.
providesResidual() - Method in class org.apache.commons.math4.legacy.linear.DefaultIterativeLinearSolverEvent
Returns true if IterativeLinearSolverEvent.getResidual() is supported.
providesResidual() - Method in class org.apache.commons.math4.legacy.linear.IterativeLinearSolverEvent
Returns true if IterativeLinearSolverEvent.getResidual() is supported.
PSquarePercentile - Class in org.apache.commons.math4.legacy.stat.descriptive.rank
A StorelessUnivariateStatistic estimating percentiles using the P2 Algorithm as explained by Raj Jain and Imrich Chlamtac in P2 Algorithm for Dynamic Calculation of Quantiles and Histogram Without Storing Observations.
PSquarePercentile(double) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.rank.PSquarePercentile
Constructs a PSquarePercentile with the specific percentile value.

Q

QR - org.apache.commons.math4.legacy.fitting.leastsquares.GaussNewtonOptimizer.Decomposition
Solve the linear least squares problem (Jx=r) using the QRDecomposition.
QRDecomposition - Class in org.apache.commons.math4.legacy.linear
Calculates the QR-decomposition of a matrix.
QRDecomposition(RealMatrix) - Constructor for class org.apache.commons.math4.legacy.linear.QRDecomposition
Calculates the QR-decomposition of the given matrix.
QRDecomposition(RealMatrix, double) - Constructor for class org.apache.commons.math4.legacy.linear.QRDecomposition
Calculates the QR-decomposition of the given matrix.
quantile() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.PSquarePercentile
Returns the quantile estimated by this statistic in the range [0.0-1.0].

R

R_1 - org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile.EstimationType
The method R_1 has the following formulae for index and estimates.
\( \begin{align} &index= Np + 1/2\, \\ &estimate= x_{\lceil h\,-\,1/2 \rceil} \\ &minLimit = 0 \\ \end{align}\)
R_2 - org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile.EstimationType
The method R_2 has the following formulae for index and estimates.
\( \begin{align} &index= Np + 1/2\, \\ &estimate=\frac{x_{\lceil h\,-\,1/2 \rceil} + x_{\lfloor h\,+\,1/2 \rfloor}}{2} \\ &minLimit = 0 \\ &maxLimit = 1 \\ \end{align}\)
R_3 - org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile.EstimationType
The method R_3 has the following formulae for index and estimates.
\( \begin{align} &index= Np \\ &estimate= x_{\lfloor h \rceil}\, \\ &minLimit = 0.5/N \\ \end{align}\)
R_4 - org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile.EstimationType
The method R_4 has the following formulae for index and estimates.
\( \begin{align} &index= Np\, \\ &estimate= x_{\lfloor h \rfloor} + (h - \lfloor h \rfloor) (x_{\lfloor h \rfloor + 1} - x_{\lfloor h \rfloor}) \\ &minLimit = 1/N \\ &maxLimit = 1 \\ \end{align}\)
R_5 - org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile.EstimationType
The method R_5 has the following formulae for index and estimates.
\( \begin{align} &index= Np + 1/2\\ &estimate= x_{\lfloor h \rfloor} + (h - \lfloor h \rfloor) (x_{\lfloor h \rfloor + 1} - x_{\lfloor h \rfloor}) \\ &minLimit = 0.5/N \\ &maxLimit = (N-0.5)/N \end{align}\)
R_6 - org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile.EstimationType
The method R_6 has the following formulae for index and estimates.
\( \begin{align} &index= (N + 1)p \\ &estimate= x_{\lfloor h \rfloor} + (h - \lfloor h \rfloor) (x_{\lfloor h \rfloor + 1} - x_{\lfloor h \rfloor}) \\ &minLimit = 1/(N+1) \\ &maxLimit = N/(N+1) \\ \end{align}\)
R_7 - org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile.EstimationType
The method R_7 implements Microsoft Excel style computation has the following formulae for index and estimates.
\( \begin{align} &index = (N-1)p + 1 \\ &estimate = x_{\lfloor h \rfloor} + (h - \lfloor h \rfloor) (x_{\lfloor h \rfloor + 1} - x_{\lfloor h \rfloor}) \\ &minLimit = 0 \\ &maxLimit = 1 \\ \end{align}\) The formula to evaluate weighted percentiles is as following.
\( \begin{align} &S_k = (k-1)w_k + (n-1)\sum_{i=1}^{k-1}w_i &Then find k s.t.
R_8 - org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile.EstimationType
The method R_8 has the following formulae for index and estimates.
\( \begin{align} &index = (N + 1/3)p + 1/3 \\ &estimate = x_{\lfloor h \rfloor} + (h - \lfloor h \rfloor) (x_{\lfloor h \rfloor + 1} - x_{\lfloor h \rfloor}) \\ &minLimit = (2/3)/(N+1/3) \\ &maxLimit = (N-1/3)/(N+1/3) \\ \end{align}\)
R_9 - org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile.EstimationType
The method R_9 has the following formulae for index and estimates.
\( \begin{align} &index = (N + 1/4)p + 3/8\\ &estimate = x_{\lfloor h \rfloor} + (h - \lfloor h \rfloor) (x_{\lfloor h \rfloor + 1} - x_{\lfloor h \rfloor}) \\ &minLimit = (5/8)/(N+1/4) \\ &maxLimit = (N-3/8)/(N+1/4) \\ \end{align}\)
RANDOM - org.apache.commons.math4.legacy.stat.ranking.TiesStrategy
Ties get a random integral value from among applicable ranks.
randomBinaryRepresentation(int) - Static method in class org.apache.commons.math4.legacy.genetics.BinaryChromosome
Returns a representation of a random binary array of length length.
RandomKey<T> - Class in org.apache.commons.math4.legacy.genetics
Random Key chromosome is used for permutation representation.
RandomKey(Double[]) - Constructor for class org.apache.commons.math4.legacy.genetics.RandomKey
Constructor.
RandomKey(List<Double>) - Constructor for class org.apache.commons.math4.legacy.genetics.RandomKey
Constructor.
RandomKeyMutation - Class in org.apache.commons.math4.legacy.genetics
Mutation operator for RandomKeys.
RandomKeyMutation() - Constructor for class org.apache.commons.math4.legacy.genetics.RandomKeyMutation
 
randomPermutation(int) - Static method in class org.apache.commons.math4.legacy.genetics.RandomKey
Generates a representation corresponding to a random permutation of length l which can be passed to the RandomKey constructor.
RandomPivotingStrategy - Class in org.apache.commons.math4.legacy.stat.descriptive.rank
A strategy of selecting random index between begin and end indices.
RandomPivotingStrategy(RandomSource, long) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.rank.RandomPivotingStrategy
Simple constructor.
rank(double[]) - Method in class org.apache.commons.math4.legacy.stat.ranking.NaturalRanking
Rank data using the natural ordering on Doubles, with NaN values handled according to nanStrategy and ties resolved using tiesStrategy.
rank(double[]) - Method in interface org.apache.commons.math4.legacy.stat.ranking.RankingAlgorithm
Performs a rank transformation on the input data, returning an array of ranks.
ranking(ClusterEvaluator) - Static method in interface org.apache.commons.math4.legacy.ml.clustering.ClusterEvaluator
Converts to a ranking function (as required by clustering implementations).
RankingAlgorithm - Interface in org.apache.commons.math4.legacy.stat.ranking
Interface representing a rank transformation.
readBaseExternal(ObjectInput) - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Read the base state of the instance.
readExternal(ObjectInput) - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
readExternal(ObjectInput) - Method in class org.apache.commons.math4.legacy.ode.sampling.NordsieckStepInterpolator
RealFieldUnivariateFunction<T extends RealFieldElement<T>> - Interface in org.apache.commons.math4.legacy.analysis
An interface representing a univariate real function.
RealLinearOperator - Class in org.apache.commons.math4.legacy.linear
This class defines a linear operator operating on real (double) vector spaces.
RealLinearOperator() - Constructor for class org.apache.commons.math4.legacy.linear.RealLinearOperator
 
RealMatrix - Interface in org.apache.commons.math4.legacy.linear
Interface defining a real-valued matrix with basic algebraic operations.
RealMatrixChangingVisitor - Interface in org.apache.commons.math4.legacy.linear
Interface defining a visitor for matrix entries.
RealMatrixFormat - Class in org.apache.commons.math4.legacy.linear
Formats a nxm matrix in components list format "{{a00,a01, ..., a0m-1},{a10, a11, ..., a1m-1},{...},{ an-10, an-11, ..., an-1m-1}}".
RealMatrixFormat() - Constructor for class org.apache.commons.math4.legacy.linear.RealMatrixFormat
Create an instance with default settings.
RealMatrixFormat(String, String, String, String, String, String) - Constructor for class org.apache.commons.math4.legacy.linear.RealMatrixFormat
Create an instance with custom prefix, suffix and separator.
RealMatrixFormat(String, String, String, String, String, String, NumberFormat) - Constructor for class org.apache.commons.math4.legacy.linear.RealMatrixFormat
Create an instance with custom prefix, suffix, separator and format for components.
RealMatrixFormat(NumberFormat) - Constructor for class org.apache.commons.math4.legacy.linear.RealMatrixFormat
Create an instance with a custom number format for components.
RealMatrixPreservingVisitor - Interface in org.apache.commons.math4.legacy.linear
Interface defining a visitor for matrix entries.
RealVector - Class in org.apache.commons.math4.legacy.linear
Class defining a real-valued vector with basic algebraic operations.
RealVector() - Constructor for class org.apache.commons.math4.legacy.linear.RealVector
 
RealVector.Entry - Class in org.apache.commons.math4.legacy.linear
An entry in the vector.
RealVector.SparseEntryIterator - Class in org.apache.commons.math4.legacy.linear
This class should rarely be used, but is here to provide a default implementation of sparseIterator(), which is implemented by walking over the entries, skipping those that are zero.
RealVectorChangingVisitor - Interface in org.apache.commons.math4.legacy.linear
This interface defines a visitor for the entries of a vector.
RealVectorFormat - Class in org.apache.commons.math4.legacy.linear
Formats a vector in components list format "{v0; v1; ...; vk-1}".
RealVectorFormat() - Constructor for class org.apache.commons.math4.legacy.linear.RealVectorFormat
Create an instance with default settings.
RealVectorFormat(String, String, String) - Constructor for class org.apache.commons.math4.legacy.linear.RealVectorFormat
Create an instance with custom prefix, suffix and separator.
RealVectorFormat(String, String, String, NumberFormat) - Constructor for class org.apache.commons.math4.legacy.linear.RealVectorFormat
Create an instance with custom prefix, suffix, separator and format for components.
RealVectorFormat(NumberFormat) - Constructor for class org.apache.commons.math4.legacy.linear.RealVectorFormat
Create an instance with a custom number format for components.
RealVectorPreservingVisitor - Interface in org.apache.commons.math4.legacy.linear
This interface defines a visitor for the entries of a vector.
reciprocal() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
reciprocal() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
reciprocal() - Method in class org.apache.commons.math4.legacy.linear.BigReal
RectangularCholeskyDecomposition - Class in org.apache.commons.math4.legacy.linear
Calculates the rectangular Cholesky decomposition of a matrix.
RectangularCholeskyDecomposition(RealMatrix) - Constructor for class org.apache.commons.math4.legacy.linear.RectangularCholeskyDecomposition
Decompose a symmetric positive semidefinite matrix.
RectangularCholeskyDecomposition(RealMatrix, double) - Constructor for class org.apache.commons.math4.legacy.linear.RectangularCholeskyDecomposition
Decompose a symmetric positive semidefinite matrix.
registerVariationalEquations(ExpandableStatefulODE) - Method in class org.apache.commons.math4.legacy.ode.JacobianMatrices
Register the variational equations for the Jacobians matrices to the expandable set.
regress() - Method in class org.apache.commons.math4.legacy.stat.regression.MillerUpdatingRegression
Conducts a regression on the data in the model, using all regressors.
regress() - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Performs a regression on data present in buffers and outputs a RegressionResults object.
regress() - Method in interface org.apache.commons.math4.legacy.stat.regression.UpdatingMultipleLinearRegression
Performs a regression on data present in buffers and outputs a RegressionResults object.
regress(int) - Method in class org.apache.commons.math4.legacy.stat.regression.MillerUpdatingRegression
Conducts a regression on the data in the model, using a subset of regressors.
regress(int[]) - Method in class org.apache.commons.math4.legacy.stat.regression.MillerUpdatingRegression
Conducts a regression on the data in the model, using regressors in array Calling this method will change the internal order of the regressors and care is required in interpreting the hatmatrix.
regress(int[]) - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Performs a regression on data present in buffers including only regressors.
regress(int[]) - Method in interface org.apache.commons.math4.legacy.stat.regression.UpdatingMultipleLinearRegression
Performs a regression on data present in buffers including only regressors.
RegressionResults - Class in org.apache.commons.math4.legacy.stat.regression
Results of a Multiple Linear Regression model fit.
RegressionResults(double[], double[][], boolean, long, int, double, double, double, boolean, boolean) - Constructor for class org.apache.commons.math4.legacy.stat.regression.RegressionResults
Constructor for Regression Results.
REGULA_FALSI - org.apache.commons.math4.legacy.analysis.solvers.BaseSecantSolver.Method
The Regula Falsi or False Position method.
RegulaFalsiSolver - Class in org.apache.commons.math4.legacy.analysis.solvers
Implements the Regula Falsi or False position method for root-finding (approximating a zero of a univariate real function).
RegulaFalsiSolver() - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.RegulaFalsiSolver
Construct a solver with default accuracy (1e-6).
RegulaFalsiSolver(double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.RegulaFalsiSolver
Construct a solver.
RegulaFalsiSolver(double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.RegulaFalsiSolver
Construct a solver.
RegulaFalsiSolver(double, double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.RegulaFalsiSolver
Construct a solver.
reinitialize(double[], boolean, EquationsMapper, EquationsMapper[]) - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Reinitialize the instance.
reinitialize(double[], boolean, EquationsMapper, EquationsMapper[]) - Method in class org.apache.commons.math4.legacy.ode.sampling.NordsieckStepInterpolator
Reinitialize the instance.
reinitialize(double, double, double[], Array2DRowRealMatrix) - Method in class org.apache.commons.math4.legacy.ode.sampling.NordsieckStepInterpolator
Reinitialize the instance.
reinitializeBegin(FieldStepInterpolator<T>) - Method in class org.apache.commons.math4.legacy.ode.events.FieldEventState
Reinitialize the beginning of the step.
reinitializeBegin(StepInterpolator) - Method in class org.apache.commons.math4.legacy.ode.events.EventState
Reinitialize the beginning of the step.
Relationship - Enum in org.apache.commons.math4.legacy.optim.linear
Types of relationships between two cells in a Solver LinearConstraint.
remainder(double) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
remainder(double) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
remainder(double[], int, double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Perform remainder of two derivative structures.
remainder(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
remainder(SparseGradient) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
remove() - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector.OpenMapSparseIterator
remove() - Method in class org.apache.commons.math4.legacy.linear.RealVector.SparseEntryIterator
REMOVED - org.apache.commons.math4.legacy.stat.ranking.NaNStrategy
NaNs are removed before computing ranks.
removeData(double[][]) - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Removes observations represented by the elements in data.
removeData(double, double) - Method in class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Removes the observation (x,y) from the regression data set.
removeIterationListener(IterationListener) - Method in class org.apache.commons.math4.legacy.linear.IterationManager
Removes the specified iteration listener from the list of listeners currently attached to this object.
removeMostRecentValue() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Removes the most recent value from the dataset.
replaceMostRecentValue(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Replaces the most recently stored value with the given value.
rescale(double) - Method in class org.apache.commons.math4.legacy.ode.sampling.NordsieckStepInterpolator
Rescale the instance.
rescale(T) - Method in class org.apache.commons.math4.legacy.ode.MultistepFieldIntegrator
Rescale the instance.
reset(double, double[]) - Method in class org.apache.commons.math4.legacy.ode.events.EventState
Let the event handler reset the state if it wants.
reset(FieldODEStateAndDerivative<T>) - Method in class org.apache.commons.math4.legacy.ode.events.FieldEventState
Let the event handler reset the state if it wants.
RESET_DERIVATIVES - org.apache.commons.math4.legacy.ode.events.Action
Reset derivatives indicator.
RESET_DERIVATIVES - org.apache.commons.math4.legacy.ode.events.EventHandler.Action
Reset derivatives indicator.
RESET_STATE - org.apache.commons.math4.legacy.ode.events.Action
Reset state indicator.
RESET_STATE - org.apache.commons.math4.legacy.ode.events.EventHandler.Action
Reset state indicator.
resetInternalState() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeFieldIntegrator
Reset internal state to dummy values.
resetInternalState() - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
Reset internal state to dummy values.
resetIterationCount() - Method in class org.apache.commons.math4.legacy.linear.IterationManager
Sets the iteration count to 0.
resetOccurred - Variable in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Indicator that a state or derivative reset was triggered by some event.
resetOccurred() - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Check if a reset occurred while last step was accepted.
resetState(double, double[]) - Method in class org.apache.commons.math4.legacy.ode.events.EventFilter
Reset the state prior to continue the integration.
resetState(double, double[]) - Method in interface org.apache.commons.math4.legacy.ode.events.EventHandler
Reset the state prior to continue the integration.
resetState(FieldODEStateAndDerivative<T>) - Method in interface org.apache.commons.math4.legacy.ode.events.FieldEventHandler
Reset the state prior to continue the integration.
restrictStep(FieldODEStateAndDerivative<T>, FieldODEStateAndDerivative<T>) - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractFieldStepInterpolator
Create a new restricted version of the instance.
RiddersSolver - Class in org.apache.commons.math4.legacy.analysis.solvers
Implements the Ridders' Method for root finding of real univariate functions.
RiddersSolver() - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.RiddersSolver
Construct a solver with default accuracy (1e-6).
RiddersSolver(double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.RiddersSolver
Construct a solver.
RiddersSolver(double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.RiddersSolver
Construct a solver.
RIGHT_SIDE - org.apache.commons.math4.legacy.analysis.solvers.AllowedSolution
Only solutions that are greater than or equal to the actual root are acceptable as solutions for root-finding.
rint() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
rint() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Rint - Class in org.apache.commons.math4.legacy.analysis.function
rint function.
Rint() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Rint
 
rjBesl(double, double, int) - Static method in class org.apache.commons.math4.legacy.special.BesselJ
Calculates Bessel functions \(J_{n+alpha}(x)\) for non-negative argument x, and non-negative order n + alpha.
ROMBERG_MAX_ITERATIONS_COUNT - Static variable in class org.apache.commons.math4.legacy.analysis.integration.RombergIntegrator
Maximal number of iterations for Romberg.
RombergIntegrator - Class in org.apache.commons.math4.legacy.analysis.integration
Implements the Romberg Algorithm for integration of real univariate functions.
RombergIntegrator() - Constructor for class org.apache.commons.math4.legacy.analysis.integration.RombergIntegrator
Construct a Romberg integrator with default settings (max iteration count set to RombergIntegrator.ROMBERG_MAX_ITERATIONS_COUNT).
RombergIntegrator(double, double, int, int) - Constructor for class org.apache.commons.math4.legacy.analysis.integration.RombergIntegrator
Build a Romberg integrator with given accuracies and iterations counts.
RombergIntegrator(int, int) - Constructor for class org.apache.commons.math4.legacy.analysis.integration.RombergIntegrator
Build a Romberg integrator with given iteration counts.
rootLogLikelihoodRatio(long, long, long, long) - Method in class org.apache.commons.math4.legacy.stat.inference.GTest
Calculates the root log-likelihood ratio for 2 state Datasets.
rootLogLikelihoodRatio(long, long, long, long) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
rootN(double[], int, int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute nth root of a derivative structure.
rootN(int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
rootN(int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
round() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
round() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
RRQRDecomposition - Class in org.apache.commons.math4.legacy.linear
Calculates the rank-revealing QR-decomposition of a matrix, with column pivoting.
RRQRDecomposition(RealMatrix) - Constructor for class org.apache.commons.math4.legacy.linear.RRQRDecomposition
Calculates the QR-decomposition of the given matrix.
RRQRDecomposition(RealMatrix, double) - Constructor for class org.apache.commons.math4.legacy.linear.RRQRDecomposition
Calculates the QR-decomposition of the given matrix.
RungeKuttaFieldIntegrator<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements the common part of all fixed step Runge-Kutta integrators for Ordinary Differential Equations.
RungeKuttaFieldIntegrator(Field<T>, String, T) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.RungeKuttaFieldIntegrator
Simple constructor.
RungeKuttaIntegrator - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements the common part of all fixed step Runge-Kutta integrators for Ordinary Differential Equations.
RungeKuttaIntegrator(String, double[], double[][], double[], RungeKuttaStepInterpolator, double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.RungeKuttaIntegrator
Simple constructor.

S

sample() - Method in class org.apache.commons.math4.legacy.distribution.EnumeratedDistribution.Sampler
Generates a random value sampled from this distribution.
sample() - Method in interface org.apache.commons.math4.legacy.distribution.MultivariateRealDistribution.Sampler
Generates a random value vector sampled from this distribution.
sample(int) - Method in class org.apache.commons.math4.legacy.distribution.EnumeratedDistribution.Sampler
Generates a random sample from the distribution.
sample(int, MultivariateRealDistribution.Sampler) - Static method in class org.apache.commons.math4.legacy.distribution.AbstractMultivariateRealDistribution
Utility function for creating n vectors generated by the given sampler.
sample(int, ContinuousDistribution.Sampler) - Static method in class org.apache.commons.math4.legacy.distribution.AbstractRealDistribution
Utility function for allocating an array and filling it with n samples generated by the given sampler.
sample(int, DiscreteDistribution.Sampler) - Static method in class org.apache.commons.math4.legacy.distribution.AbstractIntegerDistribution
Utility function for allocating an array and filling it with n samples generated by the given sampler.
sample(int, T[]) - Method in class org.apache.commons.math4.legacy.distribution.EnumeratedDistribution.Sampler
Generates a random sample from the distribution.
sanityChecks(ExpandableStatefulODE, double) - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Check the integration span.
sanityChecks(ExpandableStatefulODE, double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
Check the integration span.
sanityChecks(FieldODEState<T>, T) - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Check the integration span.
sanityChecks(FieldODEState<T>, T) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeFieldIntegrator
Check the integration span.
scalAbsoluteTolerance - Variable in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeFieldIntegrator
Allowed absolute scalar error.
scalAbsoluteTolerance - Variable in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
Allowed absolute scalar error.
scalarAdd(double) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Returns the result of adding d to each entry of this.
scalarAdd(double) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Returns the result of adding d to each entry of this.
scalarAdd(double) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Returns the result of adding d to each entry of this.
scalarAdd(T) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Increment each entry of this matrix.
scalarAdd(T) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Increment each entry of this matrix.
scalarAdd(T) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Increment each entry of this matrix.
scalarMultiply(double) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Returns the result of multiplying each entry of this by d.
scalarMultiply(double) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Returns the result of multiplying each entry of this by d.
scalarMultiply(double) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Returns the result of multiplying each entry of this by d.
scalarMultiply(T) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Multiply each entry by d.
scalarMultiply(T) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Multiply each entry by d.
scalarMultiply(T) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Multiply each entry by d.
scalb(int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
scalb(int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
scaled - Variable in class org.apache.commons.math4.legacy.ode.MultistepFieldIntegrator
First scaled derivative (h y').
scaled - Variable in class org.apache.commons.math4.legacy.ode.MultistepIntegrator
First scaled derivative (h y').
scalRelativeTolerance - Variable in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeFieldIntegrator
Allowed relative scalar error.
scalRelativeTolerance - Variable in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
Allowed relative scalar error.
score(List<? extends Cluster<? extends Clusterable>>) - Method in interface org.apache.commons.math4.legacy.ml.clustering.ClusterEvaluator
 
score(List<? extends Cluster<? extends Clusterable>>) - Method in class org.apache.commons.math4.legacy.ml.clustering.evaluation.CalinskiHarabasz
score(List<? extends Cluster<? extends Clusterable>>) - Method in class org.apache.commons.math4.legacy.ml.clustering.evaluation.SumOfClusterVariances
scramble(int, int, int, int) - Method in class org.apache.commons.math4.legacy.random.HaltonSequenceGenerator
Performs scrambling of digit d_j according to the formula:
search(double[], double[]) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.LineSearch
Deprecated.
Finds the number alpha that optimizes f(startPoint + alpha * direction).
search(UnivariateFunction, GoalType, double, double) - Method in class org.apache.commons.math4.legacy.optim.univariate.BracketFinder
Search new points that bracket a local optimum of the function.
searchForFitnessUpdate(Population) - Method in class org.apache.commons.math4.legacy.genetics.Chromosome
Searches the population for a chromosome representing the same solution, and if it finds one, updates the fitness to its value.
SearchInterval - Class in org.apache.commons.math4.legacy.optim.univariate
Search interval and (optional) start value.
SearchInterval(double, double) - Constructor for class org.apache.commons.math4.legacy.optim.univariate.SearchInterval
 
SearchInterval(double, double, double) - Constructor for class org.apache.commons.math4.legacy.optim.univariate.SearchInterval
 
SecantSolver - Class in org.apache.commons.math4.legacy.analysis.solvers
Implements the Secant method for root-finding (approximating a zero of a univariate real function).
SecantSolver() - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.SecantSolver
Construct a solver with default accuracy (1e-6).
SecantSolver(double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.SecantSolver
Construct a solver.
SecantSolver(double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.solvers.SecantSolver
Construct a solver.
SecondaryEquations - Interface in org.apache.commons.math4.legacy.ode
This interface allows users to add secondary differential equations to a primary set of differential equations.
SecondMoment - Class in org.apache.commons.math4.legacy.stat.descriptive.moment
Computes a statistic related to the Second Central Moment.
SecondMoment() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.SecondMoment
Create a SecondMoment instance.
SecondMoment(SecondMoment) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.SecondMoment
Copy constructor, creates a new SecondMoment identical to the original.
SecondOrderDifferentialEquations - Interface in org.apache.commons.math4.legacy.ode
This interface represents a second order differential equations set.
SecondOrderIntegrator - Interface in org.apache.commons.math4.legacy.ode
This interface represents a second order integrator for differential equations.
select(double[], int[], int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.KthSelector
Select Kth value in the array.
select(Population) - Method in interface org.apache.commons.math4.legacy.genetics.SelectionPolicy
Select two chromosomes from the population.
select(Population) - Method in class org.apache.commons.math4.legacy.genetics.TournamentSelection
Select two chromosomes from the population.
SelectionPolicy - Interface in org.apache.commons.math4.legacy.genetics
Algorithm used to select a chromosome pair from a population.
selectTransformer(Transformer, double, boolean) - Method in enum org.apache.commons.math4.legacy.ode.events.FilterType
Get next function transformer in the specified direction.
SemiVariance - Class in org.apache.commons.math4.legacy.stat.descriptive.moment
Computes the semivariance of a set of values with respect to a given cutoff value.
SemiVariance() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance
Constructs a SemiVariance with default (true) biasCorrected property and default (Downside) varianceDirection property.
SemiVariance(boolean) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance
Constructs a SemiVariance with the specified biasCorrected property and default (Downside) varianceDirection property.
SemiVariance(boolean, SemiVariance.Direction) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance
Constructs a SemiVariance with the specified isBiasCorrected property and the specified Direction property.
SemiVariance(SemiVariance) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance
Copy constructor, creates a new SemiVariance identical to the original.
SemiVariance(SemiVariance.Direction) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance
Constructs a SemiVariance with the specified Direction property.
SemiVariance.Direction - Enum in org.apache.commons.math4.legacy.stat.descriptive.moment
The direction of the semivariance - either upside or downside.
SEQUENTIAL - org.apache.commons.math4.legacy.stat.ranking.TiesStrategy
Ties assigned sequential ranks in order of occurrence.
serializeRealMatrix(RealMatrix, ObjectOutputStream) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Serialize a RealMatrix.
serializeRealVector(RealVector, ObjectOutputStream) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Serialize a RealVector.
set(double) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Set all elements to a single value.
set(double) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Set all elements to a single value.
set(double) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Set all elements to a single value.
set(int, int, T) - Method in class org.apache.commons.math4.legacy.field.linalg.FieldDenseMatrix
Sets an element.
set(int, ArrayFieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Set a set of consecutive elements.
set(T) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Set all elements to a single value.
set(T) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Set all elements to a single value.
set(T) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Set all elements to a single value.
setArity(int) - Method in class org.apache.commons.math4.legacy.genetics.TournamentSelection
Sets the arity (number of chromosomes drawn to the tournament).
setBiasCorrected(boolean) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance
Sets the biasCorrected property.
setBiasCorrected(boolean) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.StandardDeviation
 
setBiasCorrected(boolean) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
 
setColumn(int, double[]) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Sets the specified column of this matrix to the entries of the specified array.
setColumn(int, double[]) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Sets the specified column of this matrix to the entries of the specified array.
setColumn(int, double[]) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Sets the specified column of this matrix to the entries of the specified array.
setColumn(int, T[]) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Set the entries in column number column as a column matrix.
setColumn(int, T[]) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Set the entries in column number column as a column matrix.
setColumn(int, T[]) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Set the entries in column number column as a column matrix.
setColumnMatrix(int, FieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Set the entries in column number column as a column matrix.
setColumnMatrix(int, FieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Set the entries in column number column as a column matrix.
setColumnMatrix(int, FieldMatrix<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Set the entries in column number column as a column matrix.
setColumnMatrix(int, RealMatrix) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Sets the specified column of this matrix to the entries of the specified column matrix.
setColumnMatrix(int, RealMatrix) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Sets the specified column of this matrix to the entries of the specified column matrix.
setColumnMatrix(int, RealMatrix) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Sets the specified column of this matrix to the entries of the specified column matrix.
setColumnVector(int, FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Set the entries in column number column as a vector.
setColumnVector(int, FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Set the entries in column number column as a vector.
setColumnVector(int, FieldVector<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Set the entries in column number column as a vector.
setColumnVector(int, RealVector) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Sets the specified column of this matrix to the entries of the specified vector.
setColumnVector(int, RealVector) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Sets the specified column of this matrix to the entries of the specified vector.
setColumnVector(int, RealVector) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Sets the specified column of this matrix to the entries of the specified vector.
setCompleteState(double[]) - Method in class org.apache.commons.math4.legacy.ode.ExpandableStatefulODE
Set the complete current state.
setControlFactors(double, double, double, double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.GraggBulirschStoerIntegrator
Set the step size control factors.
setData(double[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.AbstractUnivariateStatistic
Set the data array.
setData(double[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Set the data array.
setData(double[], double[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Set the data array.
setData(double[], double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Set the data and weights arrays.
setData(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.AbstractUnivariateStatistic
Set the data array.
setData(double[], int, int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Set the data array.
setElitismRate(double) - Method in class org.apache.commons.math4.legacy.genetics.ElitisticListPopulation
Sets the elitism rate, i.e.
setEntry(int, double) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Set a single element.
setEntry(int, double) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Set a single element.
setEntry(int, double) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Set a single element.
setEntry(int, int, double) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Set the entry in the specified row and column.
setEntry(int, int, double) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Set the entry in the specified row and column.
setEntry(int, int, double) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Set the entry in the specified row and column.
setEntry(int, int, double) - Method in class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Set the entry in the specified row and column.
setEntry(int, int, double) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealMatrix
Set the entry in the specified row and column.
setEntry(int, int, double) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Set the entry in the specified row and column.
setEntry(int, int, T) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Set the entry in the specified row and column.
setEntry(int, int, T) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Set the entry in the specified row and column.
setEntry(int, int, T) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Set the entry in the specified row and column.
setEntry(int, int, T) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Set the entry in the specified row and column.
setEntry(int, int, T) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldMatrix
Set the entry in the specified row and column.
setEntry(int, T) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Set a single element.
setEntry(int, T) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Set a single element.
setEntry(int, T) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Set a single element.
setEquations(ExpandableStatefulODE) - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Set the equations.
setExpandable(ExpandableStatefulODE) - Method in class org.apache.commons.math4.legacy.ode.events.EventState
Set the equation.
setGeoMeanImpl(StorelessUnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Sets the implementation for the geometric mean.
setGeoMeanImpl(StorelessUnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Sets the implementation for the geometric mean.
setGeoMeanImpl(StorelessUnivariateStatistic[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Sets the implementation for the geometric mean.
setGeoMeanImpl(StorelessUnivariateStatistic[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Sets the implementation for the geometric mean.
setGeometricMeanImpl(UnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Sets the implementation for the geometric mean.
setIndex(int) - Method in class org.apache.commons.math4.legacy.linear.RealVector.Entry
Set the index of the entry.
setInitialMainStateJacobian(double[][]) - Method in class org.apache.commons.math4.legacy.ode.JacobianMatrices
Set the initial value of the Jacobian matrix with respect to state.
setInitialParameterJacobian(String, double[]) - Method in class org.apache.commons.math4.legacy.ode.JacobianMatrices
Set the initial value of a column of the Jacobian matrix with respect to one parameter.
setInitialStepSize(double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
Set the initial step size.
setInitialStepSize(T) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeFieldIntegrator
Set the initial step size.
setInterpolatedTime(double) - Method in class org.apache.commons.math4.legacy.ode.ContinuousOutputModel
Set the time of the interpolated point.
setInterpolatedTime(double) - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Set the time of the interpolated point.
setInterpolatedTime(double) - Method in interface org.apache.commons.math4.legacy.ode.sampling.StepInterpolator
Set the time of the interpolated point.
setInterpolationControl(boolean, int) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.GraggBulirschStoerIntegrator
Set the interpolation order control parameter.
setIsLastStep(boolean) - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Set the last state flag.
setKurtosisImpl(UnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Sets the implementation for the kurtosis.
setMaxEvaluations(int) - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Set the maximal number of differential equations function evaluations.
setMaxEvaluations(int) - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Set the maximal number of differential equations function evaluations.
setMaxEvaluations(int) - Method in interface org.apache.commons.math4.legacy.ode.FirstOrderFieldIntegrator
Set the maximal number of differential equations function evaluations.
setMaxEvaluations(int) - Method in interface org.apache.commons.math4.legacy.ode.ODEIntegrator
Set the maximal number of differential equations function evaluations.
setMaxGrowth(double) - Method in class org.apache.commons.math4.legacy.ode.MultistepFieldIntegrator
Set the maximal growth factor for stepsize control.
setMaxGrowth(double) - Method in class org.apache.commons.math4.legacy.ode.MultistepIntegrator
Set the maximal growth factor for stepsize control.
setMaxGrowth(double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaIntegrator
Set the maximal growth factor for stepsize control.
setMaxGrowth(T) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaFieldIntegrator
Set the maximal growth factor for stepsize control.
setMaxImpl(StorelessUnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Sets the implementation for the maximum.
setMaxImpl(StorelessUnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Sets the implementation for the maximum.
setMaxImpl(StorelessUnivariateStatistic[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Sets the implementation for the maximum.
setMaxImpl(StorelessUnivariateStatistic[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Sets the implementation for the maximum.
setMaxImpl(UnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Sets the implementation for the maximum.
setMeanImpl(StorelessUnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Sets the implementation for the mean.
setMeanImpl(StorelessUnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Sets the implementation for the mean.
setMeanImpl(StorelessUnivariateStatistic[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Sets the implementation for the mean.
setMeanImpl(StorelessUnivariateStatistic[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Sets the implementation for the mean.
setMeanImpl(UnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Sets the implementation for the mean.
setMinImpl(StorelessUnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Sets the implementation for the minimum.
setMinImpl(StorelessUnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Sets the implementation for the minimum.
setMinImpl(StorelessUnivariateStatistic[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Sets the implementation for the minimum.
setMinImpl(StorelessUnivariateStatistic[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Sets the implementation for the minimum.
setMinImpl(UnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Sets the implementation for the minimum.
setMinReduction(double) - Method in class org.apache.commons.math4.legacy.ode.MultistepFieldIntegrator
Set the minimal reduction factor for stepsize control.
setMinReduction(double) - Method in class org.apache.commons.math4.legacy.ode.MultistepIntegrator
Set the minimal reduction factor for stepsize control.
setMinReduction(double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaIntegrator
Set the minimal reduction factor for stepsize control.
setMinReduction(T) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaFieldIntegrator
Set the minimal reduction factor for stepsize control.
setNoIntercept(boolean) - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
 
setOrderControl(int, double, double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.GraggBulirschStoerIntegrator
Set the order control parameters.
setParameter(String, double) - Method in interface org.apache.commons.math4.legacy.ode.ParameterizedODE
Set the value for a given parameter.
setParameterizedODE(ParameterizedODE) - Method in class org.apache.commons.math4.legacy.ode.JacobianMatrices
Set a parameter Jacobian provider.
setParameterStep(String, double) - Method in class org.apache.commons.math4.legacy.ode.JacobianMatrices
Set the step associated to a parameter in order to compute by finite difference the Jacobian matrix.
setPercentileImpl(UnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Sets the implementation to be used by DescriptiveStatistics.getPercentile(double).
setPopulationLimit(int) - Method in class org.apache.commons.math4.legacy.genetics.ListPopulation
Sets the maximal population size.
setPrimaryState(double[]) - Method in class org.apache.commons.math4.legacy.ode.ExpandableStatefulODE
Set primary part of the current state.
setQuantile(double) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Sets the value of the quantile field (determines what percentile is computed when evaluate() is called with no quantile argument).
setRandomGenerator(UniformRandomProvider) - Static method in class org.apache.commons.math4.legacy.genetics.GeneticAlgorithm
Set the (static) random generator.
setRoundingMode(RoundingMode) - Method in class org.apache.commons.math4.legacy.linear.BigReal
Sets the rounding mode for decimal divisions.
setRow(int, double[]) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Sets the specified row of this matrix to the entries of the specified array.
setRow(int, double[]) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Sets the specified row of this matrix to the entries of the specified array.
setRow(int, double[]) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Sets the specified row of this matrix to the entries of the specified array.
setRow(int, double[]) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Sets the specified row of this matrix to the entries of the specified array.
setRow(int, T[]) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Set the entries in row number row as a row matrix.
setRow(int, T[]) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Set the entries in row number row as a row matrix.
setRow(int, T[]) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Set the entries in row number row as a row matrix.
setRowMatrix(int, BlockFieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Sets the entries in row number row as a row matrix.
setRowMatrix(int, BlockRealMatrix) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Sets the entries in row number row as a row matrix.
setRowMatrix(int, FieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Set the entries in row number row as a row matrix.
setRowMatrix(int, FieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Set the entries in row number row as a row matrix.
setRowMatrix(int, FieldMatrix<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Set the entries in row number row as a row matrix.
setRowMatrix(int, RealMatrix) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Sets the specified row of this matrix to the entries of the specified row matrix.
setRowMatrix(int, RealMatrix) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Sets the specified row of this matrix to the entries of the specified row matrix.
setRowMatrix(int, RealMatrix) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Sets the specified row of this matrix to the entries of the specified row matrix.
setRowVector(int, FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Set the entries in row number row as a vector.
setRowVector(int, FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Set the entries in row number row as a vector.
setRowVector(int, FieldVector<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Set the entries in row number row as a vector.
setRowVector(int, RealVector) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Sets the specified row of this matrix to the entries of the specified vector.
setRowVector(int, RealVector) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Sets the specified row of this matrix to the entries of the specified vector.
setRowVector(int, RealVector) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Sets the specified row of this matrix to the entries of the specified vector.
setSafety(double) - Method in class org.apache.commons.math4.legacy.ode.MultistepFieldIntegrator
Set the safety factor for stepsize control.
setSafety(double) - Method in class org.apache.commons.math4.legacy.ode.MultistepIntegrator
Set the safety factor for stepsize control.
setSafety(double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaIntegrator
Set the safety factor for stepsize control.
setSafety(T) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.EmbeddedRungeKuttaFieldIntegrator
Set the safety factor for stepsize control.
setScale(int) - Method in class org.apache.commons.math4.legacy.linear.BigReal
Sets the scale for division operations.
setSecondaryState(int, double[]) - Method in class org.apache.commons.math4.legacy.ode.ExpandableStatefulODE
Set secondary part of the current state.
setSkewnessImpl(UnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Sets the implementation for the skewness.
setSoftCurrentTime(double) - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Restrict step range to a limited part of the global step.
setSoftPreviousTime(double) - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Restrict step range to a limited part of the global step.
setStabilityCheck(boolean, int, int, double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.GraggBulirschStoerIntegrator
Set the stability check controls.
setStarterIntegrator(FirstOrderFieldIntegrator<T>) - Method in class org.apache.commons.math4.legacy.ode.MultistepFieldIntegrator
Set the starter integrator.
setStarterIntegrator(FirstOrderIntegrator) - Method in class org.apache.commons.math4.legacy.ode.MultistepIntegrator
Set the starter integrator.
setStateInitialized(boolean) - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Set the stateInitialized flag.
setStateInitialized(boolean) - Method in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Set the stateInitialized flag.
setStepSize(T) - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Set the current step size.
setStepSizeControl(double, double, double[], double[]) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeFieldIntegrator
Set the adaptive step size control parameters.
setStepSizeControl(double, double, double[], double[]) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
Set the adaptive step size control parameters.
setStepSizeControl(double, double, double, double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeFieldIntegrator
Set the adaptive step size control parameters.
setStepSizeControl(double, double, double, double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
Set the adaptive step size control parameters.
setStepStart(FieldODEStateAndDerivative<T>) - Method in class org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator
Set current step start.
setSubMatrix(double[][], int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Replace the submatrix starting at row, column using data in the input subMatrix array.
setSubMatrix(double[][], int, int) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Replace the submatrix starting at row, column using data in the input subMatrix array.
setSubMatrix(double[][], int, int) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Replace the submatrix starting at row, column using data in the input subMatrix array.
setSubMatrix(double[][], int, int) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Replace the submatrix starting at row, column using data in the input subMatrix array.
setSubMatrix(T[][], int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Replace the submatrix starting at (row, column) using data in the input subMatrix array.
setSubMatrix(T[][], int, int) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Replace the submatrix starting at (row, column) using data in the input subMatrix array.
setSubMatrix(T[][], int, int) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Replace the submatrix starting at (row, column) using data in the input subMatrix array.
setSubMatrix(T[][], int, int) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Replace the submatrix starting at (row, column) using data in the input subMatrix array.
setSubVector(int, double[]) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Set a set of consecutive elements.
setSubVector(int, FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Set a set of consecutive elements.
setSubVector(int, FieldVector<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Set a set of consecutive elements.
setSubVector(int, FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Set a set of consecutive elements.
setSubVector(int, RealVector) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Set a sequence of consecutive elements.
setSubVector(int, RealVector) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Set a sequence of consecutive elements.
setSubVector(int, RealVector) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Set a sequence of consecutive elements.
setSumImpl(StorelessUnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Sets the implementation for the Sum.
setSumImpl(StorelessUnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Sets the implementation for the Sum.
setSumImpl(StorelessUnivariateStatistic[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Sets the implementation for the Sum.
setSumImpl(StorelessUnivariateStatistic[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Sets the implementation for the Sum.
setSumImpl(UnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Sets the implementation for the sum.
setSumLogImpl(StorelessUnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.GeometricMean
Sets the implementation for the sum of logs.
setSumLogImpl(StorelessUnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Sets the implementation for the sum of logs.
setSumLogImpl(StorelessUnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Sets the implementation for the sum of logs.
setSumLogImpl(StorelessUnivariateStatistic[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Sets the implementation for the sum of logs.
setSumLogImpl(StorelessUnivariateStatistic[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Sets the implementation for the sum of logs.
setSumsqImpl(StorelessUnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Sets the implementation for the sum of squares.
setSumsqImpl(StorelessUnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Sets the implementation for the sum of squares.
setSumsqImpl(StorelessUnivariateStatistic[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Sets the implementation for the sum of squares.
setSumsqImpl(StorelessUnivariateStatistic[]) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Sets the implementation for the sum of squares.
setSumsqImpl(UnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Sets the implementation for the sum of squares.
setTime(double) - Method in class org.apache.commons.math4.legacy.ode.ExpandableStatefulODE
Set current time.
setup(int, FUNC, double, double, double) - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
Prepare for computation.
setup(int, UnivariateDifferentiableFunction, double, double, double) - Method in class org.apache.commons.math4.legacy.analysis.solvers.AbstractUnivariateDifferentiableSolver
Prepare for computation.
setup(int, PolynomialFunction, double, double, double) - Method in class org.apache.commons.math4.legacy.analysis.solvers.AbstractPolynomialSolver
Prepare for computation.
setup(int, UnivariateFunction, double, double) - Method in class org.apache.commons.math4.legacy.analysis.integration.BaseAbstractUnivariateIntegrator
Prepare for computation.
setValue(double) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector.OpenMapEntry
Set the value of the entry.
setValue(double) - Method in class org.apache.commons.math4.legacy.linear.RealVector.Entry
Set the value of the entry.
setVarianceDirection(SemiVariance.Direction) - Method in class org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance
Sets the variance direction.
setVarianceImpl(StorelessUnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Sets the implementation for the variance.
setVarianceImpl(StorelessUnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Sets the implementation for the variance.
setVarianceImpl(UnivariateStatistic) - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Sets the implementation for the variance.
setWindowSize(int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
WindowSize controls the number of values that contribute to the reported statistics.
setWindowSize(int) - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedDescriptiveStatistics
WindowSize controls the number of values that contribute to the reported statistics.
shift() - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Shift one step forward.
shift(double[], double) - Static method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialsUtils
Compute the coefficients of the polynomial \(P_s(x)\) whose values at point x will be the same as the those from the original polynomial \(P(x)\) when computed at x + shift.
Sigma - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar
Input sigma values define the initial coordinate-wise extent for sampling the solution space around the initial guess.
Sigma(double[]) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.Sigma
 
Sigmoid - Class in org.apache.commons.math4.legacy.analysis.function
Sigmoid function.
Sigmoid() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Sigmoid
Usual sigmoid function, where the lower asymptote is 0 and the higher asymptote is 1.
Sigmoid(double, double) - Constructor for class org.apache.commons.math4.legacy.analysis.function.Sigmoid
Sigmoid function.
Sigmoid.Parametric - Class in org.apache.commons.math4.legacy.analysis.function
Parametric function where the input array contains the parameters of the sigmoid function.
signum() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
signum() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Signum - Class in org.apache.commons.math4.legacy.analysis.function
signum function.
Signum() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Signum
 
SimpleBounds - Class in org.apache.commons.math4.legacy.optim
Simple optimization constraints: lower and upper bounds.
SimpleBounds(double[], double[]) - Constructor for class org.apache.commons.math4.legacy.optim.SimpleBounds
 
SimpleCurveFitter - Class in org.apache.commons.math4.legacy.fitting
Fits points to a user-defined function.
SimpleCurveFitter(ParametricUnivariateFunction, double[], SimpleCurveFitter.ParameterGuesser, int) - Constructor for class org.apache.commons.math4.legacy.fitting.SimpleCurveFitter
Constructor used by the factory methods.
SimpleCurveFitter.ParameterGuesser - Class in org.apache.commons.math4.legacy.fitting
Guesses the parameters.
SimplePointChecker<PAIR extends Pair<double[],​? extends Object>> - Class in org.apache.commons.math4.legacy.optim
Simple implementation of the ConvergenceChecker interface using only point coordinates.
SimplePointChecker(double, double) - Constructor for class org.apache.commons.math4.legacy.optim.SimplePointChecker
Build an instance with specified thresholds.
SimplePointChecker(double, double, int) - Constructor for class org.apache.commons.math4.legacy.optim.SimplePointChecker
Builds an instance with specified thresholds.
SimpleRegression - Class in org.apache.commons.math4.legacy.stat.regression
Estimates an ordinary least squares regression model with one independent variable.
SimpleRegression() - Constructor for class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Create an empty SimpleRegression instance.
SimpleRegression(boolean) - Constructor for class org.apache.commons.math4.legacy.stat.regression.SimpleRegression
Create a SimpleRegression instance, specifying whether or not to estimate an intercept.
SimpleUnivariateValueChecker - Class in org.apache.commons.math4.legacy.optim.univariate
Simple implementation of the ConvergenceChecker interface that uses only objective function values.
SimpleUnivariateValueChecker(double, double) - Constructor for class org.apache.commons.math4.legacy.optim.univariate.SimpleUnivariateValueChecker
Build an instance with specified thresholds.
SimpleUnivariateValueChecker(double, double, int) - Constructor for class org.apache.commons.math4.legacy.optim.univariate.SimpleUnivariateValueChecker
Builds an instance with specified thresholds.
SimpleValueChecker - Class in org.apache.commons.math4.legacy.optim
Simple implementation of the ConvergenceChecker interface using only objective function values.
SimpleValueChecker(double, double) - Constructor for class org.apache.commons.math4.legacy.optim.SimpleValueChecker
Build an instance with specified thresholds.
SimpleValueChecker(double, double, int) - Constructor for class org.apache.commons.math4.legacy.optim.SimpleValueChecker
Builds an instance with specified thresholds.
SimpleVectorValueChecker - Class in org.apache.commons.math4.legacy.optim
Simple implementation of the ConvergenceChecker interface using only objective function values.
SimpleVectorValueChecker(double, double) - Constructor for class org.apache.commons.math4.legacy.optim.SimpleVectorValueChecker
Build an instance with specified thresholds.
SimpleVectorValueChecker(double, double, int) - Constructor for class org.apache.commons.math4.legacy.optim.SimpleVectorValueChecker
Builds an instance with specified tolerance thresholds and iteration count.
Simplex - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv
Represents a simplex.
Simplex.TransformFactory - Interface in org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv
Generator of simplex transform.
SimplexOptimizer - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv
This class implements simplex-based direct search optimization.
SimplexOptimizer(double, double) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.SimplexOptimizer
 
SimplexOptimizer(ConvergenceChecker<PointValuePair>) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.SimplexOptimizer
 
SimplexOptimizer.Observer - Interface in org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv
Callback interface for updating caller's code with the current state of the optimization.
SimplexSolver - Class in org.apache.commons.math4.legacy.optim.linear
Solves a linear problem using the "Two-Phase Simplex" method.
SimplexSolver() - Constructor for class org.apache.commons.math4.legacy.optim.linear.SimplexSolver
Builds a simplex solver with default settings.
SimplexSolver(double) - Constructor for class org.apache.commons.math4.legacy.optim.linear.SimplexSolver
Builds a simplex solver with a specified accepted amount of error.
SimplexSolver(double, int) - Constructor for class org.apache.commons.math4.legacy.optim.linear.SimplexSolver
Builds a simplex solver with a specified accepted amount of error.
SimplexSolver(double, int, double) - Constructor for class org.apache.commons.math4.legacy.optim.linear.SimplexSolver
Builds a simplex solver with a specified accepted amount of error.
SimpsonIntegrator - Class in org.apache.commons.math4.legacy.analysis.integration
Implements Simpson's Rule for integration of real univariate functions.
SimpsonIntegrator() - Constructor for class org.apache.commons.math4.legacy.analysis.integration.SimpsonIntegrator
Construct an integrator with default settings.
SimpsonIntegrator(double, double, int, int) - Constructor for class org.apache.commons.math4.legacy.analysis.integration.SimpsonIntegrator
Build a Simpson integrator with given accuracies and iterations counts.
SimpsonIntegrator(int, int) - Constructor for class org.apache.commons.math4.legacy.analysis.integration.SimpsonIntegrator
Build a Simpson integrator with given iteration counts.
SimulatedAnnealing - Class in org.apache.commons.math4.legacy.optim.nonlinear.scalar
Simulated annealing setup.
SimulatedAnnealing(int, double, double, SimulatedAnnealing.CoolingSchedule, UniformRandomProvider) - Constructor for class org.apache.commons.math4.legacy.optim.nonlinear.scalar.SimulatedAnnealing
 
SimulatedAnnealing.CoolingSchedule - Interface in org.apache.commons.math4.legacy.optim.nonlinear.scalar
Specifies the cooling schedule.
sin() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
sin() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
sin(double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute sine of a derivative structure.
Sin - Class in org.apache.commons.math4.legacy.analysis.function
Sine function.
Sin() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Sin
 
Sinc - Class in org.apache.commons.math4.legacy.analysis.function
Sinc function, defined by
Sinc() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Sinc
The sinc function, sin(x) / x.
Sinc(boolean) - Constructor for class org.apache.commons.math4.legacy.analysis.function.Sinc
Instantiates the sinc function.
singleStep(FirstOrderDifferentialEquations, double, double[], double) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.RungeKuttaIntegrator
Fast computation of a single step of ODE integration.
singleStep(FirstOrderFieldDifferentialEquations<T>, T, T[], T) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.RungeKuttaFieldIntegrator
Fast computation of a single step of ODE integration.
SingularMatrixException - Exception in org.apache.commons.math4.legacy.linear
Exception to be thrown when a non-singular matrix is expected.
SingularMatrixException() - Constructor for exception org.apache.commons.math4.legacy.linear.SingularMatrixException
Construct an exception.
SingularOperatorException - Exception in org.apache.commons.math4.legacy.linear
Exception to be thrown when trying to invert a singular operator.
SingularOperatorException() - Constructor for exception org.apache.commons.math4.legacy.linear.SingularOperatorException
Creates a new instance of this class.
SingularValueDecomposition - Class in org.apache.commons.math4.legacy.linear
Calculates the compact Singular Value Decomposition of a matrix.
SingularValueDecomposition(RealMatrix) - Constructor for class org.apache.commons.math4.legacy.linear.SingularValueDecomposition
Calculates the compact Singular Value Decomposition of the given matrix.
sinh() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
sinh() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
sinh(double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute hyperbolic sine of a derivative structure.
Sinh - Class in org.apache.commons.math4.legacy.analysis.function
Hyperbolic sine function.
Sinh() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Sinh
 
Skewness - Class in org.apache.commons.math4.legacy.stat.descriptive.moment
Computes the skewness of the available values.
Skewness() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.Skewness
Constructs a Skewness.
Skewness(Skewness) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.Skewness
Copy constructor, creates a new Skewness identical to the original.
Skewness(ThirdMoment) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.Skewness
Constructs a Skewness with an external moment.
skipTo(int) - Method in class org.apache.commons.math4.legacy.random.HaltonSequenceGenerator
Skip to the i-th point in the Halton sequence.
skipTo(int) - Method in class org.apache.commons.math4.legacy.random.SobolSequenceGenerator
Skip to the i-th point in the Sobol sequence.
smooth(double[], double[]) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.LoessInterpolator
Compute a loess fit on the data at the original abscissae.
smooth(double[], double[], double[]) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.LoessInterpolator
Compute a weighted loess fit on the data at the original abscissae.
SobolSequenceGenerator - Class in org.apache.commons.math4.legacy.random
Implementation of a Sobol sequence.
SobolSequenceGenerator(int) - Constructor for class org.apache.commons.math4.legacy.random.SobolSequenceGenerator
Construct a new Sobol sequence generator for the given space dimension.
SobolSequenceGenerator(int, InputStream) - Constructor for class org.apache.commons.math4.legacy.random.SobolSequenceGenerator
Construct a new Sobol sequence generator for the given space dimension with direction vectors loaded from the given stream.
SolutionCallback - Class in org.apache.commons.math4.legacy.optim.linear
A callback object that can be provided to a linear optimizer to keep track of the best solution found.
SolutionCallback() - Constructor for class org.apache.commons.math4.legacy.optim.linear.SolutionCallback
 
solve(int, FUNC, double) - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
Solve for a zero in the vicinity of startValue.
solve(int, FUNC, double) - Method in interface org.apache.commons.math4.legacy.analysis.solvers.BaseUnivariateSolver
Solve for a zero in the vicinity of startValue.
solve(int, FUNC, double, double) - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
Solve for a zero root in the given interval.
solve(int, FUNC, double, double) - Method in interface org.apache.commons.math4.legacy.analysis.solvers.BaseUnivariateSolver
Solve for a zero root in the given interval.
solve(int, FUNC, double, double, double) - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
Solve for a zero in the given interval, start at startValue.
solve(int, FUNC, double, double, double) - Method in interface org.apache.commons.math4.legacy.analysis.solvers.BaseUnivariateSolver
Solve for a zero in the given interval, start at startValue.
solve(int, FUNC, double, double, double, AllowedSolution) - Method in interface org.apache.commons.math4.legacy.analysis.solvers.BracketedUnivariateSolver
Solve for a zero in the given interval, start at startValue.
solve(int, FUNC, double, double, AllowedSolution) - Method in interface org.apache.commons.math4.legacy.analysis.solvers.BracketedUnivariateSolver
Solve for a zero in the given interval.
solve(int, UnivariateDifferentiableFunction, double, double) - Method in class org.apache.commons.math4.legacy.analysis.solvers.NewtonRaphsonSolver
Find a zero near the midpoint of min and max.
solve(int, RealFieldUnivariateFunction<T>, T, T, AllowedSolution) - Method in interface org.apache.commons.math4.legacy.analysis.solvers.BracketedRealFieldUnivariateSolver
Solve for a zero in the given interval.
solve(int, RealFieldUnivariateFunction<T>, T, T, AllowedSolution) - Method in class org.apache.commons.math4.legacy.analysis.solvers.FieldBracketingNthOrderBrentSolver
Solve for a zero in the given interval.
solve(int, RealFieldUnivariateFunction<T>, T, T, T, AllowedSolution) - Method in interface org.apache.commons.math4.legacy.analysis.solvers.BracketedRealFieldUnivariateSolver
Solve for a zero in the given interval, start at startValue.
solve(int, RealFieldUnivariateFunction<T>, T, T, T, AllowedSolution) - Method in class org.apache.commons.math4.legacy.analysis.solvers.FieldBracketingNthOrderBrentSolver
Solve for a zero in the given interval, start at startValue.
solve(int, UnivariateFunction, double, double, double) - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseSecantSolver
Solve for a zero in the given interval, start at startValue.
solve(int, UnivariateFunction, double, double, double, AllowedSolution) - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseSecantSolver
Solve for a zero in the given interval, start at startValue.
solve(int, UnivariateFunction, double, double, double, AllowedSolution) - Method in class org.apache.commons.math4.legacy.analysis.solvers.BracketingNthOrderBrentSolver
Solve for a zero in the given interval, start at startValue.
solve(int, UnivariateFunction, double, double, AllowedSolution) - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseSecantSolver
Solve for a zero in the given interval.
solve(int, UnivariateFunction, double, double, AllowedSolution) - Method in class org.apache.commons.math4.legacy.analysis.solvers.BracketingNthOrderBrentSolver
Solve for a zero in the given interval.
solve(UnivariateFunction, double, double) - Static method in class org.apache.commons.math4.legacy.analysis.solvers.UnivariateSolverUtils
Convenience method to find a zero of a univariate real function.
solve(UnivariateFunction, double, double, double) - Static method in class org.apache.commons.math4.legacy.analysis.solvers.UnivariateSolverUtils
Convenience method to find a zero of a univariate real function.
solve(FieldDenseMatrix<T>) - Method in interface org.apache.commons.math4.legacy.field.linalg.FieldDecompositionSolver
Solves the linear equation A X = B.
solve(FieldMatrix<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldDecompositionSolver
Solve the linear equation A × X = B for matrices A.
solve(FieldVector<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldDecompositionSolver
Solve the linear equation A × X = B for matrices A.
solve(RealLinearOperator, RealLinearOperator, RealVector) - Method in class org.apache.commons.math4.legacy.linear.PreconditionedIterativeLinearSolver
Returns an estimate of the solution to the linear system A · x = b.
solve(RealLinearOperator, RealLinearOperator, RealVector) - Method in class org.apache.commons.math4.legacy.linear.SymmLQ
Returns an estimate of the solution to the linear system A · x = b.
solve(RealLinearOperator, RealLinearOperator, RealVector, boolean, double) - Method in class org.apache.commons.math4.legacy.linear.SymmLQ
Returns an estimate of the solution to the linear system (A - shift · I) · x = b.
solve(RealLinearOperator, RealLinearOperator, RealVector, RealVector) - Method in class org.apache.commons.math4.legacy.linear.PreconditionedIterativeLinearSolver
Returns an estimate of the solution to the linear system A · x = b.
solve(RealLinearOperator, RealLinearOperator, RealVector, RealVector) - Method in class org.apache.commons.math4.legacy.linear.SymmLQ
Returns an estimate of the solution to the linear system A · x = b.
solve(RealLinearOperator, RealVector) - Method in class org.apache.commons.math4.legacy.linear.IterativeLinearSolver
Returns an estimate of the solution to the linear system A · x = b.
solve(RealLinearOperator, RealVector) - Method in class org.apache.commons.math4.legacy.linear.PreconditionedIterativeLinearSolver
Returns an estimate of the solution to the linear system A · x = b.
solve(RealLinearOperator, RealVector) - Method in class org.apache.commons.math4.legacy.linear.SymmLQ
Returns an estimate of the solution to the linear system A · x = b.
solve(RealLinearOperator, RealVector, boolean, double) - Method in class org.apache.commons.math4.legacy.linear.SymmLQ
Returns the solution to the system (A - shift · I) · x = b.
solve(RealLinearOperator, RealVector, RealVector) - Method in class org.apache.commons.math4.legacy.linear.IterativeLinearSolver
Returns an estimate of the solution to the linear system A · x = b.
solve(RealLinearOperator, RealVector, RealVector) - Method in class org.apache.commons.math4.legacy.linear.PreconditionedIterativeLinearSolver
Returns an estimate of the solution to the linear system A · x = b.
solve(RealLinearOperator, RealVector, RealVector) - Method in class org.apache.commons.math4.legacy.linear.SymmLQ
Returns an estimate of the solution to the linear system A · x = b.
solve(RealMatrix) - Method in interface org.apache.commons.math4.legacy.linear.DecompositionSolver
Solve the linear equation A × X = B for matrices A.
solve(RealMatrix, RealVector) - Method in enum org.apache.commons.math4.legacy.fitting.leastsquares.GaussNewtonOptimizer.Decomposition
Solve the linear least squares problem Jx=r.
solve(RealVector) - Method in interface org.apache.commons.math4.legacy.linear.DecompositionSolver
Solve the linear equation A × X = B for matrices A.
solveAllComplex(double[], double) - Method in class org.apache.commons.math4.legacy.analysis.solvers.LaguerreSolver
Find all complex roots for the polynomial with the given coefficients, starting from the given initial value.
solveComplex(double[], double) - Method in class org.apache.commons.math4.legacy.analysis.solvers.LaguerreSolver
Find a complex root for the polynomial with the given coefficients, starting from the given initial value.
solveInPlace(RealLinearOperator, RealLinearOperator, RealVector, RealVector) - Method in class org.apache.commons.math4.legacy.linear.ConjugateGradient
Returns an estimate of the solution to the linear system A · x = b.
solveInPlace(RealLinearOperator, RealLinearOperator, RealVector, RealVector) - Method in class org.apache.commons.math4.legacy.linear.PreconditionedIterativeLinearSolver
Returns an estimate of the solution to the linear system A · x = b.
solveInPlace(RealLinearOperator, RealLinearOperator, RealVector, RealVector) - Method in class org.apache.commons.math4.legacy.linear.SymmLQ
Returns an estimate of the solution to the linear system A · x = b.
solveInPlace(RealLinearOperator, RealLinearOperator, RealVector, RealVector, boolean, double) - Method in class org.apache.commons.math4.legacy.linear.SymmLQ
Returns an estimate of the solution to the linear system (A - shift · I) · x = b.
solveInPlace(RealLinearOperator, RealVector, RealVector) - Method in class org.apache.commons.math4.legacy.linear.IterativeLinearSolver
Returns an estimate of the solution to the linear system A · x = b.
solveInPlace(RealLinearOperator, RealVector, RealVector) - Method in class org.apache.commons.math4.legacy.linear.PreconditionedIterativeLinearSolver
Returns an estimate of the solution to the linear system A · x = b.
solveInPlace(RealLinearOperator, RealVector, RealVector) - Method in class org.apache.commons.math4.legacy.linear.SymmLQ
Returns an estimate of the solution to the linear system A · x = b.
solveInverseCumulativeProbability(double, int, int) - Method in class org.apache.commons.math4.legacy.distribution.AbstractIntegerDistribution
solveLowerTriangularSystem(RealMatrix, RealVector) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Solve a system of composed of a Lower Triangular Matrix RealMatrix.
solvePhase1(SimplexTableau) - Method in class org.apache.commons.math4.legacy.optim.linear.SimplexSolver
Solves Phase 1 of the Simplex method.
SOLVER_DEFAULT_ABSOLUTE_ACCURACY - Static variable in class org.apache.commons.math4.legacy.distribution.AbstractRealDistribution
Default absolute accuracy for inverse cumulative computation.
solveUpperTriangularSystem(RealMatrix, RealVector) - Static method in class org.apache.commons.math4.legacy.linear.MatrixUtils
Solver a system composed of an Upper Triangular Matrix RealMatrix.
sortObservations(Collection<WeightedObservedPoint>) - Method in class org.apache.commons.math4.legacy.fitting.SimpleCurveFitter.ParameterGuesser
Sort the observations.
SparseEntryIterator() - Constructor for class org.apache.commons.math4.legacy.linear.RealVector.SparseEntryIterator
Simple constructor.
SparseFieldMatrix<T extends FieldElement<T>> - Class in org.apache.commons.math4.legacy.linear
Sparse matrix implementation based on an open addressed map.
SparseFieldMatrix(Field<T>) - Constructor for class org.apache.commons.math4.legacy.linear.SparseFieldMatrix
Create a matrix with no data.
SparseFieldMatrix(Field<T>, int, int) - Constructor for class org.apache.commons.math4.legacy.linear.SparseFieldMatrix
Create a new SparseFieldMatrix<T> with the supplied row and column dimensions.
SparseFieldMatrix(FieldMatrix<T>) - Constructor for class org.apache.commons.math4.legacy.linear.SparseFieldMatrix
Generic copy constructor.
SparseFieldMatrix(SparseFieldMatrix<T>) - Constructor for class org.apache.commons.math4.legacy.linear.SparseFieldMatrix
Copy constructor.
SparseFieldVector<T extends FieldElement<T>> - Class in org.apache.commons.math4.legacy.linear
This class implements the FieldVector interface with a OpenIntToFieldHashMap backing store.
SparseFieldVector(Field<T>) - Constructor for class org.apache.commons.math4.legacy.linear.SparseFieldVector
Build a 0-length vector.
SparseFieldVector(Field<T>, int) - Constructor for class org.apache.commons.math4.legacy.linear.SparseFieldVector
Construct a vector of zeroes.
SparseFieldVector(Field<T>, int, int) - Constructor for class org.apache.commons.math4.legacy.linear.SparseFieldVector
Build a vector with known the sparseness (for advanced use only).
SparseFieldVector(Field<T>, T[]) - Constructor for class org.apache.commons.math4.legacy.linear.SparseFieldVector
Create from a Field array.
SparseFieldVector(SparseFieldVector<T>) - Constructor for class org.apache.commons.math4.legacy.linear.SparseFieldVector
Copy constructor.
SparseFieldVector(SparseFieldVector<T>, int) - Constructor for class org.apache.commons.math4.legacy.linear.SparseFieldVector
Build a resized vector, for use with append.
SparseGradient - Class in org.apache.commons.math4.legacy.analysis.differentiation
First derivative computation with large number of variables.
sparseIterator() - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Create a sparse iterator over the vector, which may omit some entries.
sparseIterator() - Method in class org.apache.commons.math4.legacy.linear.RealVector
Create a sparse iterator over the vector, which may omit some entries.
SparseRealMatrix - Interface in org.apache.commons.math4.legacy.linear
Marker interface for RealMatrix implementations that require sparse backing storage
SparseRealVector - Class in org.apache.commons.math4.legacy.linear
Marker class for RealVectors that require sparse backing storage
SparseRealVector() - Constructor for class org.apache.commons.math4.legacy.linear.SparseRealVector
 
SpearmansCorrelation - Class in org.apache.commons.math4.legacy.stat.correlation
Spearman's rank correlation.
SpearmansCorrelation() - Constructor for class org.apache.commons.math4.legacy.stat.correlation.SpearmansCorrelation
Create a SpearmansCorrelation without data.
SpearmansCorrelation(RealMatrix) - Constructor for class org.apache.commons.math4.legacy.stat.correlation.SpearmansCorrelation
Create a SpearmansCorrelation from the given data matrix.
SpearmansCorrelation(RealMatrix, RankingAlgorithm) - Constructor for class org.apache.commons.math4.legacy.stat.correlation.SpearmansCorrelation
Create a SpearmansCorrelation with the given input data matrix and ranking algorithm.
SpearmansCorrelation(RankingAlgorithm) - Constructor for class org.apache.commons.math4.legacy.stat.correlation.SpearmansCorrelation
Create a SpearmansCorrelation with the given ranking algorithm.
SplineInterpolator - Class in org.apache.commons.math4.legacy.analysis.interpolation
Computes a natural (also known as "free", "unclamped") cubic spline interpolation for the data set.
SplineInterpolator() - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.SplineInterpolator
 
sqrt() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
sqrt() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
sqrt() - Method in class org.apache.commons.math4.legacy.linear.JacobiPreconditioner
Returns the square root of this diagonal operator.
Sqrt - Class in org.apache.commons.math4.legacy.analysis.function
Square-root function.
Sqrt() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Sqrt
 
StandardDeviation - Class in org.apache.commons.math4.legacy.stat.descriptive.moment
Computes the sample standard deviation.
StandardDeviation() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.StandardDeviation
Constructs a StandardDeviation.
StandardDeviation(boolean) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.StandardDeviation
Constructs a StandardDeviation with the specified value for the isBiasCorrected property.
StandardDeviation(boolean, SecondMoment) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.StandardDeviation
Constructs a StandardDeviation with the specified value for the isBiasCorrected property and the supplied external moment.
StandardDeviation(SecondMoment) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.StandardDeviation
Constructs a StandardDeviation from an external second moment.
StandardDeviation(StandardDeviation) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.StandardDeviation
Copy constructor, creates a new StandardDeviation identical to the original.
start(double[]) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresBuilder
Configure the initial guess.
start(double, double[], double) - Method in class org.apache.commons.math4.legacy.ode.MultistepIntegrator
Start the integration.
start(int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.FieldVectorChangingVisitor
Start visiting a vector.
start(int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.FieldVectorPreservingVisitor
Start visiting a vector.
start(int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.RealVectorChangingVisitor
Start visiting a vector.
start(int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.RealVectorPreservingVisitor
Start visiting a vector.
start(int, int, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.DefaultFieldMatrixChangingVisitor
Start visiting a matrix.
start(int, int, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.DefaultFieldMatrixPreservingVisitor
Start visiting a matrix.
start(int, int, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.DefaultRealMatrixChangingVisitor
Start visiting a matrix.
start(int, int, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.DefaultRealMatrixPreservingVisitor
Start visiting a matrix.
start(int, int, int, int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrixChangingVisitor
Start visiting a matrix.
start(int, int, int, int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrixPreservingVisitor
Start visiting a matrix.
start(int, int, int, int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrixChangingVisitor
Start visiting a matrix.
start(int, int, int, int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrixPreservingVisitor
Start visiting a matrix.
start(RealVector) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresBuilder
Configure the initial guess.
start(FieldExpandableODE<T>, FieldODEState<T>, T) - Method in class org.apache.commons.math4.legacy.ode.MultistepFieldIntegrator
Start the integration.
stateVariation - Variable in class org.apache.commons.math4.legacy.ode.sampling.NordsieckStepInterpolator
State variation.
StatisticalMultivariateSummary - Interface in org.apache.commons.math4.legacy.stat.descriptive
Reporting interface for basic multivariate statistics.
StatisticalSummary - Interface in org.apache.commons.math4.legacy.stat.descriptive
Reporting interface for basic univariate statistics.
StatisticalSummaryValues - Class in org.apache.commons.math4.legacy.stat.descriptive
Value object representing the results of a univariate statistical summary.
StatisticalSummaryValues(double, double, long, double, double, double) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.StatisticalSummaryValues
Constructor.
StatUtils - Class in org.apache.commons.math4.legacy.stat
StatUtils provides static methods for computing statistics based on data stored in double[] arrays.
stepAccepted(double, double[]) - Method in class org.apache.commons.math4.legacy.ode.events.EventState
Acknowledge the fact the step has been accepted by the integrator.
stepAccepted(FieldODEStateAndDerivative<T>) - Method in class org.apache.commons.math4.legacy.ode.events.FieldEventState
Acknowledge the fact the step has been accepted by the integrator.
StepFunction - Class in org.apache.commons.math4.legacy.analysis.function
StepFunction(double[], double[]) - Constructor for class org.apache.commons.math4.legacy.analysis.function.StepFunction
Builds a step function from a list of arguments and the corresponding values.
StepHandler - Interface in org.apache.commons.math4.legacy.ode.sampling
This interface represents a handler that should be called after each successful step.
stepHandlers - Variable in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Step handler.
StepInterpolator - Interface in org.apache.commons.math4.legacy.ode.sampling
This interface represents an interpolator over the last step during an ODE integration.
StepNormalizer - Class in org.apache.commons.math4.legacy.ode.sampling
This class wraps an object implementing FixedStepHandler into a StepHandler.
StepNormalizer(double, FixedStepHandler) - Constructor for class org.apache.commons.math4.legacy.ode.sampling.StepNormalizer
Simple constructor.
StepNormalizer(double, FixedStepHandler, StepNormalizerBounds) - Constructor for class org.apache.commons.math4.legacy.ode.sampling.StepNormalizer
Simple constructor.
StepNormalizer(double, FixedStepHandler, StepNormalizerMode) - Constructor for class org.apache.commons.math4.legacy.ode.sampling.StepNormalizer
Simple constructor.
StepNormalizer(double, FixedStepHandler, StepNormalizerMode, StepNormalizerBounds) - Constructor for class org.apache.commons.math4.legacy.ode.sampling.StepNormalizer
Simple constructor.
StepNormalizerBounds - Enum in org.apache.commons.math4.legacy.ode.sampling
Step normalizer bounds settings.
StepNormalizerMode - Enum in org.apache.commons.math4.legacy.ode.sampling
stepSize - Variable in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Current stepsize.
stepStart - Variable in class org.apache.commons.math4.legacy.ode.AbstractIntegrator
Current step start time.
stop() - Method in class org.apache.commons.math4.legacy.ode.events.EventState
Check if the integration should be stopped at the end of the current step.
stop() - Method in class org.apache.commons.math4.legacy.ode.events.FieldEventState
Check if the integration should be stopped at the end of the current step.
STOP - org.apache.commons.math4.legacy.ode.events.Action
Stop indicator.
STOP - org.apache.commons.math4.legacy.ode.events.EventHandler.Action
Stop indicator.
StoppingCondition - Interface in org.apache.commons.math4.legacy.genetics
Algorithm used to determine when to stop evolution.
store(PointValuePair) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultiStartMultivariateOptimizer
Method that will be called in order to store each found optimum.
store(PAIR) - Method in class org.apache.commons.math4.legacy.optim.BaseMultiStartMultivariateOptimizer
Method that will be called in order to store each found optimum.
StorelessCovariance - Class in org.apache.commons.math4.legacy.stat.correlation
Covariance implementation that does not require input data to be stored in memory.
StorelessCovariance(int) - Constructor for class org.apache.commons.math4.legacy.stat.correlation.StorelessCovariance
Create a bias corrected covariance matrix with a given dimension.
StorelessCovariance(int, boolean) - Constructor for class org.apache.commons.math4.legacy.stat.correlation.StorelessCovariance
Create a covariance matrix with a given number of rows and columns and the indicated bias correction.
StorelessUnivariateStatistic - Interface in org.apache.commons.math4.legacy.stat.descriptive
Extends the definition of UnivariateStatistic with StorelessUnivariateStatistic.increment(double) and StorelessUnivariateStatistic.incrementAll(double[]) methods for adding values and updating internal state.
storeTime(double) - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Store the current step time.
subtract(double) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
subtract(double) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
subtract(double[], int, double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Perform subtraction of two derivative structures.
subtract(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
subtract(SparseGradient) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
subtract(PolynomialFunction) - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction
Subtract a polynomial from the instance.
subtract(FieldDenseMatrix<T>) - Method in class org.apache.commons.math4.legacy.field.linalg.FieldDenseMatrix
Subtraction.
subtract(Array2DRowFieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Subtract m from this matrix.
subtract(Array2DRowRealMatrix) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Returns this minus m.
subtract(ArrayFieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Compute this minus v.
subtract(BigReal) - Method in class org.apache.commons.math4.legacy.linear.BigReal
subtract(BlockFieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Compute this - m.
subtract(BlockRealMatrix) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Subtract m from this matrix.
subtract(DiagonalMatrix) - Method in class org.apache.commons.math4.legacy.linear.DiagonalMatrix
Returns this minus m.
subtract(FieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Subtract m from this matrix.
subtract(FieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Subtract m from this matrix.
subtract(FieldMatrix<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Subtract m from this matrix.
subtract(FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Compute this minus v.
subtract(FieldVector<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Compute this minus v.
subtract(FieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Compute this minus v.
subtract(OpenMapRealMatrix) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealMatrix
Subtract m from this matrix.
subtract(OpenMapRealVector) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Optimized method to subtract OpenMapRealVectors.
subtract(RealMatrix) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Returns this minus m.
subtract(RealMatrix) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Returns this minus m.
subtract(RealMatrix) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealMatrix
Returns this minus m.
subtract(RealMatrix) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Returns this minus m.
subtract(RealVector) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Subtract v from this vector.
subtract(RealVector) - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Subtract v from this vector.
subtract(RealVector) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Subtract v from this vector.
subtract(SparseFieldVector<T>) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Optimized method to compute this minus v.
Subtract - Class in org.apache.commons.math4.legacy.analysis.function
Subtract the second operand from the first.
Subtract() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Subtract
 
sum(double[]) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the sum of the values in the input array, or Double.NaN if the array is empty.
sum(double[], int, int) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the sum of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
Sum - Class in org.apache.commons.math4.legacy.stat.descriptive.summary
Returns the sum of the available values.
Sum() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.summary.Sum
Create a Sum instance.
Sum(Sum) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.summary.Sum
Copy constructor, creates a new Sum identical to the original.
sumDifference(double[], double[]) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the sum of the (signed) differences between corresponding elements of the input arrays -- i.e., sum(sample1[i] - sample2[i]).
sumLog(double[]) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the sum of the natural logs of the entries in the input array, or Double.NaN if the array is empty.
sumLog(double[], int, int) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the sum of the natural logs of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
SummaryStatistics - Class in org.apache.commons.math4.legacy.stat.descriptive
Computes summary statistics for a stream of data values added using the addValue method.
SummaryStatistics() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Construct a SummaryStatistics instance.
SummaryStatistics(SummaryStatistics) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
A copy constructor.
SumOfClusterVariances - Class in org.apache.commons.math4.legacy.ml.clustering.evaluation
Computes the sum of intra-cluster distance variances according to the formula:
SumOfClusterVariances(DistanceMeasure) - Constructor for class org.apache.commons.math4.legacy.ml.clustering.evaluation.SumOfClusterVariances
 
SumOfLogs - Class in org.apache.commons.math4.legacy.stat.descriptive.summary
Returns the sum of the natural logs for this collection of values.
SumOfLogs() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.summary.SumOfLogs
Create a SumOfLogs instance.
SumOfLogs(SumOfLogs) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.summary.SumOfLogs
Copy constructor, creates a new SumOfLogs identical to the original.
SumOfSquares - Class in org.apache.commons.math4.legacy.stat.descriptive.summary
Returns the sum of the squares of the available values.
SumOfSquares() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.summary.SumOfSquares
Create a SumOfSquares instance.
SumOfSquares(SumOfSquares) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.summary.SumOfSquares
Copy constructor, creates a new SumOfSquares identical to the original.
sumSq(double[]) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the sum of the squares of the entries in the input array, or Double.NaN if the array is empty.
sumSq(double[], int, int) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the sum of the squares of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
SVD - org.apache.commons.math4.legacy.fitting.leastsquares.GaussNewtonOptimizer.Decomposition
Solve the linear least squares problem using the SingularValueDecomposition.
SymmetricGaussIntegrator - Class in org.apache.commons.math4.legacy.analysis.integration.gauss
This class's implements integrate method assuming that the integral is symmetric about 0.
SymmetricGaussIntegrator(double[], double[]) - Constructor for class org.apache.commons.math4.legacy.analysis.integration.gauss.SymmetricGaussIntegrator
Creates an integrator from the given points and weights.
SymmetricGaussIntegrator(Pair<double[], double[]>) - Constructor for class org.apache.commons.math4.legacy.analysis.integration.gauss.SymmetricGaussIntegrator
Creates an integrator from the given pair of points (first element of the pair) and weights (second element of the pair.
SymmLQ - Class in org.apache.commons.math4.legacy.linear
Implementation of the SYMMLQ iterative linear solver proposed by Paige and Saunders (1975).
SymmLQ(int, double, boolean) - Constructor for class org.apache.commons.math4.legacy.linear.SymmLQ
Creates a new instance of this class, with default stopping criterion.
SymmLQ(IterationManager, double, boolean) - Constructor for class org.apache.commons.math4.legacy.linear.SymmLQ
Creates a new instance of this class, with default stopping criterion and custom iteration manager.
SynchronizedDescriptiveStatistics - Class in org.apache.commons.math4.legacy.stat.descriptive
Implementation of DescriptiveStatistics that is safe to use in a multithreaded environment.
SynchronizedDescriptiveStatistics() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedDescriptiveStatistics
Construct an instance with infinite window.
SynchronizedDescriptiveStatistics(int) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedDescriptiveStatistics
Construct an instance with finite window.
SynchronizedDescriptiveStatistics(SynchronizedDescriptiveStatistics) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedDescriptiveStatistics
A copy constructor.
SynchronizedMultivariateSummaryStatistics - Class in org.apache.commons.math4.legacy.stat.descriptive
Implementation of MultivariateSummaryStatistics that is safe to use in a multithreaded environment.
SynchronizedMultivariateSummaryStatistics(int, boolean) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Construct a SynchronizedMultivariateSummaryStatistics instance.
SynchronizedSummaryStatistics - Class in org.apache.commons.math4.legacy.stat.descriptive
Implementation of SummaryStatistics that is safe to use in a multithreaded environment.
SynchronizedSummaryStatistics() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Construct a SynchronizedSummaryStatistics instance.
SynchronizedSummaryStatistics(SynchronizedSummaryStatistics) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
A copy constructor.

T

t(double[], double[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
t(double[], double[]) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Computes a 2-sample t statistic, without the hypothesis of equal subpopulation variances.
t(double, double[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
t(double, double[]) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Computes a t statistic given observed values and a comparison constant.
t(double, double, double, double) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Computes t test statistic for 1-sample t-test.
t(double, double, double, double, double, double) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Computes t test statistic for 2-sample t-test.
t(double, StatisticalSummary) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
t(double, StatisticalSummary) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Computes a t statistic to use in comparing the mean of the dataset described by sampleStats to mu.
t(StatisticalSummary, StatisticalSummary) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
t(StatisticalSummary, StatisticalSummary) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Computes a 2-sample t statistic, comparing the means of the datasets described by two StatisticalSummary instances, without the assumption of equal subpopulation variances.
tan() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
tan() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
tan(double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute tangent of a derivative structure.
Tan - Class in org.apache.commons.math4.legacy.analysis.function
Tangent function.
Tan() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Tan
 
tanh() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
tanh() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
tanh(double[], int, double[], int) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Compute hyperbolic tangent of a derivative structure.
Tanh - Class in org.apache.commons.math4.legacy.analysis.function
Hyperbolic tangent function.
Tanh() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Tanh
 
target(double[]) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresBuilder
Configure the observed data.
target(RealVector) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresBuilder
Configure the observed data.
taylor(double...) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Evaluate Taylor expansion a derivative structure.
taylor(double...) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Evaluate Taylor expansion of a sparse gradient.
taylor(double[], int, double...) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DSCompiler
Evaluate Taylor expansion of a derivative structure.
terminationPerformed(IterationEvent) - Method in interface org.apache.commons.math4.legacy.linear.IterationListener
Invoked after completion of the operations which occur after breaking out of the main iteration loop.
TheoreticalValuesFunction(ParametricUnivariateFunction, Collection<WeightedObservedPoint>) - Constructor for class org.apache.commons.math4.legacy.fitting.AbstractCurveFitter.TheoreticalValuesFunction
 
ThreeEighthesFieldIntegrator<T extends RealFieldElement<T>> - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements the 3/8 fourth order Runge-Kutta integrator for Ordinary Differential Equations.
ThreeEighthesFieldIntegrator(Field<T>, T) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.ThreeEighthesFieldIntegrator
Simple constructor.
ThreeEighthesIntegrator - Class in org.apache.commons.math4.legacy.ode.nonstiff
This class implements the 3/8 fourth order Runge-Kutta integrator for Ordinary Differential Equations.
ThreeEighthesIntegrator(double) - Constructor for class org.apache.commons.math4.legacy.ode.nonstiff.ThreeEighthesIntegrator
Simple constructor.
TiesStrategy - Enum in org.apache.commons.math4.legacy.stat.ranking
Strategies for handling tied values in rank transformations.
toArray() - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Convert the vector to a T array.
toArray() - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Convert the vector to an array of doubles.
toArray() - Method in interface org.apache.commons.math4.legacy.linear.FieldVector
Convert the vector to a T array.
toArray() - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Convert the vector to an array of doubles.
toArray() - Method in class org.apache.commons.math4.legacy.linear.RealVector
Convert the vector to an array of doubles.
toArray() - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Convert the vector to a T array.
toBlocksLayout(double[][]) - Static method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Convert a data array from raw layout to blocks layout.
toBlocksLayout(T[][]) - Static method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Convert a data array from raw layout to blocks layout.
toDegrees() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Convert radians to degrees, with error of less than 0.5 ULP.
toDegrees() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Convert radians to degrees, with error of less than 0.5 ULP.
toDifferentiable(MultivariateFunction, MultivariateVectorFunction) - Static method in class org.apache.commons.math4.legacy.analysis.FunctionUtils
Convert regular functions to MultivariateDifferentiableFunction.
toDifferentiable(UnivariateFunction, UnivariateFunction...) - Static method in class org.apache.commons.math4.legacy.analysis.FunctionUtils
Convert regular functions to UnivariateDifferentiableFunction.
Tolerance - Class in org.apache.commons.math4.legacy.optim
Default tolerances values.
Tolerance(double, double) - Constructor for class org.apache.commons.math4.legacy.optim.Tolerance
 
toList() - Method in class org.apache.commons.math4.legacy.fitting.WeightedObservedPoints
Gets a snapshot of the observed points.
toRadians() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure
Convert degrees to radians, with error of less than 0.5 ULP.
toRadians() - Method in class org.apache.commons.math4.legacy.analysis.differentiation.SparseGradient
Convert degrees to radians, with error of less than 0.5 ULP.
toString() - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction
Returns a string representation of the polynomial.
toString() - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.GaussNewtonOptimizer
toString() - Method in class org.apache.commons.math4.legacy.genetics.AbstractListChromosome
toString() - Method in class org.apache.commons.math4.legacy.genetics.ChromosomePair
toString() - Method in class org.apache.commons.math4.legacy.genetics.ListPopulation
toString() - Method in class org.apache.commons.math4.legacy.genetics.RandomKey
toString() - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Get a string representation for this matrix.
toString() - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Get a string representation for this matrix.
toString() - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
toString() - Method in class org.apache.commons.math4.legacy.ml.clustering.DoublePoint
toString() - Method in enum org.apache.commons.math4.legacy.optim.linear.Relationship
toString() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.HedarFukushimaTransform
toString() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.MultiDirectionalTransform
toString() - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.NelderMeadTransform
toString() - Method in class org.apache.commons.math4.legacy.optim.PointValuePair
 
toString() - Method in class org.apache.commons.math4.legacy.stat.descriptive.DescriptiveStatistics
Generates a text report displaying univariate statistics from values that have been added.
toString() - Method in class org.apache.commons.math4.legacy.stat.descriptive.MultivariateSummaryStatistics
Generates a text report displaying summary statistics from values that have been added.
toString() - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.PSquarePercentile
Returns a string containing the last observation, the current estimate of the quantile and all markers.
toString() - Method in class org.apache.commons.math4.legacy.stat.descriptive.StatisticalSummaryValues
Generates a text report displaying values of statistics.
toString() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics
Generates a text report displaying summary statistics from values that have been added.
toString() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedDescriptiveStatistics
Generates a text report displaying univariate statistics from values that have been added.
toString() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedMultivariateSummaryStatistics
Generates a text report displaying summary statistics from values that have been added.
toString() - Method in class org.apache.commons.math4.legacy.stat.descriptive.SynchronizedSummaryStatistics
Generates a text report displaying summary statistics from values that have been added.
toString() - Method in class org.apache.commons.math4.legacy.stat.Frequency
Return a string representation of this frequency distribution.
toString() - Method in class org.apache.commons.math4.legacy.stat.interval.ConfidenceInterval
 
TournamentSelection - Class in org.apache.commons.math4.legacy.genetics
Tournament selection scheme.
TournamentSelection(int) - Constructor for class org.apache.commons.math4.legacy.genetics.TournamentSelection
Creates a new TournamentSelection instance.
transpose() - Method in class org.apache.commons.math4.legacy.field.linalg.FieldDenseMatrix
Transposes this matrix.
transpose() - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Returns the transpose of this matrix.
transpose() - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Returns the transpose of this matrix.
transpose() - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Returns the transpose of this matrix.
transpose() - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Returns the transpose of this matrix.
transpose() - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Returns the transpose of this matrix.
transpose() - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Returns the transpose of this matrix.
TrapezoidIntegrator - Class in org.apache.commons.math4.legacy.analysis.integration
Implements the Trapezoid Rule for integration of real univariate functions.
TrapezoidIntegrator() - Constructor for class org.apache.commons.math4.legacy.analysis.integration.TrapezoidIntegrator
Construct a trapezoid integrator with default settings.
TrapezoidIntegrator(double, double, int, int) - Constructor for class org.apache.commons.math4.legacy.analysis.integration.TrapezoidIntegrator
Build a trapezoid integrator with given accuracies and iterations counts.
TrapezoidIntegrator(int, int) - Constructor for class org.apache.commons.math4.legacy.analysis.integration.TrapezoidIntegrator
Build a trapezoid integrator with given iteration counts.
TricubicInterpolatingFunction - Class in org.apache.commons.math4.legacy.analysis.interpolation
Function that implements the tricubic spline interpolation, as proposed in Tricubic interpolation in three dimensions
F.
TricubicInterpolatingFunction(double[], double[], double[], double[][][], double[][][], double[][][], double[][][], double[][][], double[][][], double[][][], double[][][]) - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.TricubicInterpolatingFunction
 
TricubicInterpolator - Class in org.apache.commons.math4.legacy.analysis.interpolation
Generates a tricubic interpolating function.
TricubicInterpolator() - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.TricubicInterpolator
 
TRIGGER_ONLY_DECREASING_EVENTS - org.apache.commons.math4.legacy.ode.events.FilterType
Constant for triggering only decreasing events.
TRIGGER_ONLY_INCREASING_EVENTS - org.apache.commons.math4.legacy.ode.events.FilterType
Constant for triggering only increasing events.
TrivariateFunction - Interface in org.apache.commons.math4.legacy.analysis
An interface representing a trivariate real function.
TrivariateGridInterpolator - Interface in org.apache.commons.math4.legacy.analysis.interpolation
Interface representing a trivariate real interpolating function where the sample points must be specified on a regular grid.
tTest(double[], double[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
tTest(double[], double[]) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays.
tTest(double[], double[], double) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
tTest(double[], double[], double) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Performs a two-sided t-test evaluating the null hypothesis that sample1 and sample2 are drawn from populations with the same mean, with significance level alpha.
tTest(double, double[]) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
tTest(double, double[]) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the input array with the constant mu.
tTest(double, double[], double) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
tTest(double, double[], double) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which sample is drawn equals mu.
tTest(double, double, double, double) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Computes p-value for 2-sided, 1-sample t-test.
tTest(double, double, double, double, double, double) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Computes p-value for 2-sided, 2-sample t-test.
tTest(double, StatisticalSummary) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
tTest(double, StatisticalSummary) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the dataset described by sampleStats with the constant mu.
tTest(double, StatisticalSummary, double) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
tTest(double, StatisticalSummary, double) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which the dataset described by stats is drawn equals mu.
tTest(StatisticalSummary, StatisticalSummary) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
tTest(StatisticalSummary, StatisticalSummary) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances.
tTest(StatisticalSummary, StatisticalSummary, double) - Static method in class org.apache.commons.math4.legacy.stat.inference.InferenceTestUtils
 
tTest(StatisticalSummary, StatisticalSummary, double) - Method in class org.apache.commons.math4.legacy.stat.inference.TTest
Performs a two-sided t-test evaluating the null hypothesis that sampleStats1 and sampleStats2 describe datasets drawn from populations with the same mean, with significance level alpha.
TTest - Class in org.apache.commons.math4.legacy.stat.inference
An implementation for Student's t-tests.
TTest() - Constructor for class org.apache.commons.math4.legacy.stat.inference.TTest
 
TWO_SIDED - org.apache.commons.math4.legacy.stat.inference.AlternativeHypothesis
Represents a two-sided test.

U

Ulp - Class in org.apache.commons.math4.legacy.analysis.function
ulp function.
Ulp() - Constructor for class org.apache.commons.math4.legacy.analysis.function.Ulp
 
unbounded(int) - Static method in class org.apache.commons.math4.legacy.optim.SimpleBounds
Factory method that creates instance of this class that represents unbounded ranges.
UnboundedSolutionException - Exception in org.apache.commons.math4.legacy.optim.linear
This class represents exceptions thrown by optimizers when a solution escapes to infinity.
UnboundedSolutionException() - Constructor for exception org.apache.commons.math4.legacy.optim.linear.UnboundedSolutionException
Simple constructor using a default message.
unboundedToBounded(double[]) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateFunctionMappingAdapter
Maps an array from unbounded to bounded.
uniform(UniformRandomProvider) - Method in class org.apache.commons.math4.legacy.random.CorrelatedVectorFactory
 
UniformCrossover<T> - Class in org.apache.commons.math4.legacy.genetics
Perform Uniform Crossover [UX] on the specified chromosomes.
UniformCrossover(double) - Constructor for class org.apache.commons.math4.legacy.genetics.UniformCrossover
Creates a new UniformCrossover policy using the given mixing ratio.
unitize() - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Converts this vector into a unit vector.
unitize() - Method in class org.apache.commons.math4.legacy.linear.RealVector
Converts this vector into a unit vector.
unitVector() - Method in class org.apache.commons.math4.legacy.linear.OpenMapRealVector
Creates a unit vector pointing in the direction of this vector.
unitVector() - Method in class org.apache.commons.math4.legacy.linear.RealVector
Creates a unit vector pointing in the direction of this vector.
UnivariateDifferentiableFunction - Interface in org.apache.commons.math4.legacy.analysis.differentiation
Interface for univariate functions derivatives.
UnivariateDifferentiableMatrixFunction - Interface in org.apache.commons.math4.legacy.analysis.differentiation
Extension of UnivariateMatrixFunction representing a univariate differentiable matrix function.
UnivariateDifferentiableSolver - Interface in org.apache.commons.math4.legacy.analysis.solvers
Interface for (univariate real) rootfinding algorithms.
UnivariateDifferentiableVectorFunction - Interface in org.apache.commons.math4.legacy.analysis.differentiation
Extension of UnivariateVectorFunction representing a univariate differentiable vectorial function.
UnivariateFunction - Interface in org.apache.commons.math4.legacy.analysis
An interface representing a univariate real function.
UnivariateFunctionDifferentiator - Interface in org.apache.commons.math4.legacy.analysis.differentiation
Interface defining the function differentiation operation.
UnivariateIntegrator - Interface in org.apache.commons.math4.legacy.analysis.integration
Interface for univariate real integration algorithms.
UnivariateInterpolator - Interface in org.apache.commons.math4.legacy.analysis.interpolation
Interface representing a univariate real interpolating function.
UnivariateMatrixFunction - Interface in org.apache.commons.math4.legacy.analysis
An interface representing a univariate matrix function.
UnivariateMatrixFunctionDifferentiator - Interface in org.apache.commons.math4.legacy.analysis.differentiation
Interface defining the function differentiation operation.
UnivariateObjectiveFunction - Class in org.apache.commons.math4.legacy.optim.univariate
Scalar function to be optimized.
UnivariateObjectiveFunction(UnivariateFunction) - Constructor for class org.apache.commons.math4.legacy.optim.univariate.UnivariateObjectiveFunction
 
UnivariateOptimizer - Class in org.apache.commons.math4.legacy.optim.univariate
Base class for a univariate scalar function optimizer.
UnivariateOptimizer(ConvergenceChecker<UnivariatePointValuePair>) - Constructor for class org.apache.commons.math4.legacy.optim.univariate.UnivariateOptimizer
 
UnivariatePeriodicInterpolator - Class in org.apache.commons.math4.legacy.analysis.interpolation
Adapter for classes implementing the UnivariateInterpolator interface.
UnivariatePeriodicInterpolator(UnivariateInterpolator, double) - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.UnivariatePeriodicInterpolator
Builds an interpolator.
UnivariatePeriodicInterpolator(UnivariateInterpolator, double, int) - Constructor for class org.apache.commons.math4.legacy.analysis.interpolation.UnivariatePeriodicInterpolator
Builds an interpolator.
UnivariatePointValuePair - Class in org.apache.commons.math4.legacy.optim.univariate
This class holds a point and the value of an objective function at this point.
UnivariatePointValuePair(double, double) - Constructor for class org.apache.commons.math4.legacy.optim.univariate.UnivariatePointValuePair
Build a point/objective function value pair.
UnivariateSolver - Interface in org.apache.commons.math4.legacy.analysis.solvers
Interface for (univariate real) root-finding algorithms.
UnivariateSolverUtils - Class in org.apache.commons.math4.legacy.analysis.solvers
Utility routines for UnivariateSolver objects.
UnivariateStatistic - Interface in org.apache.commons.math4.legacy.stat.descriptive
Base interface implemented by all statistics.
UnivariateVectorFunction - Interface in org.apache.commons.math4.legacy.analysis
An interface representing a univariate vectorial function.
UnivariateVectorFunctionDifferentiator - Interface in org.apache.commons.math4.legacy.analysis.differentiation
Interface defining the function differentiation operation.
UnknownParameterException - Exception in org.apache.commons.math4.legacy.ode
Exception to be thrown when a parameter is unknown.
UnknownParameterException(String) - Constructor for exception org.apache.commons.math4.legacy.ode.UnknownParameterException
Construct an exception from the unknown parameter.
unlimited() - Static method in class org.apache.commons.math4.legacy.optim.MaxEval
Factory method that creates instance of this class that represents a virtually unlimited number of evaluations.
unlimited() - Static method in class org.apache.commons.math4.legacy.optim.MaxIter
Factory method that creates instance of this class that represents a virtually unlimited number of iterations.
unmodifiableRealVector(RealVector) - Static method in class org.apache.commons.math4.legacy.linear.RealVector
Returns an unmodifiable view of the specified vector.
update(Simplex, boolean, int) - Method in interface org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.SimplexOptimizer.Observer
Method called after each modification of the simplex.
updateHighOrderDerivativesPhase1(Array2DRowFieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsFieldIntegrator
Update the high order scaled derivatives for Adams integrators (phase 1).
updateHighOrderDerivativesPhase1(Array2DRowFieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsNordsieckFieldTransformer
Update the high order scaled derivatives for Adams integrators (phase 1).
updateHighOrderDerivativesPhase1(Array2DRowRealMatrix) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsIntegrator
Update the high order scaled derivatives for Adams integrators (phase 1).
updateHighOrderDerivativesPhase1(Array2DRowRealMatrix) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsNordsieckTransformer
Update the high order scaled derivatives for Adams integrators (phase 1).
updateHighOrderDerivativesPhase2(double[], double[], Array2DRowRealMatrix) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsIntegrator
Update the high order scaled derivatives Adams integrators (phase 2).
updateHighOrderDerivativesPhase2(double[], double[], Array2DRowRealMatrix) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsNordsieckTransformer
Update the high order scaled derivatives Adams integrators (phase 2).
updateHighOrderDerivativesPhase2(T[], T[], Array2DRowFieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsFieldIntegrator
Update the high order scaled derivatives Adams integrators (phase 2).
updateHighOrderDerivativesPhase2(T[], T[], Array2DRowFieldMatrix<T>) - Method in class org.apache.commons.math4.legacy.ode.nonstiff.AdamsNordsieckFieldTransformer
Update the high order scaled derivatives Adams integrators (phase 2).
UpdatingMultipleLinearRegression - Interface in org.apache.commons.math4.legacy.stat.regression
An interface for regression models allowing for dynamic updating of the data.
UPSIDE - org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance.Direction
The UPSIDE Direction is used to specify that the observations above the.
UPSIDE_VARIANCE - Static variable in class org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance
The UPSIDE Direction is used to specify that the observations above the cutoff point will be used to calculate SemiVariance.

V

validate(RealVector) - Method in interface org.apache.commons.math4.legacy.fitting.leastsquares.ParameterValidator
Validates the set of parameters.
validateCovarianceData(double[][], double[][]) - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
Validates that the x data and covariance matrix have the same number of rows and that the covariance matrix is square.
validateSampleData(double[][], double[]) - Method in class org.apache.commons.math4.legacy.stat.regression.AbstractMultipleLinearRegression
Validates sample data.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Abs
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Acos
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Acosh
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Asin
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Asinh
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Atan
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Atanh
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Cbrt
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Ceil
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Constant
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Cos
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Cosh
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Exp
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Expm1
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Floor
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Gaussian
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.HarmonicOscillator
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Identity
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Inverse
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Log
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Log10
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Log1p
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Logistic
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Logit
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Minus
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Power
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Rint
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Sigmoid
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Signum
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Sin
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Sinc
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Sinh
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Sqrt
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.StepFunction
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Tan
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Tanh
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.function.Ulp
Compute the value of the function.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.HermiteInterpolator
Interpolate value at a specified abscissa.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction
Compute the value of the function for the given argument.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionLagrangeForm
Calculate the function value at the given point.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionNewtonForm
Calculate the function value at the given point.
value(double) - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialSplineFunction
Compute the value for the function.
value(double) - Method in interface org.apache.commons.math4.legacy.analysis.UnivariateFunction
Compute the value of the function.
value(double) - Method in interface org.apache.commons.math4.legacy.analysis.UnivariateMatrixFunction
Compute the value for the function.
value(double) - Method in interface org.apache.commons.math4.legacy.analysis.UnivariateVectorFunction
Compute the value for the function.
value(double) - Method in class org.apache.commons.math4.legacy.special.BesselJ
Returns the value of the constructed Bessel function of the first kind, for the passed argument.
value(double[]) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.GradientFunction
Compute the value for the function at the given point.
value(double[]) - Method in class org.apache.commons.math4.legacy.analysis.differentiation.JacobianFunction
Compute the value for the function at the given point.
value(double[]) - Method in interface org.apache.commons.math4.legacy.analysis.MultivariateFunction
Compute the value for the function at the given point.
value(double[]) - Method in interface org.apache.commons.math4.legacy.analysis.MultivariateMatrixFunction
Compute the value for the function at the given point.
value(double[]) - Method in interface org.apache.commons.math4.legacy.analysis.MultivariateVectorFunction
Compute the value for the function at the given point.
value(double[]) - Method in class org.apache.commons.math4.legacy.optim.linear.LinearObjectiveFunction
Computes the value of the linear equation at the current point.
value(double[]) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.LeastSquaresConverter
Compute the value for the function at the given point.
value(double[]) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateFunctionMappingAdapter
Compute the underlying function value from an unbounded point.
value(double[]) - Method in class org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateFunctionPenaltyAdapter
Computes the underlying function value from an unbounded point.
value(double[], double[][], double[], double, double) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.InterpolatingMicrosphere
Estimate the value at the requested location.
value(double, double) - Method in interface org.apache.commons.math4.legacy.analysis.BivariateFunction
Compute the value for the function.
value(double, double) - Method in class org.apache.commons.math4.legacy.analysis.function.Add
Compute the value for the function.
value(double, double) - Method in class org.apache.commons.math4.legacy.analysis.function.Atan2
Compute the value for the function.
value(double, double) - Method in class org.apache.commons.math4.legacy.analysis.function.Divide
Compute the value for the function.
value(double, double) - Method in class org.apache.commons.math4.legacy.analysis.function.Max
Compute the value for the function.
value(double, double) - Method in class org.apache.commons.math4.legacy.analysis.function.Min
Compute the value for the function.
value(double, double) - Method in class org.apache.commons.math4.legacy.analysis.function.Multiply
Compute the value for the function.
value(double, double) - Method in class org.apache.commons.math4.legacy.analysis.function.Pow
Compute the value for the function.
value(double, double) - Method in class org.apache.commons.math4.legacy.analysis.function.Subtract
Compute the value for the function.
value(double, double) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.BicubicInterpolatingFunction
Compute the value for the function.
value(double, double) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.PiecewiseBicubicSplineInterpolatingFunction
Compute the value for the function.
value(double, double) - Static method in class org.apache.commons.math4.legacy.special.BesselJ
Returns the first Bessel function, \(J_{order}(x)\).
value(double, double...) - Method in class org.apache.commons.math4.legacy.analysis.function.Gaussian.Parametric
Computes the value of the Gaussian at x.
value(double, double...) - Method in class org.apache.commons.math4.legacy.analysis.function.HarmonicOscillator.Parametric
Computes the value of the harmonic oscillator at x.
value(double, double...) - Method in class org.apache.commons.math4.legacy.analysis.function.Logistic.Parametric
Computes the value of the sigmoid at x.
value(double, double...) - Method in class org.apache.commons.math4.legacy.analysis.function.Logit.Parametric
Computes the value of the logit at x.
value(double, double...) - Method in class org.apache.commons.math4.legacy.analysis.function.Sigmoid.Parametric
Computes the value of the sigmoid at x.
value(double, double...) - Method in interface org.apache.commons.math4.legacy.analysis.ParametricUnivariateFunction
Compute the value of the function.
value(double, double...) - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction.Parametric
Compute the value of the function.
value(double, double, double) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.TricubicInterpolatingFunction
Compute the value for the function.
value(double, double, double) - Method in interface org.apache.commons.math4.legacy.analysis.TrivariateFunction
Compute the value for the function.
value(DerivativeStructure) - Method in interface org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction
Simple mathematical function.
value(DerivativeStructure) - Method in interface org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableMatrixFunction
Compute the value for the function.
value(DerivativeStructure) - Method in interface org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableVectorFunction
Compute the value for the function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Acos
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Acosh
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Asin
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Asinh
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Atan
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Atanh
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Cbrt
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Constant
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Cos
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Cosh
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Exp
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Expm1
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Gaussian
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.HarmonicOscillator
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Identity
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Inverse
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Log
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Log10
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Log1p
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Logistic
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Logit
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Minus
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Power
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Sigmoid
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Sin
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Sinc
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Sinh
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Sqrt
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Tan
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.function.Tanh
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.HermiteInterpolator
Interpolate value at a specified abscissa.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionNewtonForm
Simple mathematical function.
value(DerivativeStructure) - Method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialSplineFunction
Simple mathematical function.
value(DerivativeStructure[]) - Method in interface org.apache.commons.math4.legacy.analysis.differentiation.MultivariateDifferentiableFunction
Compute the value for the function at the given point.
value(DerivativeStructure[]) - Method in interface org.apache.commons.math4.legacy.analysis.differentiation.MultivariateDifferentiableVectorFunction
Compute the value for the function at the given point.
value(RealVector) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.DifferentiatorVectorMultivariateJacobianFunction
Compute the function value and its Jacobian.
value(RealVector) - Method in interface org.apache.commons.math4.legacy.fitting.leastsquares.MultivariateJacobianFunction
Compute the function value and its Jacobian.
value(RealVector) - Method in class org.apache.commons.math4.legacy.optim.linear.LinearObjectiveFunction
Computes the value of the linear equation at the current point.
value(T) - Method in class org.apache.commons.math4.legacy.analysis.interpolation.FieldHermiteInterpolator
Interpolate value at a specified abscissa.
value(T) - Method in interface org.apache.commons.math4.legacy.analysis.RealFieldUnivariateFunction
Compute the value of the function.
ValueAndJacobianFunction - Interface in org.apache.commons.math4.legacy.fitting.leastsquares
A interface for functions that compute a vector of values and can compute their derivatives (Jacobian).
valueOf(String) - Static method in enum org.apache.commons.math4.legacy.analysis.solvers.AllowedSolution
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.apache.commons.math4.legacy.analysis.solvers.BaseSecantSolver.Method
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.apache.commons.math4.legacy.fitting.leastsquares.GaussNewtonOptimizer.Decomposition
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.apache.commons.math4.legacy.ml.clustering.KMeansPlusPlusClusterer.EmptyClusterStrategy
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.apache.commons.math4.legacy.ode.events.Action
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.apache.commons.math4.legacy.ode.events.EventHandler.Action
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.apache.commons.math4.legacy.ode.events.FilterType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.apache.commons.math4.legacy.ode.sampling.StepNormalizerBounds
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.apache.commons.math4.legacy.ode.sampling.StepNormalizerMode
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.apache.commons.math4.legacy.optim.linear.PivotSelectionRule
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.apache.commons.math4.legacy.optim.linear.Relationship
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.apache.commons.math4.legacy.optim.nonlinear.scalar.GoalType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.apache.commons.math4.legacy.optim.nonlinear.scalar.gradient.NonLinearConjugateGradientOptimizer.Formula
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance.Direction
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile.EstimationType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.apache.commons.math4.legacy.stat.inference.AlternativeHypothesis
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.apache.commons.math4.legacy.stat.ranking.NaNStrategy
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.apache.commons.math4.legacy.stat.ranking.TiesStrategy
Returns the enum constant of this type with the specified name.
values() - Static method in enum org.apache.commons.math4.legacy.analysis.solvers.AllowedSolution
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.apache.commons.math4.legacy.analysis.solvers.BaseSecantSolver.Method
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.apache.commons.math4.legacy.fitting.leastsquares.GaussNewtonOptimizer.Decomposition
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.apache.commons.math4.legacy.ml.clustering.KMeansPlusPlusClusterer.EmptyClusterStrategy
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.apache.commons.math4.legacy.ode.events.Action
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.apache.commons.math4.legacy.ode.events.EventHandler.Action
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.apache.commons.math4.legacy.ode.events.FilterType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.apache.commons.math4.legacy.ode.sampling.StepNormalizerBounds
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.apache.commons.math4.legacy.ode.sampling.StepNormalizerMode
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.apache.commons.math4.legacy.optim.linear.PivotSelectionRule
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.apache.commons.math4.legacy.optim.linear.Relationship
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.apache.commons.math4.legacy.optim.nonlinear.scalar.GoalType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.apache.commons.math4.legacy.optim.nonlinear.scalar.gradient.NonLinearConjugateGradientOptimizer.Formula
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.apache.commons.math4.legacy.stat.descriptive.moment.SemiVariance.Direction
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile.EstimationType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.apache.commons.math4.legacy.stat.inference.AlternativeHypothesis
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.apache.commons.math4.legacy.stat.ranking.NaNStrategy
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.apache.commons.math4.legacy.stat.ranking.TiesStrategy
Returns an array containing the constants of this enum type, in the order they are declared.
valuesIterator() - Method in class org.apache.commons.math4.legacy.stat.Frequency
Returns an Iterator over the set of values that have been added.
variance(double[]) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the variance of the entries in the input array, or Double.NaN if the array is empty.
variance(double[], double) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the variance of the entries in the input array, using the precomputed mean value.
variance(double[], double, int, int) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the variance of the entries in the specified portion of the input array, using the precomputed mean value.
variance(double[], int, int) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the variance of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
Variance - Class in org.apache.commons.math4.legacy.stat.descriptive.moment
Computes the variance of the available values.
Variance() - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
Constructs a Variance with default (true) isBiasCorrected property.
Variance(boolean) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
Constructs a Variance with the specified isBiasCorrected property.
Variance(boolean, SecondMoment) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
Constructs a Variance with the specified isBiasCorrected property and the supplied external second moment.
Variance(SecondMoment) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
Constructs a Variance based on an external second moment.
Variance(Variance) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.Variance
Copy constructor, creates a new Variance identical to the original.
varianceDifference(double[], double[], double) - Static method in class org.apache.commons.math4.legacy.stat.StatUtils
Returns the variance of the (signed) differences between corresponding elements of the input arrays -- i.e., var(sample1[i] - sample2[i]).
vecAbsoluteTolerance - Variable in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeFieldIntegrator
Allowed absolute vectorial error.
vecAbsoluteTolerance - Variable in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
Allowed absolute vectorial error.
vecRelativeTolerance - Variable in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeFieldIntegrator
Allowed relative vectorial error.
vecRelativeTolerance - Variable in class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
Allowed relative vectorial error.
VECTOR - Static variable in class org.apache.commons.math4.legacy.linear.ConjugateGradient
Key for the exception context.
VectorialCovariance - Class in org.apache.commons.math4.legacy.stat.descriptive.moment
Returns the covariance matrix of the available vectors.
VectorialCovariance(int, boolean) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.VectorialCovariance
Constructs a VectorialCovariance.
VectorialMean - Class in org.apache.commons.math4.legacy.stat.descriptive.moment
Returns the arithmetic mean of the available vectors.
VectorialMean(int) - Constructor for class org.apache.commons.math4.legacy.stat.descriptive.moment.VectorialMean
Constructs a VectorialMean.
verifyBracketing(double, double) - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
Check that the endpoints specify an interval and the function takes opposite signs at the endpoints.
verifyBracketing(UnivariateFunction, double, double) - Static method in class org.apache.commons.math4.legacy.analysis.solvers.UnivariateSolverUtils
Check that the endpoints specify an interval and the end points bracket a root.
verifyInputArray(double[], double[]) - Static method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionNewtonForm
Verifies that the input arrays are valid.
verifyInterpolationArray(double[], double[], boolean) - Static method in class org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunctionLagrangeForm
Check that the interpolation arrays are valid.
verifyInterval(double, double) - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
Check that the endpoints specify an interval.
verifyInterval(double, double) - Static method in class org.apache.commons.math4.legacy.analysis.solvers.UnivariateSolverUtils
Check that the endpoints specify an interval.
verifySequence(double, double, double) - Method in class org.apache.commons.math4.legacy.analysis.solvers.BaseAbstractUnivariateSolver
Check that lower < initial < upper.
verifySequence(double, double, double) - Static method in class org.apache.commons.math4.legacy.analysis.solvers.UnivariateSolverUtils
Check that lower < initial < upper.
visit(int, double) - Method in interface org.apache.commons.math4.legacy.linear.RealVectorChangingVisitor
Visit one entry of the vector.
visit(int, double) - Method in interface org.apache.commons.math4.legacy.linear.RealVectorPreservingVisitor
Visit one entry of the vector.
visit(int, int, double) - Method in class org.apache.commons.math4.legacy.linear.DefaultRealMatrixChangingVisitor
Visit one matrix entry.
visit(int, int, double) - Method in class org.apache.commons.math4.legacy.linear.DefaultRealMatrixPreservingVisitor
Visit one matrix entry.
visit(int, int, double) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrixChangingVisitor
Visit one matrix entry.
visit(int, int, double) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrixPreservingVisitor
Visit one matrix entry.
visit(int, int, T) - Method in class org.apache.commons.math4.legacy.linear.DefaultFieldMatrixChangingVisitor
Visit one matrix entry.
visit(int, int, T) - Method in class org.apache.commons.math4.legacy.linear.DefaultFieldMatrixPreservingVisitor
Visit one matrix entry.
visit(int, int, T) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrixChangingVisitor
Visit one matrix entry.
visit(int, int, T) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrixPreservingVisitor
Visit one matrix entry.
visit(int, T) - Method in interface org.apache.commons.math4.legacy.linear.FieldVectorChangingVisitor
Visit one entry of the vector.
visit(int, T) - Method in interface org.apache.commons.math4.legacy.linear.FieldVectorPreservingVisitor
Visit one entry of the vector.

W

walkInColumnOrder(FieldMatrixChangingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Visit (and possibly change) all matrix entries in column order.
walkInColumnOrder(FieldMatrixChangingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Visit (and possibly change) all matrix entries in column order.
walkInColumnOrder(FieldMatrixChangingVisitor<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Visit (and possibly change) all matrix entries in column order.
walkInColumnOrder(FieldMatrixChangingVisitor<T>, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Visit (and possibly change) some matrix entries in column order.
walkInColumnOrder(FieldMatrixChangingVisitor<T>, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Visit (and possibly change) some matrix entries in column order.
walkInColumnOrder(FieldMatrixChangingVisitor<T>, int, int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Visit (and possibly change) some matrix entries in column order.
walkInColumnOrder(FieldMatrixPreservingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Visit (but don't change) all matrix entries in column order.
walkInColumnOrder(FieldMatrixPreservingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Visit (but don't change) all matrix entries in column order.
walkInColumnOrder(FieldMatrixPreservingVisitor<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Visit (but don't change) all matrix entries in column order.
walkInColumnOrder(FieldMatrixPreservingVisitor<T>, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Visit (but don't change) some matrix entries in column order.
walkInColumnOrder(FieldMatrixPreservingVisitor<T>, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Visit (but don't change) some matrix entries in column order.
walkInColumnOrder(FieldMatrixPreservingVisitor<T>, int, int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Visit (but don't change) some matrix entries in column order.
walkInColumnOrder(RealMatrixChangingVisitor) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Visit (and possibly change) all matrix entries in column order.
walkInColumnOrder(RealMatrixChangingVisitor) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Visit (and possibly change) all matrix entries in column order.
walkInColumnOrder(RealMatrixChangingVisitor) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Visit (and possibly change) all matrix entries in column order.
walkInColumnOrder(RealMatrixChangingVisitor, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Visit (and possibly change) some matrix entries in column order.
walkInColumnOrder(RealMatrixChangingVisitor, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Visit (and possibly change) some matrix entries in column order.
walkInColumnOrder(RealMatrixChangingVisitor, int, int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Visit (and possibly change) some matrix entries in column order.
walkInColumnOrder(RealMatrixPreservingVisitor) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Visit (but don't change) all matrix entries in column order.
walkInColumnOrder(RealMatrixPreservingVisitor) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Visit (but don't change) all matrix entries in column order.
walkInColumnOrder(RealMatrixPreservingVisitor) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Visit (but don't change) all matrix entries in column order.
walkInColumnOrder(RealMatrixPreservingVisitor, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Visit (but don't change) some matrix entries in column order.
walkInColumnOrder(RealMatrixPreservingVisitor, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Visit (but don't change) some matrix entries in column order.
walkInColumnOrder(RealMatrixPreservingVisitor, int, int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Visit (but don't change) some matrix entries in column order.
walkInDefaultOrder(FieldVectorChangingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Visits (and possibly alters) all entries of this vector in default order (increasing index).
walkInDefaultOrder(FieldVectorChangingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Visits (and possibly alters) all entries of this vector in default order (increasing index).
walkInDefaultOrder(FieldVectorChangingVisitor<T>, int, int) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Visits (and possibly alters) some entries of this vector in default order (increasing index).
walkInDefaultOrder(FieldVectorChangingVisitor<T>, int, int) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Visits (and possibly alters) some entries of this vector in default order (increasing index).
walkInDefaultOrder(FieldVectorPreservingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Visits (but does not alter) all entries of this vector in default order (increasing index).
walkInDefaultOrder(FieldVectorPreservingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Visits (but does not alter) all entries of this vector in default order (increasing index).
walkInDefaultOrder(FieldVectorPreservingVisitor<T>, int, int) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Visits (but does not alter) some entries of this vector in default order (increasing index).
walkInDefaultOrder(FieldVectorPreservingVisitor<T>, int, int) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Visits (but does not alter) some entries of this vector in default order (increasing index).
walkInDefaultOrder(RealVectorChangingVisitor) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Visits (and possibly alters) all entries of this vector in default order (increasing index).
walkInDefaultOrder(RealVectorChangingVisitor) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Visits (and possibly alters) all entries of this vector in default order (increasing index).
walkInDefaultOrder(RealVectorChangingVisitor, int, int) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Visits (and possibly alters) some entries of this vector in default order (increasing index).
walkInDefaultOrder(RealVectorChangingVisitor, int, int) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Visits (and possibly alters) some entries of this vector in default order (increasing index).
walkInDefaultOrder(RealVectorPreservingVisitor) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Visits (but does not alter) all entries of this vector in default order (increasing index).
walkInDefaultOrder(RealVectorPreservingVisitor) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Visits (but does not alter) all entries of this vector in default order (increasing index).
walkInDefaultOrder(RealVectorPreservingVisitor, int, int) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Visits (but does not alter) some entries of this vector in default order (increasing index).
walkInDefaultOrder(RealVectorPreservingVisitor, int, int) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Visits (but does not alter) some entries of this vector in default order (increasing index).
walkInOptimizedOrder(FieldMatrixChangingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Visit (and possibly change) all matrix entries using the fastest possible order.
walkInOptimizedOrder(FieldMatrixChangingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Visit (and possibly change) all matrix entries using the fastest possible order.
walkInOptimizedOrder(FieldMatrixChangingVisitor<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Visit (and possibly change) all matrix entries using the fastest possible order.
walkInOptimizedOrder(FieldMatrixChangingVisitor<T>, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Visit (and possibly change) some matrix entries using the fastest possible order.
walkInOptimizedOrder(FieldMatrixChangingVisitor<T>, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Visit (and possibly change) some matrix entries using the fastest possible order.
walkInOptimizedOrder(FieldMatrixChangingVisitor<T>, int, int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Visit (and possibly change) some matrix entries using the fastest possible order.
walkInOptimizedOrder(FieldMatrixPreservingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Visit (but don't change) all matrix entries using the fastest possible order.
walkInOptimizedOrder(FieldMatrixPreservingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Visit (but don't change) all matrix entries using the fastest possible order.
walkInOptimizedOrder(FieldMatrixPreservingVisitor<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Visit (but don't change) all matrix entries using the fastest possible order.
walkInOptimizedOrder(FieldMatrixPreservingVisitor<T>, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Visit (but don't change) some matrix entries using the fastest possible order.
walkInOptimizedOrder(FieldMatrixPreservingVisitor<T>, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Visit (but don't change) some matrix entries using the fastest possible order.
walkInOptimizedOrder(FieldMatrixPreservingVisitor<T>, int, int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Visit (but don't change) some matrix entries using the fastest possible order.
walkInOptimizedOrder(FieldVectorChangingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Visits (and possibly alters) all entries of this vector in optimized order.
walkInOptimizedOrder(FieldVectorChangingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Visits (and possibly alters) all entries of this vector in optimized order.
walkInOptimizedOrder(FieldVectorChangingVisitor<T>, int, int) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Visits (and possibly change) some entries of this vector in optimized order.
walkInOptimizedOrder(FieldVectorChangingVisitor<T>, int, int) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Visits (and possibly change) some entries of this vector in optimized order.
walkInOptimizedOrder(FieldVectorPreservingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Visits (but does not alter) all entries of this vector in optimized order.
walkInOptimizedOrder(FieldVectorPreservingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Visits (but does not alter) all entries of this vector in optimized order.
walkInOptimizedOrder(FieldVectorPreservingVisitor<T>, int, int) - Method in class org.apache.commons.math4.legacy.linear.ArrayFieldVector
Visits (but does not alter) some entries of this vector in optimized order.
walkInOptimizedOrder(FieldVectorPreservingVisitor<T>, int, int) - Method in class org.apache.commons.math4.legacy.linear.SparseFieldVector
Visits (but does not alter) some entries of this vector in optimized order.
walkInOptimizedOrder(RealMatrixChangingVisitor) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Visit (and possibly change) all matrix entries using the fastest possible order.
walkInOptimizedOrder(RealMatrixChangingVisitor) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Visit (and possibly change) all matrix entries using the fastest possible order.
walkInOptimizedOrder(RealMatrixChangingVisitor) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Visit (and possibly change) all matrix entries using the fastest possible order.
walkInOptimizedOrder(RealMatrixChangingVisitor, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Visit (and possibly change) some matrix entries using the fastest possible order.
walkInOptimizedOrder(RealMatrixChangingVisitor, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Visit (and possibly change) some matrix entries using the fastest possible order.
walkInOptimizedOrder(RealMatrixChangingVisitor, int, int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Visit (and possibly change) some matrix entries using the fastest possible order.
walkInOptimizedOrder(RealMatrixPreservingVisitor) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Visit (but don't change) all matrix entries using the fastest possible order.
walkInOptimizedOrder(RealMatrixPreservingVisitor) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Visit (but don't change) all matrix entries using the fastest possible order.
walkInOptimizedOrder(RealMatrixPreservingVisitor) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Visit (but don't change) all matrix entries using the fastest possible order.
walkInOptimizedOrder(RealMatrixPreservingVisitor, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Visit (but don't change) some matrix entries using the fastest possible order.
walkInOptimizedOrder(RealMatrixPreservingVisitor, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Visit (but don't change) some matrix entries using the fastest possible order.
walkInOptimizedOrder(RealMatrixPreservingVisitor, int, int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Visit (but don't change) some matrix entries using the fastest possible order.
walkInOptimizedOrder(RealVectorChangingVisitor) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Visits (and possibly alters) all entries of this vector in optimized order.
walkInOptimizedOrder(RealVectorChangingVisitor) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Visits (and possibly alters) all entries of this vector in optimized order.
walkInOptimizedOrder(RealVectorChangingVisitor, int, int) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Visits (and possibly change) some entries of this vector in optimized order.
walkInOptimizedOrder(RealVectorChangingVisitor, int, int) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Visits (and possibly change) some entries of this vector in optimized order.
walkInOptimizedOrder(RealVectorPreservingVisitor) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Visits (but does not alter) all entries of this vector in optimized order.
walkInOptimizedOrder(RealVectorPreservingVisitor) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Visits (but does not alter) all entries of this vector in optimized order.
walkInOptimizedOrder(RealVectorPreservingVisitor, int, int) - Method in class org.apache.commons.math4.legacy.linear.ArrayRealVector
Visits (but does not alter) some entries of this vector in optimized order.
walkInOptimizedOrder(RealVectorPreservingVisitor, int, int) - Method in class org.apache.commons.math4.legacy.linear.RealVector
Visits (but does not alter) some entries of this vector in optimized order.
walkInRowOrder(FieldMatrixChangingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Visit (and possibly change) all matrix entries in row order.
walkInRowOrder(FieldMatrixChangingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Visit (and possibly change) all matrix entries in row order.
walkInRowOrder(FieldMatrixChangingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Visit (and possibly change) all matrix entries in row order.
walkInRowOrder(FieldMatrixChangingVisitor<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Visit (and possibly change) all matrix entries in row order.
walkInRowOrder(FieldMatrixChangingVisitor<T>, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Visit (and possibly change) some matrix entries in row order.
walkInRowOrder(FieldMatrixChangingVisitor<T>, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Visit (and possibly change) some matrix entries in row order.
walkInRowOrder(FieldMatrixChangingVisitor<T>, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Visit (and possibly change) some matrix entries in row order.
walkInRowOrder(FieldMatrixChangingVisitor<T>, int, int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Visit (and possibly change) some matrix entries in row order.
walkInRowOrder(FieldMatrixPreservingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Visit (but don't change) all matrix entries in row order.
walkInRowOrder(FieldMatrixPreservingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Visit (but don't change) all matrix entries in row order.
walkInRowOrder(FieldMatrixPreservingVisitor<T>) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Visit (but don't change) all matrix entries in row order.
walkInRowOrder(FieldMatrixPreservingVisitor<T>) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Visit (but don't change) all matrix entries in row order.
walkInRowOrder(FieldMatrixPreservingVisitor<T>, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractFieldMatrix
Visit (but don't change) some matrix entries in row order.
walkInRowOrder(FieldMatrixPreservingVisitor<T>, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowFieldMatrix
Visit (but don't change) some matrix entries in row order.
walkInRowOrder(FieldMatrixPreservingVisitor<T>, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.BlockFieldMatrix
Visit (but don't change) some matrix entries in row order.
walkInRowOrder(FieldMatrixPreservingVisitor<T>, int, int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.FieldMatrix
Visit (but don't change) some matrix entries in row order.
walkInRowOrder(RealMatrixChangingVisitor) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Visit (and possibly change) all matrix entries in row order.
walkInRowOrder(RealMatrixChangingVisitor) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Visit (and possibly change) all matrix entries in row order.
walkInRowOrder(RealMatrixChangingVisitor) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Visit (and possibly change) all matrix entries in row order.
walkInRowOrder(RealMatrixChangingVisitor) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Visit (and possibly change) all matrix entries in row order.
walkInRowOrder(RealMatrixChangingVisitor, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Visit (and possibly change) some matrix entries in row order.
walkInRowOrder(RealMatrixChangingVisitor, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Visit (and possibly change) some matrix entries in row order.
walkInRowOrder(RealMatrixChangingVisitor, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Visit (and possibly change) some matrix entries in row order.
walkInRowOrder(RealMatrixChangingVisitor, int, int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Visit (and possibly change) some matrix entries in row order.
walkInRowOrder(RealMatrixPreservingVisitor) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Visit (but don't change) all matrix entries in row order.
walkInRowOrder(RealMatrixPreservingVisitor) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Visit (but don't change) all matrix entries in row order.
walkInRowOrder(RealMatrixPreservingVisitor) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Visit (but don't change) all matrix entries in row order.
walkInRowOrder(RealMatrixPreservingVisitor) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Visit (but don't change) all matrix entries in row order.
walkInRowOrder(RealMatrixPreservingVisitor, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.AbstractRealMatrix
Visit (but don't change) some matrix entries in row order.
walkInRowOrder(RealMatrixPreservingVisitor, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix
Visit (but don't change) some matrix entries in row order.
walkInRowOrder(RealMatrixPreservingVisitor, int, int, int, int) - Method in class org.apache.commons.math4.legacy.linear.BlockRealMatrix
Visit (but don't change) some matrix entries in row order.
walkInRowOrder(RealMatrixPreservingVisitor, int, int, int, int) - Method in interface org.apache.commons.math4.legacy.linear.RealMatrix
Visit (but don't change) some matrix entries in row order.
weight(RealMatrix) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresBuilder
Configure the weight matrix.
weightDiagonal(LeastSquaresProblem, RealVector) - Static method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresFactory
Apply a diagonal weight matrix to the LeastSquaresProblem.
WeightedEvaluation - Interface in org.apache.commons.math4.legacy.stat.descriptive
Weighted evaluation for statistics.
WeightedObservedPoint - Class in org.apache.commons.math4.legacy.fitting
This class is a simple container for weighted observed point in curve fitting.
WeightedObservedPoint(double, double, double) - Constructor for class org.apache.commons.math4.legacy.fitting.WeightedObservedPoint
Simple constructor.
WeightedObservedPoints - Class in org.apache.commons.math4.legacy.fitting
Simple container for weighted observed points used in curve fitting algorithms.
WeightedObservedPoints() - Constructor for class org.apache.commons.math4.legacy.fitting.WeightedObservedPoints
 
weightMatrix(LeastSquaresProblem, RealMatrix) - Static method in class org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresFactory
Apply a dense weight matrix to the LeastSquaresProblem.
wilcoxonSignedRank(double[], double[]) - Method in class org.apache.commons.math4.legacy.stat.inference.WilcoxonSignedRankTest
Computes the Wilcoxon signed ranked statistic comparing mean for two related samples or repeated measurements on a single sample.
wilcoxonSignedRankTest(double[], double[], boolean) - Method in class org.apache.commons.math4.legacy.stat.inference.WilcoxonSignedRankTest
Returns the observed significance level, or p-value, associated with a Wilcoxon signed ranked statistic comparing mean for two related samples or repeated measurements on a single sample.
WilcoxonSignedRankTest - Class in org.apache.commons.math4.legacy.stat.inference
An implementation of the Wilcoxon signed-rank test.
WilcoxonSignedRankTest() - Constructor for class org.apache.commons.math4.legacy.stat.inference.WilcoxonSignedRankTest
Create a test instance where NaN's are left in place and ties get the average of applicable ranks.
WilcoxonSignedRankTest(NaNStrategy, TiesStrategy) - Constructor for class org.apache.commons.math4.legacy.stat.inference.WilcoxonSignedRankTest
Create a test instance using the given strategies for NaN's and ties.
WilsonScoreInterval - Class in org.apache.commons.math4.legacy.stat.interval
Implements the Wilson score method for creating a binomial proportion confidence interval.
WilsonScoreInterval() - Constructor for class org.apache.commons.math4.legacy.stat.interval.WilsonScoreInterval
 
withCostRelativeTolerance(double) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LevenbergMarquardtOptimizer
 
withDecomposition(GaussNewtonOptimizer.Decomposition) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.GaussNewtonOptimizer
Configure the decomposition algorithm.
withEstimationType(Percentile.EstimationType) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Median
Build a new instance similar to the current one except for the estimation type.
withEstimationType(Percentile.EstimationType) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Build a new instance similar to the current one except for the estimation type.
withInitialStepBoundFactor(double) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LevenbergMarquardtOptimizer
 
withKthSelector(KthSelector) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Median
Build a new instance similar to the current one except for the kthSelector instance specifically set.
withKthSelector(KthSelector) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Build a new instance similar to the current one except for the kthSelector instance specifically set.
withMaxIterations(int) - Method in class org.apache.commons.math4.legacy.fitting.SimpleCurveFitter
Configure the maximum number of iterations.
withNaNStrategy(NaNStrategy) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Median
Build a new instance similar to the current one except for the NaN handling strategy.
withNaNStrategy(NaNStrategy) - Method in class org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile
Build a new instance similar to the current one except for the NaN handling strategy.
withOrthoTolerance(double) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LevenbergMarquardtOptimizer
Modifies the given parameter.
withParameterRelativeTolerance(double) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LevenbergMarquardtOptimizer
 
withRankingThreshold(double) - Method in class org.apache.commons.math4.legacy.fitting.leastsquares.LevenbergMarquardtOptimizer
 
withStartPoint(double[]) - Method in class org.apache.commons.math4.legacy.fitting.SimpleCurveFitter
Configure the start point (initial guess).
writeBaseExternal(ObjectOutput) - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
Save the base state of the instance.
writeExternal(ObjectOutput) - Method in class org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator
writeExternal(ObjectOutput) - Method in class org.apache.commons.math4.legacy.ode.sampling.NordsieckStepInterpolator

Z

zero(Field<T>, int, int) - Static method in class org.apache.commons.math4.legacy.field.linalg.FieldDenseMatrix
Factory method.
ZERO - Static variable in class org.apache.commons.math4.legacy.linear.BigReal
A big real representing 0.
A B C D E F G H I J K L M N O P Q R S T U V W Z 
All Classes All Packages